Impact of a Scalable, Multi-Campus “Foodprint” Seminar on College Students’ Dietary Intake and Dietary Carbon Footprint
Abstract
:1. Introduction
2. Theoretical Background
3. Materials and Methods
3.1. Study Design and Study Sites
3.2. Intervention Description: Foodprint Seminar
3.3. Data Collection
3.4. Key Outcome Measures
3.4.1. Dietary Intake
3.4.2. Dietary Carbon Footprint
3.4.3. Psychosocial Outcomes
3.4.4. Knowledge and Impact Self-Assessment
3.5. Statistical Analysis
4. Results
4.1. Study Participant Characteristics
4.2. Dietary Intake
4.3. Ruminant Meat Intake and Dietary Carbon Footprint
4.4. Psychosocial Outcomes
4.5. Knowledge and Impact Self-Assessment
5. Discussion
Limitations and Strengths
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- World Health Organization. A Healthy Diet Sustainably Produced: Information Sheet. Available online: https://www.who.int/publications/i/item/WHO-NMH-NHD-18.12 (accessed on 18 July 2020).
- Clark, M.; Springmann, M.; Hill, J.D.; Tilman, D. Multiple health and environmental impacts of foods. Proc. Natl. Acad. Sci. USA 2019, 116, 23357–23362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Willett, W.; Rockström, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; Declerck, F.; Wood, A.; et al. Food in the Anthropocene: The EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet 2019, 393, 447–492. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change. Special Report on Climate Change and Land. 2019. Available online: https://www.ipcc.ch/srccl/ (accessed on 10 May 2020).
- Food and Agrigulture Organization of the United Nations. Livestock and the Environment. Available online: http://www.fao.org/livestock-environment/en/ (accessed on 11 November 2019).
- Springmann, M.; Clark, M.; Mason-D’Croz, D.; Wiebe, K.D.; Bodirsky, B.L.; Lassaletta, L.; De Vries, W.; Vermeulen, S.J.; Herrero, M.; Carlson, K.M.; et al. Options for keeping the food system within environmental limits. Nature 2018, 562, 519–525. [Google Scholar] [CrossRef]
- Harwatt, H.; Sabaté, J.; Eshel, G.; Soret, S.; Ripple, W. Substituting beans for beef as a contribution toward US climate change targets. Clim. Chang. 2017, 143, 261–270. [Google Scholar] [CrossRef]
- Springmann, M.; Wiebe, K.; Mason-D’Croz, D.; Sulser, T.B.; Rayner, M.; Scarborough, P. Health and nutritional aspects of sustainable diet strategies and their association with environmental impacts: A global modelling analysis with country-level detail. Lancet Planet. Health 2018, 2, e451–e461. [Google Scholar] [CrossRef] [Green Version]
- Tilman, D.; Clark, M. Global diets link environmental sustainability and human health. Nature 2014, 515, 518–522. [Google Scholar] [CrossRef] [PubMed]
- Deliens, T.; Van Crombruggen, R.; Verbruggen, S.; De Bourdeaudhuij, I.; Deforche, B.; Clarys, P. Dietary interventions among university students: A systematic review. Appetite 2016, 105, 14–26. [Google Scholar] [CrossRef]
- Kelly, N.R.; Mazzeo, S.E.; Bean, M.K. Systematic Review of Dietary Interventions With College Students: Directions for Future Research and Practice. J. Nutr. Educ. Behav. 2013, 45, 304–313. [Google Scholar] [CrossRef]
- National Center for Education Statistics. Back to School Statistics. Available online: https://nces.ed.gov/fastfacts/display.asp?id=372 (accessed on 5 October 2018).
