An Adaptive Unmixing Method Based on Iterative Multi-Objective Optimization for Surface Water Fraction Mapping (IMOSWFM) Using Zhuhai-1 Hyperspectral Images
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Zhuhai-1 OHS Data
2.3. Reference Data
2.4. Framework of IMOSWFM
2.5. Related Work
2.5.1. IMODPSO
2.5.2. Selection of the Optimal Endmember Combination
2.6. Adaptive Unmixing Framework for Surface Water Fraction Mapping
2.6.1. Spectral Characteristics of Surface Water
2.6.2. Extraction of Pure and Mixed Pixels
2.6.3. Iterative Water Fraction Estimation for the Mixed Pixels
2.6.4. Restart Mechanism
2.7. Performance Metrics
3. Results
3.1. Comparison Algorithms and Parameter Settings
3.2. Qualitative Evaluation of Accuracy
3.3. Quantitative Evaluation of Accuracy
4. Discussion
4.1. Comparison Among NDWI, NDWFI, and MNDWFI
4.2. Ablation Experiments
4.3. Convergence Analysis
4.4. Error Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, W.; Teng, H.; Zhao, L.; Han, L. Long-Term Changes in Water Body Area Dynamic and Driving Factors in the Middle-Lower Yangtze Plain Based on Multi-Source Remote Sensing Data. Remote Sens. 2023, 15, 1816. [Google Scholar] [CrossRef]
- Hibjur Rahaman, M.; Roshani; Masroor, M.; Sajjad, H. Integrating remote sensing derived indices and machine learning algorithms for precise extraction of small surface water bodies in the lower Thoubal river watershed, India. J. Clean. Prod. 2023, 422, 138563. [Google Scholar] [CrossRef]
- Zhou, Y.; Dong, J.; Xiao, X.; Xiao, T.; Yang, Z.; Zhao, G.; Zou, Z.; Qin, Y. Open Surface Water Mapping Algorithms: A Comparison of Water-Related Spectral Indices and Sensors. Water 2017, 9, 256. [Google Scholar] [CrossRef]
- Zou, Z.; Dong, J.; Menarguez, M.A.; Xiao, X.; Qin, Y.; Doughty, R.B.; Hooker, K.V.; David Hambright, K. Continued decrease of open surface water body area in Oklahoma during 1984–2015. Sci. Total Environ. 2017, 595, 451–460. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Gao, B.; Gong, H.; Chen, B. Construction of High Spatiotemporal Continuity Surface Water Bodies Dataset in the Haihe River Basin. Water 2023, 15, 2155. [Google Scholar] [CrossRef]
- Zhan, S.; Song, C.; Wang, J.; Sheng, Y.; Quan, J. A Global Assessment of Terrestrial Evapotranspiration Increase Due to Surface Water Area Change. Earth’s Future 2019, 7, 266–282. [Google Scholar] [CrossRef]
- Jenkins, K.; Surminski, S.; Hall, J.; Crick, F. Assessing surface water flood risk and management strategies under future climate change: Insights from an Agent-Based Model. Sci. Total Environ. 2017, 595, 159–168. [Google Scholar] [CrossRef]
- Bhaga, T.D.; Dube, T.; Shekede, M.D.; Shoko, C. Investigating the effectiveness of Landsat-8 OLI and Sentinel-2 MSI satellite data in monitoring the effects of drought on surface water resources in the Western Cape Province, South Africa. Remote Sens. Appl. Soc. Environ. 2023, 32, 101037. [Google Scholar] [CrossRef]
