Health Benefits of Apple Juice Consumption: A Review of Interventional Trials on Humans
Abstract
:1. Introduction
2. Overview of Bioactive Components in Apples and Apple Juice
2.1. Phytochemicals
2.2. Vitamin C
2.3. Fibers
2.4. Pectin
2.5. Nutritional Value of Fruit Juices and Health
3. Cardiovascular Disease and Associated Risk Factors
3.1. Diabetes
3.2. Lipid Profile
3.3. Inflammation
3.4. Oxidative Stress and Antioxidant Capacity
3.5. Microbiome and Intestinal Health
3.6. Obesity
3.7. Other Risk Factors of Cardiovascular Disease
4. Cancer
5. Neuroprotection
6. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Holcombe, R.F.; Martinez, M.; Planutis, K.; Planutiene, M. Effects of a grape-supplemented diet on proliferation and Wnt signaling in the colonic mucosa are greatest for those over age 50 and with high arginine consumption. Nutr. J. 2015, 14, 62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boespflug, E.L.; Eliassen, J.C.; Dudley, J.A.; Shidler, M.D.; Kalt, W.; Summer, S.S.; Stein, A.L.; Stover, A.N.; Krikorian, R. Enhanced neural activation with blueberry supplementation in mild cognitive impairment. Nutr. Neurosci. 2018, 21, 297–305. [Google Scholar] [CrossRef] [PubMed]
- Slavin, J.L.; Lloyd, B. Health benefits of fruits and vegetables. Adv. Nutr. Int. Rev. J. 2012, 3, 506–516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benton, D.; Young, H.A. Role of fruit juice in achieving the 5-a-day recommendation for fruit and vegetable intake. Nutr. Rev. 2019, 77, 829–843. [Google Scholar] [CrossRef]
- Byrd-Bredbenner, C.; Ferruzzi, M.G.; Fulgoni, V.L., 3rd; Murray, R.; Pivonka, E.; Wallace, T.C. Satisfying America’s fruit gap: Summary of an expert roundtable on the role of 100% fruit juice. J. Food Sci. 2017, 82, 1523–1534. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, S.; Fulgoni, V.L., 3rd; Welland, D. Intake of 100% fruit juice is associated with improved diet quality of adults: NHANES 2013–2016 analysis. Nutrients 2019, 11, 2513. [Google Scholar] [CrossRef] [Green Version]
- Health Canada. Canadian Nutrient File—Nutrient Profile of Apples, Raw, with Skin; Health Canada: Ottawa, ON, Canada, 2018.
- Halliwell, B. How to characterize an antioxidant: An update. Biochem. Soc. Symp. 1995, 61, 73–101. [Google Scholar] [CrossRef] [PubMed]
- NCCIH. Antioxidants: In Depth. 2013. Available online: https://www.nccih.nih.gov/health/antioxidants-in-depth (accessed on 3 April 2021).
- Williamson, G. The role of polyphenols in modern nutrition. Nutr. Bull. 2017, 42, 226–235. [Google Scholar] [CrossRef] [PubMed]
- Bao, M.-J.; Shen, J.; Jia, Y.-L.; Li, F.-F.; Ma, W.-J.; Shen, H.-J.; Shen, L.-L.; Lin, X.-X.; Zhang, L.-H.; Dong, X.-W.; et al. Apple polyphenol protects against cigarette smoke-induced acute lung injury. Nutrition 2013, 29, 235–243. [Google Scholar] [CrossRef]
- Zhao, S.; Bomser, J.; Joseph, L.; DiSilvestro, R.A. Intakes of apples or apple polyphenols decease plasma values for oxidized low-density lipoprotein/beta2-glycoprotein I complex. J. Funct. Foods 2013, 5, 493–497. [Google Scholar] [CrossRef]
- da Silva Porto, P.A.; Laranjinha, J.A.; de Freitas, V.A. Antioxidant protection of low density lipoprotein by procyanidins: Structure/activity relationships. Biochem. Pharmacol. 2003, 66, 947–954. [Google Scholar] [CrossRef]
- Pandey, K.B.; Rizvi, S.I. Plant polyphenols as dietary antioxidants in human health and disease. Oxid. Med. Cell. Longev. 2009, 2, 270–278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cory, H.; Passarelli, S.; Szeto, J.; Tamez, M.; Mattei, J. The role of polyphenols in human health and food systems: A mini-review. Front. Nutr. 2018, 5, 87. [Google Scholar] [CrossRef] [Green Version]
- Boyer, J.; Liu, R.H. Apple phytochemicals and their health benefits. Nutr. J. 2004, 3, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hyson, D.A. A comprehensive review of apples and apple components and their relationship to human health. Adv. Nutr. Int. Rev. J. 2011, 2, 408–420. [Google Scholar] [CrossRef]
- Kschonsek, J.; Wolfram, T.; Stöckl, A.; Böhm, V. Polyphenolic compounds analysis of old and new apple cultivars and contribution of polyphenolic profile to the in vitro antioxidant capacity. Antioxidants 2018, 7, 20. [Google Scholar] [CrossRef] [Green Version]
- Oszmianski, J.; Wolniak, M.; Wojdylo, A.; Wawer, I. Comparative study of polyphenolic content and antiradical activity of cloudy and clear apple juices. J. Sci. Food Agric. 2007, 87, 573–579. [Google Scholar] [CrossRef]
- Markowski, J.; Baron, A.; Mieszczakowska, M.; Płocharski, W. Chemical composition of French and Polish cloudy apple juices. J. Hortic. Sci. Biotechnol. 2009, 84, 68–74. [Google Scholar] [CrossRef]
- Lykkesfeldt, J.; Michels, A.J.; Frei, B. Vitamin C. Adv. Nutr. 2014, 5, 16–18. [Google Scholar] [CrossRef]