- Nelson, M.C.; Story, M.; Larson, N.I.; Neumark-Sztainer, D.; Lytle, L.A. Emerging Adulthood and College-aged Youth: An Overlooked Age for Weight-related Behavior Change. Obesity 2008, 16, 2205–2211. [Google Scholar] [CrossRef]
- Meseguer-Sánchez, V.; Abad-Segura, E.; Belmonte-Ureña, L.J.; Moreno, V.M. Examining the Research Evolution on the Socio-Economic and Environmental Dimensions on University Social Responsibility. Int. J. Environ. Res. Public Health 2020, 17, 4729. [Google Scholar] [CrossRef]
- Kouatli, I. The contemporary definition of university social responsibility with quantifiable sustainability. Soc. Responsib. J. 2019, 15, 888–909. [Google Scholar] [CrossRef]
- De Velazco, J.J.H.G.; Ravina-Ripoll, R.; Hernandez, A.C.C. Relevance and social responsibility of sustainable university organizations: Analysis from the perspective of endogenous capacities. Entrep. Sustain. Issues 2020, 7, 2967–2977. [Google Scholar] [CrossRef]
- Belogianni, K.; Baldwin, C. Types of Interventions Targeting Dietary, Physical Activity, and Weight-Related Outcomes among University Students: A Systematic Review of Systematic Reviews. Adv. Nutr. 2019, 10, 848–863. [Google Scholar] [CrossRef]
- Jay, J.A.; D’Auria, R.; Nordby, J.C.; Rice, D.A.; Cleveland, D.A.; Friscia, A.; Kissinger, S.; Levis, M.; Malan, H.; Rajagopal, D.; et al. Reduction of the carbon footprint of college freshman diets after a food-based environmental science course. Clim. Chang. 2019, 154, 547–564. [Google Scholar] [CrossRef]
- Hekler, E.B.; Gardner, C.D.; Robinson, T.N. Effects of a College Course About Food and Society on Students’ Eating Behaviors. Am. J. Prev. Med. 2010, 38, 543–547. [Google Scholar] [CrossRef] [PubMed]
- Ajzen, I. The theory of planned behavior. Organ. Behav. Hum. Decis. Process. 1991, 50, 179–211. [Google Scholar] [CrossRef]
- Bandura, A. Social Foundations of Thought and Action: A Social Cognitive Theory; Prentice-Hall: Englewood Cliffs, NJ, USA, 1986. [Google Scholar]
- U.S. Department of Health and Human Services; U.S. Department of Agriculture. 2015–2020 Dietary Guidelines for Americans, 8th ed.; U.S. Department of Health and Human Services; U.S. Department of Agriculture: Washington, DC, USA, 2015. Available online: https://health.gov/our-work/food-and-nutrition/2015-2020-dietary-guidelines/ (accessed on 18 July 2020).
- Heller, M.; Keoleian, G.A. Greenhouse Gas Emission Estimates of U.S. Dietary Choices and Food Loss. J. Ind. Ecol. 2014, 19, 391–401. [Google Scholar] [CrossRef]
- Meier, T.; Christen, O. Environmental Impacts of Dietary Recommendations and Dietary Styles: Germany As an Example. Environ. Sci. Technol. 2012, 47, 877–888. [Google Scholar] [CrossRef]
- Scarborough, P.; Appleby, P.N.; Mizdrak, A.; Briggs, A.D.M.; Travis, R.C.; Bradbury, K.E.; Key, T.J. Dietary greenhouse gas emissions of meat-eaters, fish-eaters, vegetarians and vegans in the UK. Clim. Chang. 2014, 125, 179–192. [Google Scholar] [CrossRef] [Green Version]
- Drewnowski, A.; Rehm, C.; Martin, A.; Verger, E.; Voinnesson, M.; Imbert, P. Energy and nutrient density of foods in relation to their carbon footprint. Am. J. Clin. Nutr. 2014, 101, 184–191. [Google Scholar] [CrossRef]
- Nijdam, D.; Rood, T.; Westhoek, H. The price of protein: Review of land use and carbon footprints from life cycle assessments of animal food products and their substitutes. Food Policy 2012, 37, 760–770. [Google Scholar] [CrossRef]
- Bandura, A. Health promotion from the perspective of social cognitive theory. Psychol. Health 1998, 13, 623–649. [Google Scholar] [CrossRef]
- Kellstedt, P.M.; Zahran, S.; Vedlitz, A. Personal Efficacy, the Information Environment, and Attitudes Toward Global Warming and Climate Change in the United States. Risk Anal. 2008, 28, 113–126. [Google Scholar] [CrossRef] [PubMed]
- Weller, K.E.; Greene, G.; Redding, C.A.; Paiva, A.L.; Lofgren, I.; Nash, J.T.; Kobayashi, H. Development and Validation of Green Eating Behaviors, Stage of Change, Decisional Balance, and Self-Efficacy Scales in College Students. J. Nutr. Educ. Behav. 2014, 46, 324–333. [Google Scholar] [CrossRef] [PubMed]
- Monroe, J.T.; Lofgren, I.E.; Sartini, B.L.; Greene, G.W. The Green Eating Project: Web-based intervention to promote environmentally conscious eating behaviours in US university students. Public Health Nutr. 2015, 18, 2368–2378. [Google Scholar] [CrossRef] [Green Version]
- Ni Mhurchu, C.; Margetts, B.M.; Speller, V.M. Applying the Stages-of-Change Model to Dietary Change. Nutr. Rev. 2009, 55, 10–16. [Google Scholar] [CrossRef]
- Taylor-Powell, E.; Renner, M. Collecting Evaluation Data: End-of-Session Questionnaires; No. 11; University of Wisconsin-Extension, Cooperative Extension, Program Development and Evaluation: Madison, WI, USA, 2009. [Google Scholar]
- The White House. President Obama’s Climate Action Plan 2nd Anniversary Progress Report. 2015. Available online: https://obamawhitehouse.archives.gov/sites/default/files/docs/cap_progress_report_final_w_cover.pdf (accessed on 18 July 2020).