- Zou, Z.; Xiao, X.; Dong, J.; Qin, Y.; Doughty, R.B.; Menarguez, M.A.; Zhang, G.; Wang, J. Divergent trends of open-surface water body area in the contiguous United States from 1984 to 2016. Proc. Natl. Acad. Sci. USA 2018, 115, 3810–3815. [Google Scholar] [CrossRef]
- Zhao, Z.; Li, H.; Song, X.; Sun, W. Dynamic Monitoring of Surface Water Bodies and Their Influencing Factors in the Yellow River Basin. Remote Sens. 2023, 15, 5157. [Google Scholar] [CrossRef]
- Chen, J.; Kang, T.; Yang, S.; Bu, J.; Cao, K.; Gao, Y. Open-Surface Water Bodies Dynamics Analysis in the Tarim River Basin (North-Western China), Based on Google Earth Engine Cloud Platform. Water 2020, 12, 2822. [Google Scholar] [CrossRef]
- Liu, Y.; Xie, X.; Tursun, A.; Wang, Y.; Jiang, F.; Zheng, B. Surface water expansion due to increasing water demand on the Loess Plateau. J. Hydrol. Reg. Stud. 2023, 49, 101485. [Google Scholar] [CrossRef]
- Jiang, W.; Ni, Y.; Pang, Z.; Li, X.; Ju, H.; He, G.; Lv, J.; Yang, K.; Fu, J.; Qin, X. An Effective Water Body Extraction Method with New Water Index for Sentinel-2 Imagery. Water 2021, 13, 1647. [Google Scholar] [CrossRef]
- Ji, Z.; Zhu, Y.; Pan, Y.; Zhu, X.; Zheng, X. Large-Scale Extraction and Mapping of Small Surface Water Bodies Based on Very High-Spatial-Resolution Satellite Images: A Case Study in Beijing, China. Water 2022, 14, 2889. [Google Scholar] [CrossRef]
- Sun, W.; Du, B.; Xiong, S. Quantifying Sub-Pixel Surface Water Coverage in Urban Environments Using Low-Albedo Fraction from Landsat Imagery. Remote Sens. 2017, 9, 428. [Google Scholar] [CrossRef]
- Xiao, Z.; Li, R.; Ding, M.; Cai, P.; Guo, J.; Fu, H.; Zhang, X.; Song, X. Unveiling the hidden dynamics of intermittent surface water: A remote sensing framework. Remote Sens. Environ. 2024, 311, 114285. [Google Scholar] [CrossRef]
- Li, J.; Li, L.; Song, Y.; Chen, J.; Wang, Z.; Bao, Y.; Zhang, W.; Meng, L. A robust large-scale surface water mapping framework with high spatiotemporal resolution based on the fusion of multi-source remote sensing data. Int. J. Appl. Earth Obs. Geoinf. 2023, 118, 103288. [Google Scholar] [CrossRef]
- Yang, J.; Liu, C.; Shu, R.; Xie, F. The Extraction of Urban Surface Water from Hyperspectral Data Based on Spectral Indices. J. Indian Soc. Remote Sens. 2018, 46, 1749–1759. [Google Scholar] [CrossRef]
- Guo, Y.; Deng, R.; Yan, Y.; Li, J.; Hua, Z.; Wang, J.; Tang, Y.; Cao, B.; Liang, Y. Dark-object subtraction atmosphere correction for water body information extraction in Zhuhai-1 hyperspectral imagery. Egypt. J. Remote Sens. Space Sci. 2024, 27, 382–391. [Google Scholar] [CrossRef]
- Zhao, Z.; Yang, J.; Wang, M.; Chen, J.; Sun, C.; Song, N.; Wang, J.; Feng, S. The PCA-NDWI Urban Water Extraction Model Based on Hyperspectral Remote Sensing. Water 2024, 16, 963. [Google Scholar] [CrossRef]
- Xie, H.; Luo, X.; Xu, X.; Tong, X.; Jin, Y.; Pan, H.; Zhou, B. New hyperspectral difference water index for the extraction of urban water bodies by the use of airborne hyperspectral images. J. Appl. Remote Sens. 2014, 8, 085098. [Google Scholar] [CrossRef]