- Abdullah, M.; Jamil, R.T.; Attia, F.N. Vitamin C (Ascorbic Acid); StatPearls: Treasure Island, FL, USA, 2020. [Google Scholar]
- Lykkesfeldt, J.; Poulsen, H.E. Is vitamin C supplementation beneficial? Lessons learned from randomised controlled trials. Br. J. Nutr. 2009, 103, 1251–1259. [Google Scholar] [CrossRef]
- Chambial, S.; Dwivedi, S.; Shukla, K.K.; John, P.J.; Sharma, P. Vitamin C in disease prevention and cure: An overview. Indian J. Clin. Biochem. 2013, 28, 314–328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.; Sun, H.; Wang, Y.; Wang, S.; Tao, X.; Sun, A. Stability of apple polyphenols as a function of temperature and pH. Int. J. Food Prop. 2014, 17, 1742–1749. [Google Scholar] [CrossRef]
- Hervik, A.K.; Svihus, B. The role of fiber in energy balance. J. Nutr. Metab. 2019, 2019, 4983657. [Google Scholar] [CrossRef] [Green Version]
- Anderson, J.W.; Baird, P.; Davis, R.H., Jr.; Ferreri, S.; Knudtson, M.; Koraym, A.; Waters, V.; Williams, C.L. Health benefits of dietary fiber. Nutr. Rev. 2009, 67, 188–205. [Google Scholar] [CrossRef] [PubMed]
- Salleh, S.N.; Fairus, A.A.H.; Zahary, M.N.; Bhaskar, N.R.; Jalil, A.M.M. Unravelling the effects of soluble dietary fibre supplementation on energy intake and perceived satiety in healthy adults: Evidence from systematic review and meta-analysis of randomised-controlled trials. Foods 2019, 8, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lattimer, J.M.; Haub, M.D. Effects of dietary fiber and its components on metabolic health. Nutrients 2010, 2, 1266–1289. [Google Scholar] [CrossRef] [Green Version]
- National Academy of Sciences. Diet and Health: Implications for Reducing Chronic Disease Risk; National Academies Press: Washington, DC, USA, 1989. [Google Scholar]
- Akbar, A.; Shreenath, A.P. High Fiber Diet; StatPearls: Treasure Island, FL, USA, 2020. [Google Scholar]
- Ravn-Haren, G.; Dragsted, L.O.; Buch-Andersen, T.; Jensen, E.N.; Jensen, R.I.; Németh-Balogh, M.; Paulovicsová, B.; Bergström, A.; Wilcks, A.; Licht, T.R.; et al. Intake of whole apples or clear apple juice has contrasting effects on plasma lipids in healthy volunteers. Eur. J. Nutr. 2013, 52, 1875–1889. [Google Scholar] [CrossRef]
- Licht, T.R.; Hansen, M.; Bergström, A.; Poulsen, M.; Krath, B.N.; Markowski, J.; Dragsted, L.O.; Wilcks, A. Effects of apples and specific apple components on the cecal environment of conventional rats: Role of apple pectin. BMC Microbiol. 2010, 10, 13. [Google Scholar] [CrossRef] [Green Version]
- Larsen, N.; de Souza, C.B.; Krych, L.; Cahú, T.B.; Wiese, M.; Kot, W.; Hansen, K.M.; Blennow, A.; Venema, K.; Jespersen, L. Potential of pectins to beneficially modulate the gut microbiota depends on their structural properties. Front. Microbiol. 2019, 10, 223. [Google Scholar] [CrossRef] [Green Version]
- Tazawa, K.; Okami, H.; Yamashita, I.; Ohnishi, Y.; Kobashi, K.; Fujimaki, M. Anticarcinogenic action of apple pectin on fecal enzyme activities and mucosal or portal prostaglandin E2 levels in experimental rat colon carcinogenesis. J. Exp. Clin. Cancer Res. 1997, 16, 33–38. [Google Scholar]
- Dhingra, D.; Michael, M.; Rajput, H.; Patil, R.T. Dietary fibre in foods: A review. J. Food Sci. Technol. 2012, 49, 255–266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wikiera, A.; Irla, M.; Mika, M. Health-promoting properties of pectin. Postepy. Hig. Med. Dosw. 2014, 68, 590–596. [Google Scholar] [CrossRef]
- Lara-Espinoza, C.; Carvajal-Millán, E.; Balandrán-Quintana, R.; López-Franco, Y.; Rascón-Chu, A. Pectin and pectin-based composite materials: Beyond food texture. Molecules 2018, 23, 942. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, T.; Gao, X.; Wu, C.; Tian, F.; Lei, Q.; Bi, J.; Xie, B.; Wang, H.Y.; Chen, S.; Wang, X. Apple-derived pectin modulates gut microbiota, improves gut barrier function, and attenuates metabolic endotoxemia in rats with diet-induced obesity. Nutrients 2016, 8, 126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ohkami, H.; Tazawa, K.; Yamashita, I.; Shimizu, T.; Murai, K.; Kobashi, K.; Fujimaki, M. Effects of apple pectin on fecal bacterial enzymes in azoxymethane-induced rat colon carcinogenesis. Jpn. J. Cancer Res. 1995, 86, 523–529. [Google Scholar] [CrossRef] [PubMed]
- Gökmen, V.; Acar, J.; Kahraman, N. Influence of conventional clarification and ultrafiltration on the phenolic composition of golden delicious apple juice. J. Food Qual. 2003, 26, 257–266. [Google Scholar] [CrossRef]
- Onsekizoglu, P.; Bahçeci, K.S.; Acar, M.J. Clarification and the concentration of apple juice using membrane processes: A comparative quality assessment. J. Membr. Sci. 2010, 352, 160–165. [Google Scholar] [CrossRef]
- Markowski, J.; Mieszczakowska, M.; Płocharski, W. Effect of apple cultivar and enzyme treatment on phenolic compounds content during clear apple juice production. Int. J. Food Sci. Technol. 2009, 44, 1002–1010. [Google Scholar] [CrossRef]