- Malan, H.; Watson, T.D.; Slusser, W.; Glik, D.; Rowat, A.C.; Prelip, M. Challenges, Opportunities, and Motivators for Developing and Applying Food Literacy in a University Setting: A Qualitative Study. J. Acad. Nutr. Diet. 2020, 120, 33–44. [Google Scholar] [CrossRef]
- Robinson-O’Brien, R.; Larson, N.; Neumark-Sztainer, D.; Hannan, P.; Story, M. Characteristics and Dietary Patterns of Adolescents Who Value Eating Locally Grown, Organic, Nongenetically Engineered, and Nonprocessed Food. J. Nutr. Educ. Behav. 2009, 41, 11–18. [Google Scholar] [CrossRef]
- Pelletier, J.E.; Laska, M.N.; Neumark-Sztainer, D.; Story, M. Positive attitudes toward organic, local, and sustainable foods are associated with higher dietary quality among young adults. J. Acad. Nutr. Diet. 2013, 113, 127–132. [Google Scholar] [CrossRef] [Green Version]
- Robinson, T.N. Stealth interventions for obesity prevention and control: Motivating behavior change. In Obesity Prevention; Academic Press: Cambridge, MA, USA, 2010; pp. 319–327. [Google Scholar]
- Bouvard, V.; Loomis, D.; Guyton, K.Z.; Grosse, Y.; El Ghissassi, F.; Benbrahim-Tallaa, L.; Guha, N.; Mattock, H.; Straif, K. Carcinogenicity of consumption of red and processed meat. Lancet Oncol. 2015, 16, 1599–1600. [Google Scholar] [CrossRef] [Green Version]
- Heidemann, C.; Schulze, M.B.; Franco, O.H.; Van Dam, R.M.; Mantzoros, C.S.; Hu, F.B. Dietary patterns and risk of mortality from cardiovascular disease, cancer, and all causes in a prospective cohort of women. Circulation 2008, 118, 230–237. [Google Scholar] [CrossRef] [PubMed]
- Larsson, S.C.; Orsini, N. Red Meat and Processed Meat Consumption and All-Cause Mortality: A Meta-Analysis. Am. J. Epidemiol. 2013, 179, 282–289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, Q.; Pan, A.; Bernstein, A.M.; Schulze, M.B.; Manson, J.E.; Stampfer, M.J.; Willett, W.C.; Hu, F.B. Red Meat Consumption and Mortality: Results from 2 prospective cohort studies. Arch. Intern. Med. 2012, 172, 555–563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Ouyang, Y.; Liu, J.; Zhu, M.; Zhao, G.; Bao, W.; Hu, F.B. Fruit and vegetable consumption and mortality from all causes, cardiovascular disease, and cancer: Systematic review and dose-response meta-analysis of prospective cohort studies. BMJ 2014, 349, g4490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allman-Farinelli, M.; Partridge, S.; Roy, R. Weight-Related Dietary Behaviors in Young Adults. Curr. Obes. Rep. 2016, 5, 23–29. [Google Scholar] [CrossRef]