- Chen, F.; Chen, X.; Van de Voorde, T.; Roberts, D.; Jiang, H.; Xu, W. Open water detection in urban environments using high spatial resolution remote sensing imagery. Remote Sens. Environ. 2020, 242, 111706. [Google Scholar] [CrossRef]
- Qin, P.; Cai, Y.; Wang, X. Small Waterbody Extraction with Improved U-Net Using Zhuhai-1 Hyperspectral Remote Sensing Images. IEEE Geosci. Remote Sens. Lett. 2022, 19, 5502705. [Google Scholar] [CrossRef]
- Lu, Z.; Wang, D.; Deng, Z.; Shi, Y.; Ding, Z.; Ning, H.; Zhao, H.; Zhao, J.; Xu, H.; Zhao, X. Application of red edge band in remote sensing extraction of surface water body: A case study based on GF-6 WFV data in arid area. Hydrol. Res. 2021, 52, 1526. [Google Scholar] [CrossRef]
- Mondejar, J.P.; Tongco, A.F. Near infrared band of Landsat 8 as water index: A case study around Cordova and Lapu-Lapu City, Cebu, Philippines. Sustain. Environ. Res. 2019, 29, 16. [Google Scholar] [CrossRef]
- McFeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Xu, H. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
- Feyisa, G.L.; Meilby, H.; Fensholt, R.; Proud, S.R. Automated Water Extraction Index: A new technique for surface water mapping using Landsat imagery. Remote Sens. Environ. 2014, 140, 23–35. [Google Scholar] [CrossRef]
- Acharya, T.D.; Subedi, A.; Lee, D.H. Evaluation of Machine Learning Algorithms for Surface Water Extraction in a Landsat 8 Scene of Nepal. Sensors 2019, 19, 2769. [Google Scholar] [CrossRef]
- Rajendiran, N.; Kumar, L.S. Pixel Level Feature Extraction and Machine Learning Classification for Water Body Extraction. Arab. J. Sci. Eng. 2023, 48, 9905–9928. [Google Scholar] [CrossRef]
- Zhang, X.; Li, J.; Hua, Z. MRSE-Net: Multiscale Residuals and SE-Attention Network for Water Body Segmentation from Satellite Images. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2022, 15, 5049–5064. [Google Scholar] [CrossRef]
- Duan, Y.; Zhang, W.; Huang, P.; He, G.; Guo, H. A New Lightweight Convolutional Neural Network for Multi-Scale Land Surface Water Extraction from GaoFen-1D Satellite Images. Remote Sens. 2021, 13, 4576. [Google Scholar] [CrossRef]
- Pan, H.; Chen, H.; Hong, Z.; Liu, X.; Wang, R.; Zhou, R.; Zhang, Y.; Han, Y.; Wang, J.; Yang, S.; et al. A Novel Boundary Enhancement Network for Surface Water Mapping Based on Sentinel-2 MSI Data. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2023, 16, 9207. [Google Scholar] [CrossRef]
- Li, W.; Li, Y.; Gong, J.; Feng, Q.; Zhou, J.; Sun, J.; Shi, C.; Hu, W. Urban Water Extraction with UAV High-Resolution Remote Sensing Data Based on an Improved U-Net Model. Remote Sens. 2021, 13, 3165. [Google Scholar] [CrossRef]
- Li, J.; Ma, R.; Cao, Z.; Xue, K.; Xiong, J.; Hu, M.; Feng, X. Satellite Detection of Surface Water Extent: A Review of Methodology. Water 2022, 14, 1148. [Google Scholar] [CrossRef]
- Ye, K.; Wang, Z.Z.; Yu, Y.; Li, Z. Rapid monitoring and analysis of Weihui flood using Sentinel-1A SAR data. In Proceedings of the International Conference on Environmental Remote Sensing and Big Data (ERSBD 2021), Wuhan, China, 9 December 2021. [Google Scholar] [CrossRef]