- Kilara, A.; Van Buren, J.P. Clarification of apple juice. In Processed Apple Products; Downing, D.L., Ed.; Springer: New York, NY, USA, 1989; pp. 83–96. [Google Scholar]
- Tchuenchieu, A.; Ngang, J.-J.E.; Servais, M.; Dermience, M.; Kamdem, S.S.; Etoa, F.-X.; Sindic, M. Effect of low thermal pasteurization in combination with carvacrol on color, antioxidant capacity, phenolic and vitamin C contents of fruit juices. Food Sci. Nutr. 2018, 6, 736–746. [Google Scholar] [CrossRef]
- Soler, C.; Soriano, J.; Mañes, J. Apple-products phytochemicals and processing: A review. Nat. Prod. Commun. 2009, 4, 659–670. [Google Scholar] [CrossRef] [Green Version]
- Bassi, M.; Lubes, G.; Bianchi, F.; Agnolet, S.; Ciesa, F.; Brunner, K.; Guerra, W.; Robatscher, P.; Oberhuber, M. Ascorbic acid content in apple pulp, peel, and monovarietal cloudy juices of 64 different cultivars. Int. J. Food Prop. 2017, 20, S2626–S2634. [Google Scholar] [CrossRef] [Green Version]
- Vendruscolo, F.; Albuquerque, P.M.; Streit, F.; Esposito, E.; Ninow, J.L. Apple pomace: A versatile substrate for biotechnological applications. Crit. Rev. Biotechnol. 2008, 28, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.; Gannon, M.C.; Nuttall, F.Q. Postprandial plasma glucose, insulin, glucagon and triglyceride responses to a standard diet in normal subjects. Diabetologia 1976, 12, 61–67. [Google Scholar] [CrossRef] [Green Version]
- White, S.J.; Carran, E.L.; Reynolds, A.N.; Haszard, J.J.; Venn, B.J. The effects of apples and apple juice on acute plasma uric acid concentration: A randomized controlled trial. Am. J. Clin. Nutr. 2018, 107, 165–172. [Google Scholar] [CrossRef] [PubMed]
- Vieira, F.G.; Di Pietro, P.F.; Da Silva, E.L.; Borges, G.; Nunes, E.C.; Fett, R. Improvement of serum antioxidant status in humans after the acute intake of apple juices. Nutr. Res. 2012, 32, 229–232. [Google Scholar] [CrossRef]
- Clemens, R.; Drewnowski, A.; Ferruzzi, M.G.; Toner, C.D.; Welland, D. Squeezing fact from fiction about 100% fruit juice. Adv. Nutr. Int. Rev. J. 2015, 6, 236S–243S. [Google Scholar] [CrossRef] [Green Version]
- Wruss, J.; Lanzerstorfer, P.; Huemer, S.; Himmelsbach, M.; Mangge, H.; Höglinger, O.; Weghuber, D.; Weghuber, J. Differences in pharmacokinetics of apple polyphenols after standardized oral consumption of unprocessed apple juice. Nutr. J. 2015, 14, 32. [Google Scholar] [CrossRef] [Green Version]
- Daboul, M.W. A study measuring the effect of high serum triglyceride and cholesterol on glucose elevation in human serum. Oman Med. J. 2011, 26, 109–113. [Google Scholar] [CrossRef]
- Godycki-Cwirko, M.; Krol, M.; Krol, B.; Zwolinska, A.; Kolodziejczyk, K.; Kasielski, M.; Padula, G.; Grębocki, J.; Kazimierska, P.; Miatkowski, M.; et al. Uric acid but not apple polyphenols is responsible for the rise of plasma antioxidant activity after apple juice consumption in healthy subjects. J. Am. Coll. Nutr. 2010, 29, 397–406. [Google Scholar] [CrossRef]
- Soriano-Maldonado, A.; Hidalgo, M.; Arteaga, P.; de Pascual-Teresa, S.; Nova, E. Effects of regular consumption of vitamin C-rich or polyphenol-rich apple juice on cardiometabolic markers in healthy adults: A randomized crossover trial. Eur. J. Nutr. 2014, 53, 1645–1657. [Google Scholar] [CrossRef]
- Hyson, D.; Studebaker-Hallman, D.; Davis, P.A.; Gershwin, M.E. Apple juice consumption reduces plasma low-density lipoprotein oxidation in healthy men and women. J. Med. Food 2000, 3, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Barth, S.W.; Koch, T.C.L.; Watzl, B.; Dietrich, H.; Will, F.; Bub, A. Moderate effects of apple juice consumption on obesity-related markers in obese men: Impact of diet–gene interaction on body fat content. Eur. J. Nutr. 2012, 51, 841–850. [Google Scholar] [CrossRef] [PubMed]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Arts, M.J.; Haenen, G.; Voss, H.-P.; Bast, A. Antioxidant capacity of reaction products limits the applicability of the Trolox Equivalent Antioxidant Capacity (TEAC) assay. Food Chem. Toxicol. 2004, 42, 45–49. [Google Scholar] [CrossRef] [PubMed]
- Cao, G.; Alessio, H.M.; Cutler, R.G. Oxygen-radical absorbance capacity assay for antioxidants. Free Radic. Biol. Med. 1993, 14, 303–311. [Google Scholar] [CrossRef] [Green Version]
- Ko, S.-H.; Choi, S.-W.; Ye, S.-K.; Cho, B.-L.; Kim, H.-S.; Chung, M.-H. Comparison of the antioxidant activities of nine different fruits in human plasma. J. Med. Food 2005, 8, 41–46. [Google Scholar] [CrossRef]
- Yuan, L.; Meng, L.; Ma, W.; Xiao, Z.; Zhu, X.; Feng, J.F.; Yu, H.; Xiao, R. Impact of apple and grape juice consumption on the antioxidant status in healthy subjects. Int. J. Food Sci. Nutr. 2011, 62, 844–850. [Google Scholar] [CrossRef]