- Malik, V.S.; Popkin, B.; Bray, G.A.; Després, J.-P.; Hu, F.B. Sugar-sweetened beverages, obesity, type 2 diabetes mellitus, and cardiovascular disease risk. Circulation 2010, 121, 1356–1364. [Google Scholar] [CrossRef]
- Poti, J.M.; Mendez, M.A.; Popkin, B.; Popkin, B.M. Is the degree of food processing and convenience linked with the nutritional quality of foods purchased by US households? Am. J. Clin. Nutr. 2015, 101, 1251–1262. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.C.; Ludwig, D.S.; Sonneville, K.; Gortmaker, S.L. Impact of Change in Sweetened Caloric Beverage Consumption on Energy Intake Among Children and Adolescents. Arch. Pediatr. Adolesc. Med. 2009, 163, 336–343. [Google Scholar] [CrossRef]
- Rossi, P.H.; Lipsey, M.W.; Freeman, H.E. Evaluation: A Systematic Approach, 7th ed.; Sage Publications, Inc.: Thousand Oaks, CA, USA, 2004. [Google Scholar]
Week 1 | Food and the planetary boundaries |
Week 2 | Climate change and the carbon footprint of food |
Week 3 | Food miles, packaging, and refrigeration |
Week 4 | Nutrient cycling |
Week 5 | Water—hidden water and bottled water |
Week 6 | Land use |
Week 7 | Biodiversity loss |
Week 8 | Chemical pollution—worker health, impacts on wildlife, and exposure to consumers |
Week 9 | Antibiotic resistance—humane treatment of animals |
Week 10 | Dietary shifts and sustainability |
Characteristics | Comparison (n = 87) | Intervention (n = 89) | p-Value | ||
---|---|---|---|---|---|
Campus | n | % | n | % | 0.42 |
UCLA | 59 | 67.8 | 55 | 61.8 | |
Stanford | 20 | 23.0 | 20 | 22.5 | |
UC Davis | 8 | 9.2 | 14 | 15.7 | |
Academic Quarter | 0.04 * | ||||
Fall | 58 | 66.7 | 46 | 51.7 | |
2018 | 16 | 27.6 | 16 | 34.8 | |
2019 | 42 | 72.4 | 30 | 65.2 | |
Winter 2019 | 14 | 16.1 | 13 | 14.6 | |
Spring 2019 | 15 | 17.2 | 30 | 33.7 | |
Gender | 0.30 | ||||
Female | 55 | 63.2 | 63 | 70.8 | |
Male | 32 | 36.8 | 25 | 28.1 | |
Refused | - | - | 1 | 1.1 | |
Year in School | 0.11 | ||||
First | 61 | 70.1 | 50 | 56.2 | |
Second | 13 | 14.9 | 11 | 12.4 | |
Third | 2 | 2.3 | 8 | 9.0 | |
Fourth/Fifth | 11 | 12.7 | 20 | 22.5 | |
Race/Ethnicity | 0.59 | ||||
Asian | 32 | 36.8 | 26 | 29.2 | |
White | 30 | 34.5 | 33 | 37.1 | |
Hispanic/Latino | 10 | 11.5 | 8 | 9.0 | |
Other/Multi | 15 | 17.2 | 22 | 24.7 |
Dietary Intake Outcomes | Comparison (n = 87) | Intervention (n = 89) | Group Differences | |||||
---|---|---|---|---|---|---|---|---|
Pre | Post | Diff a | Pre | Post | Diff a | Baseline b | DID c | |
Food group servings/week, Mean (SD) | ||||||||
Fruit | 10.4 (10.4) | 8.4 (8.7) | −2.0 * | 12.5 (9.5) | 11.7 (8.1) | −0.9 | 2.2 ** | 1.1 |
Vegetables | 19.9 (16.9) | 17.3 (13.9) | −2.5 ** | 21.9 (14.7) | 24.0 (14.6) | 2.1 * | 2.0 | 4.7 *** |