- Pradhan, B.; Tehrany, M.S.; Jebur, M.N. A New Semiautomated Detection Mapping of Flood Extent from TerraSAR-X Satellite Image Using Rule-Based Classification and Taguchi Optimization Techniques. IEEE Trans. Geosci. Remote Sens. 2016, 54, 4331–4342. [Google Scholar] [CrossRef]
- Han, Z.; Hong, D.; Gao, L.; Yao, J.; Zhang, B.; Chanussot, J. Multimodal Hyperspectral Unmixing: Insights from Attention Networks. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5524913. [Google Scholar] [CrossRef]
- Ling, F.; Xiao, F.; Du, Y.; Xue, H.P.; Ren, X.Y. Waterline mapping at the subpixel scale from remote sensing imagery with high-resolution digital elevation models. Int. J. Remote Sens. 2008, 29, 1809–1815. [Google Scholar] [CrossRef]
- Song, Y.; Liu, F.; Ling, F.; Yue, L. Automatic Semi-Global Artificial Shoreline Subpixel Localization Algorithm for Landsat Imagery. Remote Sens. 2019, 11, 1779. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, T.; Mei, S.; Du, Q. Subpixel Mapping of Hyperspectral Images Using a Labeled-Unlabeled Hybrid Endmember Library and Abundance Optimization. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2020, 13, 5036–5047. [Google Scholar] [CrossRef]
- Xu, X.; Zhong, Y.; Zhang, L. Adaptive Subpixel Mapping Based on a Multiagent System for Remote-Sensing Imagery. IEEE Trans. Geosci. Remote Sens. 2014, 52, 787–804. [Google Scholar] [CrossRef]
- Tong, X.; Xu, X.; Plaza, A.; Xie, H.; Pan, H.; Cao, W.; Lv, D. A New Genetic Method for Subpixel Mapping Using Hyperspectral Images. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2016, 9, 4480–4491. [Google Scholar] [CrossRef]
- Xu, X.; Tong, X.; Plaza, A.; Zhong, Y.; Xie, H.; Zhang, L. Using Linear Spectral Unmixing for Subpixel Mapping of Hyperspectral Imagery: A Quantitative Assessment. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2017, 10, 1589–1600. [Google Scholar] [CrossRef]
- Liu, X.; Deng, R.; Xu, J.; Zhang, F. Coupling the Modified Linear Spectral Mixture Analysis and Pixel-Swapping Methods for Improving Subpixel Water Mapping: Application to the Pearl River Delta, China. Water 2017, 9, 658. [Google Scholar] [CrossRef]
- Jia, K.; Jiang, W.; Li, J.; Tang, Z. Spectral matching based on discrete particle swarm optimization: A new method for terrestrial water body extraction using multi-temporal Landsat 8 images. Remote Sens. Environ. 2018, 209, 1–18. [Google Scholar] [CrossRef]
- Wang, Y.; Foody, G.; Li, X.; Zhang, Y.; Zhou, P.; Du, Y. Regression-based surface water fraction mapping using a synthetic spectral library for monitoring small water bodies. GISci. Remote Sens. 2023, 60, 2217573. [Google Scholar] [CrossRef]
- Xie, H.; Luo, X.; Xu, X.; Pan, H.; Tong, X. Automated Subpixel Surface Water Mapping from Heterogeneous Urban Environments Using Landsat 8 OLI Imagery. Remote Sens. 2016, 8, 584. [Google Scholar] [CrossRef]
- Xiong, L.; Deng, R.; Li, J.; Liu, X.; Qin, Y.; Liang, Y.; Liu, Y. Subpixel Surface Water Extraction (SSWE) Using Landsat 8 OLI Data. Water 2018, 10, 653. [Google Scholar] [CrossRef]