- Guo, C.; Wei, J.; Yang, J.; Xu, J.; Pang, W.; Jiang, Y. Pomegranate juice is potentially better than apple juice in improving antioxidant function in elderly subjects. Nutr. Res. 2008, 28, 72–77. [Google Scholar] [CrossRef]
- Gilbert, J.A.; Blaser, M.J.; Caporaso, J.G.; Jansson, J.; Lynch, S.V.; Knight, R. Current understanding of the human microbiome. Nat. Med. 2018, 24, 392–400. [Google Scholar] [CrossRef]
- Gilbert, J.A.; Quinn, R.A.; Debelius, J.; Xu, Z.Z.; Morton, J.; Garg, N.; Jansson, J.K.; Dorrestein, P.C.; Knight, R. Microbiome-wide association studies link dynamic microbial consortia to disease. Nature 2016, 535, 94–103. [Google Scholar] [CrossRef]
- Hagl, S.; Deusser, H.; Soyalan, B.; Janzowski, C.; Will, F.; Dietrich, H.; Albert, F.W.; Rohner, S.; Richling, E. Colonic availability of polyphenols and D-(−)-quinic acid after apple smoothie consumption. Mol. Nutr. Food Res. 2011, 55, 368–377. [Google Scholar] [CrossRef] [PubMed]
- Kahle, K.; Huemmer, W.; Kempf, M.; Scheppach, W.; Erk, T.; Richling, E. Polyphenols are intensively metabolized in the human gastrointestinal tract after apple juice consumption. J. Agric. Food Chem. 2007, 55, 10605–10614. [Google Scholar] [CrossRef] [PubMed]
- Veeriah, S.; Balavenkatraman, K.K.; Böhmer, F.D.; Kahle, K.; Glei, M.; Richling, E.; Scheppach, W.; Pool-Zobel, B.L. Intervention with cloudy apple juice results in altered biological activities of ileostomy samples collected from individual volunteers. Eur. J. Nutr. 2008, 47, 226–234. [Google Scholar] [CrossRef] [PubMed]
- Trošt, K.; Ulaszewska, M.M.; Stanstrup, J.; Albanese, D.; De Filippo, C.; Tuohy, K.M.; Natella, F.; Scaccini, C.; Mattivi, F. Host: Microbiome co-metabolic processing of dietary polyphenols—An acute, single blinded, cross-over study with different doses of apple polyphenols in healthy subjects. Food Res. Int. 2018, 112, 108–128. [Google Scholar] [CrossRef] [Green Version]
- Erickson, J.; Wang, Q.; Slavin, J. White grape juice elicits a lower breath hydrogen response compared with apple juice in healthy human subjects: A randomized controlled trial. J. Acad. Nutr. Diet. 2017, 117, 908–913. [Google Scholar] [CrossRef]
- Visconti, R.; Grieco, D. New insights on oxidative stress in cancer. Curr. Opin. Drug Discov. Dev. 2009, 12, 240–241. [Google Scholar]
- De Pergola, G.; Silvestris, F. Obesity as a major risk factor for cancer. J. Obes. 2013, 2013, 291546. [Google Scholar] [CrossRef] [Green Version]
- Singh, N.; Baby, D.; Rajguru, J.P.; Patil, P.B.; Thakkannavar, S.S.; Pujari, V.B. Inflammation and cancer. Ann. Afr. Med. 2019, 18, 121–126. [Google Scholar] [CrossRef]
- Goodman, B.; Gardner, H. The microbiome and cancer. J. Pathol. 2018, 244, 667–676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Remington, R.; Chan, A.; Lepore, A.; Kotlya, E.; Shea, T.B. Apple juice improved behavioral but not cognitive symptoms in moderate-to-late stage Alzheimer’s disease in an open-label pilot study. Am. J. Alzheimer’s Dis. Other Dement. 2010, 25, 367–371. [Google Scholar] [CrossRef]
- Jeong, S.-M.; Shin, D.W.; Lee, J.E.; Hyeon, J.H.; Lee, J.; Kim, S. Anemia is associated with incidence of dementia: A national health screening study in Korea involving 37,900 persons. Alzheimer’s Res. Ther. 2017, 9, 94. [Google Scholar] [CrossRef] [PubMed]
- Faux, N.G.; Rembach, A.; Wiley, J.; Ellis, K.A.; Ames, D.; Fowler, C.J.; Martins, R.N.; Pertile, K.K.; Rumble, R.L.; Trounson, B.; et al. An anemia of Alzheimer’s disease. Mol. Psychiatry 2014, 19, 1227–1234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shah, M.; Griffin, I.J.; Lifschitz, C.H.; Abrams, S.A. Effect of orange and apple juices on iron absorption in children. Arch. Pediatr. Adolesc. Med. 2003, 157, 1232–1236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chitnis, T.; Weiner, H.L. CNS inflammation and neurodegeneration. J. Clin. Investig. 2017, 127, 3577–3587. [Google Scholar] [CrossRef] [Green Version]
- Toth, C. Diabetes and neurodegeneration in the brain. Handb. Clin. Neurol. 2014, 126, 489–511. [Google Scholar] [CrossRef]
- Kim, G.H.; Kim, J.E.; Rhie, S.J.; Yoon, S. The role of oxidative stress in neurodegenerative diseases. Exp. Neurobiol. 2015, 24, 325–340. [Google Scholar] [CrossRef]
- Walker, K.A. Inflammation and neurodegeneration: Chronicity matters. Aging 2018, 11, 3–4. [Google Scholar] [CrossRef]
- Smith, M.M.; Lifshitz, F. Excess fruit juice consumption as a contributing factor in nonorganic failure to thrive. Pediatrics 1994, 93, 438–443. [Google Scholar] [CrossRef]
- Scheffers, F.R.; Boer, J.M.A.; Verschuren, W.M.M.; Verheus, M.; Van Der Schouw, Y.T.; Sluijs, I.; Smit, H.A.; Wijga, A.H. Pure fruit juice and fruit consumption and the risk of CVD: The European prospective investigation into cancer and nutrition—Netherlands (EPIC-NL) study. Br. J. Nutr. 2019, 121, 351–359. [Google Scholar] [CrossRef] [Green Version]