Dairy | 9.3 (9.1) | 8.1 (8.9) | −1.2 * | 6.7 (6.4) | 5.6 (5.8) | −1.2 ** | −2.6 * | 0.0 |
Dairy alternatives | 3.0 (5.3) | 2.7 (5.0) | −0.3 | 4.9 (7.9) | 4.6 (6.1) | −0.3 | 1.9 ** | 0.0 |
Animal-based protein | 18.3 (13.0) | 16.5 (13.2) | −1.8 | 15.0 (12.0) | 12.7 (12.3) | −2.3 *** | −3.3 ** | −0.5 |
Ruminant (beef/lamb) | 3.1 (3.9) | 2.8 (4.1) | −0.2 * | 2.3 (3.4) | 1.6 (3.0) | −0.7 *** | −0.8 ** | −0.5 |
Pork | 1.7 (2.0) | 1.5 (2.7) | −0.1 | 1.4 (2.2) | 1.1 (1.8) | −0.3 | −0.3 ** | −0.2 |
Poultry | 7.0 (5.7) | 6.1 (5.7) | −0.9 * | 5.6 (5.9) | 4.8 (5.7) | −0.8 * | −1.4 ** | 0.1 |
Fish/seafood | 2.9 (4.0) | 2.8 (4.0) | −0.1 * | 2.0 (2.5) | 1.8 (2.4) | −0.2 * | −0.9 | −0.1 |
Eggs | 3.6 (3.6) | 3.2 (3.0) | −0.5 | 3.8 (3.7) | 3.5 (3.6) | −0.3 | 0.2 | 0.2 |
Plant-based protein | 12.0 (18.1) | 9.3 (8.9) | −2.7 | 15.3 (12.7) | 15.1 (13.1) | −0.2 | 3.3 *** | 2.5 |
Grains | 21.5 (17.9) | 16.5 (13.5) | −5.0 *** | 19.7 (11.6) | 19.8 (11.5) | 0.1 | −1.8 | 5.1 *** |
SSBs | 1.7 (4.0) | 1.7 (4.2) | 0.0 | 1.2 (3.5) | 0.8 (2.5) | −0.4 ** | −0.5 ** | −0.4 |
Eat whole grains some/all the time (%) | 42.5 | 49.4 | 6.9 | 48.3 | 59.6 | 11.3 | 5.8 | 4.4 |
Weekly ruminant intake (%) | 71.3 | 64.4 | −6.9 | 51.7 | 40.5 | −11.2 | −19.6 ** | −4.3 |
GHE score d, Mean (SD) | 1.41 (1.2) | 1.38 (1.1) | −0.03 | 1.73 (1.3) | 2.15 (1.2) | 0.42 | 0.32 | 0.45 *** |
Ruminant Meat Outcomes | Comparison (n = 87) | Intervention (n = 89) | Group Differences | |||||
---|---|---|---|---|---|---|---|---|
Pre | Post | Diff a | Pre | Post | Diff a | Baseline b | DID c | |
Servings/week, Mean (SD) | ||||||||
Weekly consumers | 4.3 (4.0) | 3.6 (4.3) | −0.6 ** | 4.3 (4.7) | 2.8 (3.8) | −1.5 *** | 0 | −0.9 ** |
Infrequent consumers | 0.2 (0.2) | 0.9 (2.9) | 0.7 | 0.1 (0.2) | 0.2 (0.5) | 0.1 | −0.1 | −0.6 |
Psychosocial Outcomes | Comparison (n = 87) | Intervention (n = 89) | Group Differences | |||||
---|---|---|---|---|---|---|---|---|
Pre | Post | Diff a | Pre | Post | Diff a | Baseline b | DID c | |
Value Beliefs d | ||||||||
Climate change | 3.2 (1.3) | 3.4 (1.2) | 0.2 | 3.4 (1.2) | 3.5 (1.1) | 0.2 * | 0.2 | 0.0 |
Environmental sustainability | 2.8 (1.2) | 2.9 (1.2) | 0.1 | 3.3 (1.1) | 3.5 (1.0) | 0.2 ** | 0.5 ** | 0.1 |
Eating a healthful diet | 3.1 (1.1) | 3.3 (1.0) | 0.2 * | 3.5 (1.1) | 3.7 (1.1) | 0.2 | 0.5 ** | 0.0 |
Animal rights | 2.4 (1.2) | 2.3 (1.2) | 0.0 | 2.5 (1.2) | 2.5 (1.1) | 0.0 | 0.1 | 0.0 |
Social justice | 3.1 (1.2) | 3.1 (1.3) | 0.0 | 2.9 (1.2) | 3.0 (1.1) | 0.1 | 0.1 | 0.1 |
Climate Change Self-Efficacy e | ||||||||