- Jiang, L.; Zhou, C.; Li, X. Sub-Pixel Surface Water Mapping for Heterogeneous Areas from Sentinel-2 Images: A Case Study in the Jinshui Basin, China. Water 2023, 15, 1446. [Google Scholar] [CrossRef]
- Lv, Y.; Gao, W.; Yang, C.; Fang, Z. A novel spatial-spectral extraction method for subpixel surface water. Int. J. Remote Sens. 2020, 41, 2477–2499. [Google Scholar] [CrossRef]
- Olthof, I.; Fraser, R.H. Mapping northern land cover fractions using Landsat ETM. Remote Sens. Environ. 2007, 107, 496–509. [Google Scholar] [CrossRef]
- Keshava, N.; Mustard, J. Spectral unmixing. IEEE Signal Process. Mag. 2002, 19, 44–57. [Google Scholar] [CrossRef]
- Nascimento, J.M.P.; Dias, J.M.B. Vertex component analysis: A fast algorithm to unmix hyperspectral data. IEEE Trans. Geosci. Remote Sens. 2005, 43, 898–910. [Google Scholar] [CrossRef]
- Ding, L.; Qi, C.; Li, G.; Zhang, W. TP Concentration Inversion and Pollution Sources in Nanyi Lake Based on Landsat 8 Data and InVEST Model. Sustainability 2023, 15, 9678. [Google Scholar] [CrossRef]
- Ding, L.; Qi, C.; Zhang, W. Distribution characteristics of non-point source pollution of TP and identification of key source areas in Nanyi Lake (China) Basin: Based on InVEST model and source list method. Environ. Sci. Pollut. Res. 2023, 30, 117464–117484. [Google Scholar] [CrossRef]
- Li, J.; Zheng, Z.; Li, Y.; Lyu, H.; Ren, J.; Cai, X.; Du, C.; Chen, N.; Liu, G.; Lei, S.; et al. A hybrid algorithm for estimating total nitrogen from a large eutrophic plateau lake using Orbita hyperspectral (OHS) satellite imagery. Int. J. Appl. Earth Obs. Geoinf. 2024, 131, 103971. [Google Scholar] [CrossRef]
- Vermote, E.F.; Tanre, D.; Deuze, J.L.; Herman, M.; Morcette, J.J. Second Simulation of the Satellite Signal in the Solar Spectrum, 6S: An overview. IEEE Trans. Geosci. Remote Sens. 1997, 35, 675–686. [Google Scholar] [CrossRef]
- Tong, L.; Du, B.; Liu, R.; Zhang, L. An Improved Multiobjective Discrete Particle Swarm Optimization for Hyperspectral Endmember Extraction. IEEE Trans. Geosci. Remote Sens. 2019, 57, 7872–7882. [Google Scholar] [CrossRef]
- Winter, M.E. N-FINDR: An algorithm for fast autonomous spectral end-member determination in hyperspectral data. In Proceedings of the Imaging Spectrometry V, Denver, CO, USA, 19–21 July 1999. [Google Scholar] [CrossRef]
- Zhang, B.; Sun, X.; Gao, L.; Yang, L. Endmember Extraction of Hyperspectral Remote Sensing Images Based on the Discrete Particle Swarm Optimization Algorithm. IEEE Trans. Geosci. Remote Sens. 2011, 49, 4173–4176. [Google Scholar] [CrossRef]
- Zhang, B.; Sun, X.; Gao, L.; Yang, L. Endmember Extraction of Hyperspectral Remote Sensing Images Based on the Ant Colony Optimization (ACO) Algorithm. IEEE Trans. Geosci. Remote Sens. 2011, 49, 2635–2646. [Google Scholar] [CrossRef]
- Green, A.A.; Berman, M.; Switzer, P.; Craig, M.D. A transformation for ordering multispectral data in terms of image quality with implications for noise removal. IEEE Trans. Geosci. Remote Sens. 1988, 26, 65–74. [Google Scholar] [CrossRef]