- Wojcicki, J.M.; Heyman, M.B. Reducing childhood obesity by eliminating 100% fruit juice. Am. J. Public Health 2012, 102, 1630–1633. [Google Scholar] [CrossRef]
- Liska, D.; Kelley, M.; Mah, E. 100% fruit juice and dental health: A systematic review of the literature. Front. Public Health 2019, 7, 190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okoko, B.J.; Burney, P.; Newson, R.B.; Potts, J.F.; Shaheen, S.O. Childhood asthma and fruit consumption. Eur. Respir. J. 2007, 29, 1161–1168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hosseini, B.; Berthon, B.S.; Wark, P.; Wood, L.G. Effects of fruit and vegetable consumption on risk of asthma, wheezing and immune responses: A systematic review and meta-analysis. Nutrients 2017, 9, 341. [Google Scholar] [CrossRef]
- Gerhauser, C. Cancer Chemopreventive Potential of Apples, Apple Juice, and Apple Components. Planta Med. 2008, 74, 1608–1624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koch, T.C.L.; Briviba, K.; Watzl, B.; Fähndrich, C.; Bub, A.; Rechkemmer, G.; Barth, S.W. Prevention of colon carcinogenesis by apple juice in vivo: Impact of juice constituents and obesity. Mol. Nutr. Food Res. 2009, 53, 1289–1302. [Google Scholar] [CrossRef]
- Ortiz, D.; Shea, T.B. Apple juice prevents oxidative stress induced by amyloid-beta in culture. J. Alzheimer’s Dis. 2004, 6, 27–30. [Google Scholar] [CrossRef]
- Pearson, D.A.; Tan, C.H.; German, J.; Davis, P.A.; Gershwin, M. Apple juice inhibits human low density lipoprotein oxidation. Life Sci. 1999, 64, 1913–1920. [Google Scholar] [CrossRef]
- Szpyrka, E.; Kurdziel, A.; Słowik-Borowiec, M.; Grzegorzak, M.; Matyaszek, A. Consumer exposure to pesticide residues in apples from the region of south-eastern Poland. Environ. Monit. Assess. 2013, 185, 8873–8878. [Google Scholar] [CrossRef]
- Vigar, V.; Myers, S.; Oliver, C.; Arellano, J.; Robinson, S.; Leifert, C. A systematic review of organic versus conventional food consumption: Is there a measurable benefit on human health? Nutrients 2019, 12, 7. [Google Scholar] [CrossRef] [Green Version]
- Lozowicka, B. Health risk for children and adults consuming apples with pesticide residue. Sci. Total Environ. 2015, 502, 184–198. [Google Scholar] [CrossRef]
Authors | Design | Subjects | Purpose | Intervention | Main Results |
---|---|---|---|---|---|
Barth SW 2012 | Controlled, randomized, and parallel study. | 68, non-smoking, non-diabetic men with a BMI ≥ 27 kg/m2. | To verify the effect of polyphenol-rich cloudy apple juice (CloA) consumption on plasma parameters related to the obesity phenotype and potential effects of interactions between CloA and allelic variants in obesity candidate genes in obese men. | Consumption of 750 mL/day of polyphenol-rich CloA (802.5 mg polyphenols) or 750 mL/day control beverage (CB, isocaloric equivalent to CloA) for 4 weeks. | CloA compared to CB had no significant effect on plasma lipids, plasma adipokine and cytokine levels, BMI, and waist circumference. CloA consumption significantly reduced percent body fat compared to CB. |
Erickson J 2017 | Double-blind, randomized, controlled crossover study. | 40 healthy adults. | To determine whether there is a difference in gastro-intestinal (GI) tolerance between juice from a high-FODMAP fruit (apple juice) and juice from a low-FODMAP fruit (white grape juice) in healthy human subjects in order to provide insight into the role of juice in a low-FODMAP diet. | Fasted subjects consumed 12 oz of either apple juice or white grape juice. Measures of breath hydrogen were taken at baseline, 1, 2, and 3 h. Subjective GI tolerance surveys were completed at the same time intervals and at 12 and 24 h. | Consumption of apple juice resulted in a greater mean breath hydrogen area under the curve at 23.3 ppm/hour compared with white grape juice at 5.8 ppm/hour (p < 0.001). No differences in reported GI symptoms were seen between treatments. |
Godycki- Cwirko M 2010 | Double-blind placebo-controlled design. | 12 healthy nonsmoking subjects. | To determine whether (1) rapid consumption of 1 L of apple juice increases blood antioxidant capacity, measured FRAP and DPPH radical-scavenging activity, and (2) apple polyphenols or fructose-induced elevation of plasma uric acid contributes to post-juice increase of blood antioxidant activity. | Subjects consumed 1 L of clear apple juice and then FRAP; serum DPPH scavenging activity, serum uric acid, and total plasma phenolics and quercetin levels were measured just before juice ingestion and 1, 2.5, and 4 h after ingestion. This was repeated 3 times with 4-day intervals, but volunteers drank either 1 L of clear apple juice without polyphenols (placebo), or 1 L of cloudy apple juice (positive control), or 1 L of water (negative control) at the time. | Consumption of all 3 juices transiently increased FRAP and serum DPPH-scavenging activity, with peak values at 1 h post-juice ingestion. This was paralleled by the rise of serum uric acid, but no significant changes in plasma total phenolics and quercetin levels were observed after all dietary interventions. At the same time, no substantial differences were found between juices (especially between clear apple juice and clear apple juice without polyphenols) concerning the measured variables. |