Mean score | 4.0 (0.7) | 4.1 (0.7) | 0.1 | 4.4 (0.5) | 4.6 (0.4) | 0.2 *** | 0.4 *** | 0.1 * |
Green Eating Intentions f | ||||||||
Choose local/seasonal | 3.6 (1.0) | 3.6 (0.9) | 0.0 | 3.8 (0.9) | 4.1 (0.7) | 0.3 *** | 0.2 | 0.3 ** |
Limit processed/fast foods | 4.1 (1.0) | 4.1 (1.0) | 0.0 | 4.3 (0.8) | 4.6 (0.7) | 0.2 *** | 0.3 * | 0.2 ** |
Eat meatless meals once/week | 3.5 (1.4) | 3.6 (1.4) | 0.1 | 4.2 (1.2) | 4.6 (0.8) | 0.4 *** | 0.7 *** | 0.3 ** |
Choose organic when possible | 3.5 (1.1) | 3.6 (1.2) | 0.1 | 3.8 (1.1) | 4.1 (1.0) | 0.2 ** | 0.3 * | 0.1 |
Take only what plan on eating | 4.6 (0.7) | 4.6 (0.6) | 0.0 | 4.6 (0.6) | 4.8 (0.5) | 0.2 ** | 0.1 | 0.2 |
Already Knew | n (%) |
---|---|
None | 1 (1.7) |
A little bit | 44 (73.3) |
Quite a bit | 14 (23.3) |
All of it | 1 (1.7) |
Seminar Topic | Pre | Post | Diff *** |
---|---|---|---|
Carbon footprint of food | 2.2 (1.2) | 3.5 (0.6) | 1.30 |
Antibiotic resistance | 1.8 (1.0) | 3.2 (0.9) | 1.42 |
Planetary boundaries | 1.8 (1.0) | 3.2 (0.8) | 1.32 |
Biodiversity loss | 1.9 (0.9) | 3.0 (0.9) | 1.08 |
Hid7den water | 1.5 (0.9) | 2.6 (0.9) | 1.13 |
Nitrogen cycling | 1.8 (1.0) | 2.9 (0.9) | 1.12 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malan, H.; Amsler Challamel, G.; Silverstein, D.; Hoffs, C.; Spang, E.; Pace, S.A.; Malagueño, B.L.R.; Gardner, C.D.; Wang, M.C.; Slusser, W.; et al. Impact of a Scalable, Multi-Campus “Foodprint” Seminar on College Students’ Dietary Intake and Dietary Carbon Footprint. Nutrients 2020, 12, 2890. https://doi.org/10.3390/nu12092890
Malan H, Amsler Challamel G, Silverstein D, Hoffs C, Spang E, Pace SA, Malagueño BLR, Gardner CD, Wang MC, Slusser W, et al. Impact of a Scalable, Multi-Campus “Foodprint” Seminar on College Students’ Dietary Intake and Dietary Carbon Footprint. Nutrients. 2020; 12(9):2890. https://doi.org/10.3390/nu12092890
Chicago/Turabian StyleMalan, Hannah, Ghislaine Amsler Challamel, Dara Silverstein, Charlie Hoffs, Edward Spang, Sara A. Pace, Benji Lee Reade Malagueño, Christopher D. Gardner, May C. Wang, Wendelin Slusser, and et al. 2020. "Impact of a Scalable, Multi-Campus “Foodprint” Seminar on College Students’ Dietary Intake and Dietary Carbon Footprint" Nutrients 12, no. 9: 2890. https://doi.org/10.3390/nu12092890
APA StyleMalan, H., Amsler Challamel, G., Silverstein, D., Hoffs, C., Spang, E., Pace, S. A., Malagueño, B. L. R., Gardner, C. D., Wang, M. C., Slusser, W., & Jay, J. A. (2020). Impact of a Scalable, Multi-Campus “Foodprint” Seminar on College Students’ Dietary Intake and Dietary Carbon Footprint. Nutrients, 12(9), 2890. https://doi.org/10.3390/nu12092890