- Liu, R.; Du, B.; Zhang, L. Multiobjective Optimized Endmember Extraction for Hyperspectral Image. Remote Sens. 2017, 9, 558. [Google Scholar] [CrossRef]
- Lei, C.; Liu, R.; Tian, Y. Two-Stage Evolutionary Algorithm Based on Subspace Specified Searching for Hyperspectral Endmember Extraction. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2024, 17, 732–747. [Google Scholar] [CrossRef]
- Konak, A.; Coit, D.W.; Smith, A.E. Multi-Objective Optimization Using Genetic Algorithms: A Tutorial. Reliab. Eng. Syst. Saf. 2006, 91, 992–1007. [Google Scholar] [CrossRef]
- Cheng, Q.; Du, B.; Zhang, L.; Liu, R. ANSGA-III: A Multiobjective Endmember Extraction Algorithm for Hyperspectral Images. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2019, 12, 700–721. [Google Scholar] [CrossRef]
- Mostaghim, S.; Teich, J. Strategies for finding good local guides in multi-objective particle swarm optimization (MOPSO). In Proceedings of the 2003 IEEE Swarm Intelligence Symposium, Indianapolis, IN, USA, 26 April 2003. [Google Scholar] [CrossRef]
- Cai, Y.; Shi, Q.; Liu, X. Spatiotemporal Mapping of Surface Water Using Landsat Images and Spectral Mixture Analysis on Google Earth Engine. J. Remote Sens. 2024, 4, 0117. [Google Scholar] [CrossRef]
- Liu, R.; Zhu, X. Endmember Bundle Extraction Based on Multiobjective Optimization. IEEE Trans. Geosci. Remote Sens. 2021, 59, 8630–8645. [Google Scholar] [CrossRef]
- Otsu, N. A Threshold Selection Method from Gray-Level Histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef]
- Li, L.; Su, H.; Du, Q.; Wu, T. A novel surface water index using local background information for long term and large-scale Landsat images. ISPRS J. Photogramm. Remote Sens. 2021, 172, 59–78. [Google Scholar] [CrossRef]
- Batenburg, K.J.; Sijbers, J. Adaptive thresholding of tomograms by projection distance minimization. Pattern Recognit. 2009, 42, 2297–2305. [Google Scholar] [CrossRef]
- Yan, F.; Zhang, H.; Kube, C.R. A multistage adaptive thresholding method. Pattern Recognit. Lett. 2005, 26, 1183–1191. [Google Scholar] [CrossRef]
- Xu, M.; Chen, S.; Gao, X.; Ye, Q.; Ke, Y.; Huo, C.; Liu, X. Research on Fast Multi-Threshold Image Segmentation Technique Using Histogram Analysis. Electronics 2023, 12, 4446. [Google Scholar] [CrossRef]
- Cheng, F.; Chen, N.; Wang, C.; Wang, Q.; Du, B. A Global-to-Local Evolutionary Algorithm for Hyperspectral Endmember Extraction. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5504117. [Google Scholar] [CrossRef]
- Ye, C.; He, F.; Luo, J.; Tong, L.; Gao, X.; Si, T.; Fan, L. A Multistrategy Evolutionary Multiobjective Optimization Method for Hyperspectral Endmember Extraction. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5524215. [Google Scholar] [CrossRef]
- Li, J.; Li, H.; Liu, Y.; Gong, M. Multi-fidelity evolutionary multitasking optimization for hyperspectral endmember extraction. Appl. Soft Comput. 2021, 111, 107713. [Google Scholar] [CrossRef]
Study Area | Product ID | Size of OHS Image | Acquisition Date of OHS Image | Acquisition Date of Reference Image |