Guo C 2008 | Randomized without a control group. | 26 nonsmokers subjects elderly (older than 60 years old): 20 men and 6 women. | To compare the efficacy of pomegranate juice and apple juice in improving antioxidant function in elderly subjects. | 2 groups, that is, apple (low in antioxidant capacity) and pomegranate (high in antioxidant capacity) groups, and 250 mL of juice was consumed daily for 4 weeks. | Increased plasma antioxidant capacity and decreased plasma carbonyl content were demonstrated after daily consumption of pomegranate juice. In comparison, apple juice consumption presented a less significant effect on antioxidant function in elderly subjects. |
Hagl S 2011 | Unspecified | Ten healthy ileostomy subjects aged between 39 and 72 years. | The aim of this study was to determine the amounts of polyphenols and quinic acid reaching the ileostomy bags of probands (and thus the colon in healthy humans) after ingestion of apple smoothie, a beverage containing 60% cloudy apple juice and 40% apple puree. | Ingestion of 0.7 L of apple smoothie (a bottle). Their ileostomy bags were collected directly before and 1, 2, 4, 6 and 8 h after smoothie consumption, and the polyphenol and quinic acid contents of the ileostomy fluids were examined. | The amounts of polyphenol and quinic acids reaching the ileostomy bags are considerably higher after apple smoothie consumption than after the consumption of cloudy apple juice or cider. These results suggest that the food matrix might affect the colonic availability of polyphenols, and apple smoothies could be more effective in the prevention of chronic colon diseases than both cloudy apple juice and apple cider. |
Hyson D 2000 | Unblinded, randomized, crossover design. | 12 healthy men and 13 healthy women. | To examine the in vivo effect of consumption of apples (both whole and juice). | The addition of 375 mL of unsupplemented apple juice or 340 g of cored whole apple to their daily diet for 6 weeks, then crossed over to the alternate product for 6 weeks. Blood samples were obtained at baseline and after each dietary period. | Apple juice consumption increased ex vivo copper (Cu + +)-mediated LDL oxidation lag time by 20% compared with baseline. Apples and apple juice both reduced conjugated diene formation. Moderate apple juice consumption provides in vivo antioxidant activity. In view of the current understanding of CAD, the observed effect on LDL might be associated with reduced CAD risk and supports the inclusion of apple juice in a healthy human diet. |
Kahle K 2007 | Unspecified | 11 healthy ileostomy subjects. | To characterize new metabolites of hydroxycinnamic acids and dehydrochalcones in the ileostomy effluent. | Subjects consumed 1 L of cloudy apple juice. Ileostomy bags were removed 0, 1, 2, 4, 6, and 8 h after juice consumption. | Ninety percent of the consumed procyanidins were recovered in the ileostomy effluent and therefore would reach the colon under physiologic circumstances. The gastrointestinal passage seems to play an important role in the colonic availability of apple polyphenols. |
Ko SH 2005 | Unspecified | 10 healthy men 25–26 years old with an average body mass index of 21.8 ± 2.3 kg/m2. | To test the hypothesis that the consumption of fruit juices may improve antioxidant status in human plasma. | After overnight fasting, study subjects were fed 150 mL of fruit juice, and blood was collected at 0, 30, 60, 90, and 120 min after consumption. After a 1-day wash-out period, subjects were fed with the next sample of fruit juice until all nine juices (pear, apple, orange, grape, peach, plum, kiwi, melon, and watermelon) had been evaluated. | Except for pear juice, eight kinds of juices exhibited potent antioxidant effects in human plasma. Within 30 min after consumption, orange, melon, grape, peach, plum, apple, and kiwi juices already effectively suppressed reactive oxygen species generation. his radical scavenging effect of fruit juices was maintained for up to 90 min post-consumption. These results suggest that the consumption of fruits or fruit juices may reduce damage from oxidative stress, and that this effect may be a consequence of the antioxidant activity of fruits in scavenging the reactive oxygen species generated in human plasma. |