---|---|---|---|---|
Area 1 | HEM2_20230227235680_0014_L1B_CMOS3 | 27 February 2023 | 27 January 2023 | |
Area 2 | 300 × 300 pixels | 9 January 2023 | ||
Area 3 | 9 January 2023 | |||
Area 4 | HEM2_20230219224117_0011_L1B_CMOS3 | 19 February 2023 | / | |
Area 5 | HGM2_20230215234218_0004_L1B_CMOS2 | 500 × 500 pixels | 15 February 2023 | / |
Area 6 | HGM2_20230203235828_0008_L1B_CMOS2 | 3 February 2023 | / |
Overall Accuracy | Kappa Coefficient | |||||
---|---|---|---|---|---|---|
Area 1 | Area 2 | Area 3 | Area 1 | Area 2 | Area 3 | |
ASWM | 89.03% | 91.49% | 83.16% | 0.6163 | 0.7741 | 0.6579 |
DESWE | 89.28% | 91.22% | 82.90% | 0.5931 | 0.7572 | 0.6438 |
SSEM | 88.55% | 90.74% | 79.49% | 0.5968 | 0.7450 | 0.5970 |
IMOSWFM | 91.74% | 93.12% | 89.73% | 0.6026 | 0.8080 | 0.7632 |
Overall Accuracy | Kappa Coefficient | |||||
---|---|---|---|---|---|---|
Region 4 | Region 5 | Region 6 | Region 4 | Region 5 | Region 6 | |
ASWM | 55.18% | 91.06% | 86.48% | 0.1164 | 0.7738 | 0.7217 |
DESWE | 51.64% | 90.84% | 83.91% | 0.0843 | 0.7677 | 0.6795 |
SSEM | 57.79% | 95.11% | 85.44% | 0.1642 | 0.8814 | 0.6935 |
IMOSWFM | 91.09% | 96.61% | 89.84% | 0.8214 | 0.9191 | 0.7919 |
RMSE | SE | |||||
---|---|---|---|---|---|---|
Area 1 | Area 2 | Area 3 | Area 1 | Area 2 | Area 3 | |
ASWM | 0.2700 | 0.2433 | 0.2648 | 0.0461 | 0.0314 | 0.0875 |
DESWE | 0.2662 | 0.2572 | 0.2782 | 0.0108 | −0.0049 | 0.0639 |
SSEM | 0.2946 | 0.2858 | 0.3144 | −0.0165 | −0.0341 | 0.1184 |
IMOSWFM | 0.2506 | 0.2403 | 0.2265 | −0.0023 | −0.0083 | 0.0516 |
Overall Accuracy | Kappa Coefficient | |||||
---|---|---|---|---|---|---|
Area 1 | Area 2 | Area 3 | Area 1 | Area 2 | Area 3 | |
NDWI | 89.35% | 90.51% | 81.99% | 0.5923 | 0.7502 | 0.6245 |
NDWFI | 91.53% | 92.72% | 89.64% | 0.6533 | 0.7988 | 0.7613 |
MNDWFI | 91.74% | 93.12% | 89.73% | 0.6026 | 0.8080 | 0.7632 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lei, C.; Liu, R.; Kuang, Z.; Deng, R. An Adaptive Unmixing Method Based on Iterative Multi-Objective Optimization for Surface Water Fraction Mapping (IMOSWFM) Using Zhuhai-1 Hyperspectral Images. Remote Sens. 2024, 16, 4038. https://doi.org/10.3390/rs16214038
Lei C, Liu R, Kuang Z, Deng R. An Adaptive Unmixing Method Based on Iterative Multi-Objective Optimization for Surface Water Fraction Mapping (IMOSWFM) Using Zhuhai-1 Hyperspectral Images. Remote Sensing. 2024; 16(21):4038. https://doi.org/10.3390/rs16214038
Chicago/Turabian StyleLei, Cong, Rong Liu, Zhiyuan Kuang, and Ruru Deng. 2024. "An Adaptive Unmixing Method Based on Iterative Multi-Objective Optimization for Surface Water Fraction Mapping (IMOSWFM) Using Zhuhai-1 Hyperspectral Images" Remote Sensing 16, no. 21: 4038. https://doi.org/10.3390/rs16214038
APA StyleLei, C., Liu, R., Kuang, Z., & Deng, R. (2024). An Adaptive Unmixing Method Based on Iterative Multi-Objective Optimization for Surface Water Fraction Mapping (IMOSWFM) Using Zhuhai-1 Hyperspectral Images. Remote Sensing, 16(21), 4038. https://doi.org/10.3390/rs16214038