Ravn-Haren G 2013 | Crossover study. | 23 healthy volunteers. | To assess the effects of whole apples (550 g/day), apple pomace (22 g/day), clear and cloudy apple juices (500 mL/day), or no supplement on lipoproteins and blood pressure | 5 × 4 weeks dietary crossover study to assess the effects of whole apples (550 g/day), apple pomace (22 g/day), clear and cloudy apple juices (500 mL/day), or no supplement. | Trends towards a lower serum LDL concentration were observed after whole apple (6.7%), pomace (7.9%) and cloudy juice (2.2%) intake. On the other hand, LDL-cholesterol concentrations increased by 6.9% with clear juice compared to whole apples and pomace. |
Remington R 2010 | Open-label clinical trial. | 21 institutionalized individuals with moderate to severe Alzheimer’s disease (AD). | To verify the efficacy of apple juice in cognition and mood in AD. | Consumption of 2,4-oz glasses of apple juice daily for 1 month. | Participants demonstrated no change in the Dementia Rating Scale, and institutional caregivers reported no change in Alzheimer’s Disease Cooperative Study (ADCS)-Activities of Daily Living (ADL). This pilot study suggests that apple juice may be a useful supplement, perhaps to augment pharmacological approaches, for attenuating the decline in mood that accompanies progression of AD, which may also reduce caregiver burden. |
Shah M 2003 | Random order of juice consumption. | 25 healthy children, 3 to 6 years of age. | To measure iron absorption in children from meals containing apple juice or orange juice so as to determine if iron absorption will be greater with orange juice due to its higher ascorbic acid content than apple juice. | On 2 successive days, children consumed identical meals that included apple juice on one day and orange juice on the other. Iron absorption was measured from red blood cell incorporation of the iron stable isotopes 14 days later. | Median iron absorption from the meal ingested with apple juice was 7.17% while it was 7.78% with orange juice (p = 0.44). |
Soriano-Maldonado 2014 | Randomized crossover study. | 20 subjects, aged 21–29 years. | To investigate the effects of the consumption of two cloudy apple juices with different polyphenol and vitamin C contents on antioxidant status, cardiometabolic and inflammation markers in healthy young adults. | At each 4-week intervention period, the volunteers randomly consumed two glasses (2 × 250 mL/day) of either a vitamin C-rich apple juice (VCR) (60 mg/L vitamin C and 510 mg catechin equivalent/L) or a polyphenol-rich (PR) juice (22 mg/L vitamin C and 993 mg catechin equivalent/L). | During the VCR period, plasma antioxidant activity (FRAP) increased (p = 0.031), while ICAM-1 and total cholesterol showed a trend to decrease. During the PR period, plasma insulin and HOMA increased, and total glutathione decreased (p < 0.05). A joint consumption of apple juice natural antioxidants such as vitamin C and polyphenols might provide mild favorable effects on cardiometabolic markers, as compared to apple polyphenols alone. |
Trost K 2018 | Randomized crossover study. | 12 men and women (8 males and 4 females), aged 21 to 42 years, with a BMI between 18.5 and 25 kg/m2 (normal weight). | To investigate the nutrikinetics of apple polyphenols by UHPLC-HRMS metabolite fingerprinting, comparing bioavailability when consumed in a natural or a polyphenol-enriched cloudy apple juice. | Consumption of 250 mL of cloudy apple juice (CAJ), Crispy Pink apple variety, or 250 mL of the same juice enriched with 750 mg of an apple polyphenol extract (PAJ). Plasma and whole blood were collected at time 0, 1, 2, 3 and 5 h. Urine was collected at time 0 and 0–2, 2–5, 5–8, and 8–24 h after juice consumption. Faecal samples were collected from each individual during the study for 16S rRNA gene profiling. | As many as 110 metabolites were significantly elevated following intake of polyphenol enriched cloudy apple juice, with large inter-individual variations. The comparison of the average area under the curve of circulating metabolites in plasma and in urine of volunteers consuming either the CAJ or the PAJ demonstrated a stable metabotype, suggesting that an increase in polyphenol concentration in fruit does not limit their bioavailability upon ingestion. |
Veeriah S 2008 | Unspecified | 11 volunteers. | To assess related mechanisms caused by ileostomy samples from volunteers that had consumed apple juice. | Ileostomy samples were collected after intervention (0–8 h) with cloudy apple juice (1 L). All volunteers drank 1 L of cloudy apple juice within 15 min. A light meal which did not contain polyphenols was served 4 h later. The ileostomy bag was removed before (control value) and 1, 2, 4 and 6 h after the start of the apple juice intake. | The analytical determination of polyphenols in the ileostomy samples revealed that the majority of the compounds were recovered in the samples collected 2 h after intervention. The intervention with apple juice results in bioavailable concentrations of related polyphenols in the gut lumen, which could contribute to reduced genotoxicity, enhanced antigenotoxicity and favorable modulation of GSTT2 gene expression in some individuals. |
Vieira FG 2012 | Randomized crossover study. | 9 healthy women. | To determine the antioxidant capacity and the levels of ascorbic and uric acids, total phenols, lipid hydroperoxides (LH), and thiobarbituric acid-reactive substances (TBARS) in the serum of 9 healthy individuals 1 h after the intake of Golden Delicious or Catarina AJ. | 300 mL of Golden Delicious or Catarina apple juice (AJ) or water, and blood samples were collected before and 1 h after intake. | After intake of both AJ, a similar and significant increase in serum antioxidant capacity and ascorbic and uric acid levels and a significant decrease in serum lipid peroxidation was observed. The increase in serum antioxidant capacity after consumption of both AJ was correlated directly with the uric acid levels and inversely with serum lipid peroxidation. |
White SJ 2018 | Randomized crossover study. | 73 participants (58 women, 15 men). | To test whether fructose present in fruit is of sufficient quantity or in a form that will increase uric acid concentration. | Three groups to ingest small (205 g) and large (410 g) servings of apple segments, small (170 mL) and large (340 mL) servings of apple juice, or a glucose and a fructose control beverage. The fructose control and the large servings of apple and juice contained 26.7 g fructose. Test foods were ingested within 10 min. Blood samples were taken at baseline and at 30 and 60 min after intake. | The mean increase in uric acid at 30 min was 15 μmol/L (10, 21 μmol/L) for the fructose control and 19 μmol/L (8, 30 μmol/L) and 17 μmol/L (9, 24 μmol/L) for the large servings of apple and apple juice, respectively. There was no difference in change in uric acid between baseline and 30 min when comparing the apple and apple juice with the fructose control. Blood pressure taken 70 min after ingestion was unaffected by any treatment (p > 0.05). There was no difference in change in satiety scores between the fructose and glucose control beverages (p > 0.05). |
Wruss J 2015 | Unspecified | 35 healthy students of normal weight split equally across the two study sites (pool A: 17; pool B: 18) and gender (20 female, 15 male) aged between 19 and 42. | To determine the pharmacokinetic fate of apple polyphenols in young healthy adults. | Volunteers consumed 500 mL of an unfiltered apple juice. Blood and urine samples were collected within a time period of ten hours and analyzed for their total phenolic content. | An increase in the total phenolic content over time did not correlate with an observed, highly elevated antioxidant capacity (AOC) in the blood plasma, which was rather a result of a high fructose content of the apple juice. |
Yuan L 2011 | Unspecified | 26 healthy young subjects (13 male and 13 female aged 20–23 years). | To investigate the influences of apple and grape juices consumption on body antioxidant status. | Each subject received 100% purified fruit juice twice a day (300 mL apple juice at lunch and 300 mL grape juice at dinner) for 2 weeks. Fasting venous blood samples were collected before and after 2 weeks of intervention from each subject. | Apple and grape juice consumption increased the plasma T-AOC and decreased the concentration of malondialdehyde. Erythrocyte glutathione peroxidase and catalase activities were enhanced. No effect was observed in plasma carbonyl content, lymphocyte damage or urinary 8-hydroxy-2-deoxyguanosine. These findings indicated that concomitant intake of apple and grape juice was efficient in enhancing the body’s antioxidant status. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vallée Marcotte, B.; Verheyde, M.; Pomerleau, S.; Doyen, A.; Couillard, C. Health Benefits of Apple Juice Consumption: A Review of Interventional Trials on Humans. Nutrients 2022, 14, 821. https://doi.org/10.3390/nu14040821
Vallée Marcotte B, Verheyde M, Pomerleau S, Doyen A, Couillard C. Health Benefits of Apple Juice Consumption: A Review of Interventional Trials on Humans. Nutrients. 2022; 14(4):821. https://doi.org/10.3390/nu14040821
Chicago/Turabian StyleVallée Marcotte, Bastien, Marie Verheyde, Sonia Pomerleau, Alain Doyen, and Charles Couillard. 2022. "Health Benefits of Apple Juice Consumption: A Review of Interventional Trials on Humans" Nutrients 14, no. 4: 821. https://doi.org/10.3390/nu14040821
APA StyleVallée Marcotte, B., Verheyde, M., Pomerleau, S., Doyen, A., & Couillard, C. (2022). Health Benefits of Apple Juice Consumption: A Review of Interventional Trials on Humans. Nutrients, 14(4), 821. https://doi.org/10.3390/nu14040821