Effect of Continuous Ingestion of Bifidobacteria and Dietary Fiber on Improvement in Cognitive Function: A Randomized, Double-Blind, Placebo-Controlled Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Test Foods
2.3. Experimental Design
2.4. Cognitrax Test
2.5. Quality of Life Test
2.6. Mental Health Status
2.7. Biochemical Parameters
2.8. Inflammatory Protein Profile
2.9. Fecal Samples
2.10. Fecal DNA Extraction
2.11. Fecal Bifidobacteria
2.12. Statistical Analysis
3. Results
3.1. Analysis of the Participant Population
3.2. Cognitrax Test
3.3. Quality of Life Test
3.4. Fecal Bifidobacteria
3.5. Serum BDNF
3.6. Blood Inflammation Markers
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Dementia. Available online: https://www.who.int/news-room/fact-sheets/detail/dementia (accessed on 15 March 2023).
- World Health Organization. Global Status Report on the Public Health Response to Dementia; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Hosaka, A.; Araki, W.; Oda, A.; Tomidokoro, Y.; Tamaoka, A. Statins reduce amyloid β-peptide production by modulating amyloid precursor protein maturation and phosphorylation through a cholesterol-independent mechanism in cultured neurons. Neurochem. Res. 2013, 3, 589–600. [Google Scholar] [CrossRef] [PubMed]
- Soeda, Y.; Yoshikawa, M.; Almeida, O.F.X.; Sumioka, A.; Maeda, S.; Osada, H.; Kondoh, Y.; Saito, A.; Miyasaka, T.; Kimura, T.; et al. Toxic tau oligomer formation blocked by capping of cysteine residues with 1,2-dihydroxybenzene groups. Nat. Commun. 2015, 6, 10216. [Google Scholar] [CrossRef] [PubMed]
- Jack, C.R., Jr.; Knopman, D.S.; Jagust, W.J.; Shaw, L.M.; Aisen, P.S.; Weiner, M.W.; Petersen, R.C.; Trojanowski, J.Q. Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurol. 2010, 9, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Petersen, R.C.; Smith, G.E.; Waring, S.C.; Ivnik, R.J.; Tangalos, E.G.; Kokmen, E. Mild cognitive impairment: Clinical characterization and outcome. Arch. Neurol. 1999, 56, 303–308. [Google Scholar] [CrossRef]
- Plassman, B.L.; Langa, K.M.; Fisher, G.G.; Heeringa, S.G.; Weir, D.R.; Ofstedal, M.B.; Burke, J.R.; Hurd, M.D.; Potter, G.G.; Rodgers, W.L.; et al. Prevalence of cognitive impairment without dementia in the United States. Ann. Intern. Med. 2008, 148, 427–434. [Google Scholar] [CrossRef]
- Ganguli, M.; Jia, Y.; Hughes, T.F.; Snitz, B.E.; Chang, C.-C.H.; Berman, S.B.; Sullivan, K.J.; Kamboh, M.I. Mild cognitive impairment that does not progress to dementia: A population-based study. J. Am. Geriatr. Soc. 2019, 67, 232–238. [Google Scholar] [CrossRef]
- Shimada, H.; Makizako, H.; Park, H.; Doi, T.; Lee, S. Validity of the national center for geriatrics and gerontology-functional assessment tool and mini-mental state examination for detecting the incidence of dementia in older Japanese adults. Geriatr. Gerontol. Int. 2017, 17, 2383–2388. [Google Scholar] [CrossRef]
- Yusufov, M.; Weyandt, L.L.; Piryatinsky, I. Alzheimer’s disease and diet: A systematic review. Int. J. Neurosci. 2017, 127, 161–175. [Google Scholar] [CrossRef]
- Ozato, N.; Saitou, S.; Yamaguchi, T.; Katashima, M.; Misawa, M.; Jung, S.; Mori, K.; Kawada, H.; Katsuragi, Y.; Mikami, T.; et al. Association between visceral fat and brain structural changes or cognitive function. Brain Sci. 2021, 11, 1036. [Google Scholar] [CrossRef]
- Toppala, S.; Ekblad, L.L.; Lötjönen, J.; Helin, S.; Hurme, S.; Johansson, J.; Jula, A.; Karrasch, M.; Koikkalainen, J.; Laine, H.; et al. Midlife insulin resistance as a predictor for late-life cognitive function and cerebrovascular lesions. J. Alzheimers Dis. 2019, 72, 215–228. [Google Scholar] [CrossRef]
- Holmes, C.; Cunningham, C.; Zotova, E.; Woolford, J.; Dean, C.; Kerr, S.; Culliford, D.; Perry, V.H. Systemic inflammation and disease progression in Alzheimer disease. Neurology 2009, 73, 768–774. [Google Scholar] [CrossRef] [PubMed]
- Pistollato, F.; Cano, S.S.; Elio, I.; Vergara, M.M.; Giampieri, F.; Battino, M. Role of gut microbiota and nutrients in amyloid formation and pathogenesis of Alzheimer disease. Nutr. Rev. 2016, 74, 624–634. [Google Scholar] [CrossRef] [PubMed]
- Saitou, K.; Ochiai, R.; Kozuma, K.; Sato, H.; Koikeda, T.; Osaki, N.; Katsuragi, Y. Effect of chlorogenic acids on cognitive function: A randomized, double-blind, placebo-controlled trial. Nutrients 2018, 10, 1337. [Google Scholar] [CrossRef] [PubMed]
- Asama, T.; Hiraoka, T.; Ohkuma, A.; Okumura, N.; Yamaki, A.; Urakami, K. Cognitive improvement and safety assessment of a dietary supplement containing propolis extract in elderly Japanese: A placebo-controlled, randomized, parallel-group, double-blind human clinical study. Evid. Based Complement. Alternat. Med. 2021, 2021, 6664217. [Google Scholar] [CrossRef] [PubMed]
- Sekikawa, T.; Kizawa, Y.; Li, Y.; Takara, T. Cognitive function improvement with astaxanthin and tocotrienol intake: A randomized, double-blind, placebo-controlled study. J. Clin. Biochem. Nutr. 2020, 67, 307–316. [Google Scholar] [CrossRef] [PubMed]
- Zhu, G.; Zhao, J.; Zhang, H.; Chen, W.; Wang, G. Probiotics for mild cognitive impairment and Alzheimer’s disease: A systematic review and meta-analysis. Foods 2021, 10, 1672. [Google Scholar] [CrossRef]
- Sanborn, V.; Azcarate-Peril, M.A.; Updegraff, J.; Manderino, L.; Gunstad, J. Randomized clinical trial examining the impact of Lactobacillus rhamnosus GG probiotic supplementation on cognitive functioning in middle-aged and older adults. Neuropsychiatr. Dis. Treat. 2020, 16, 2765–2777. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Sugahara, H.; Shimada, K.; Mitsuyama, E.; Kuhara, T.; Yasuoka, A.; Kondo, T.; Abe, K.; Xiao, J.-Z. Therapeutic potential of Bifidobacterium breve strain A1 for preventing cognitive impairment in Alzheimer’s disease. Sci. Rep. 2017, 7, 13510. [Google Scholar] [CrossRef]
- Xiao, J.; Katsumata, N.; Bernier, F.; Ohno, K.; Yamauchi, Y.; Odamaki, T.; Yoshikawa, K.; Ito, K.; Kaneko, T. Probiotic Bifidobacterium breve in improving cognitive functions of older adults with suspected mild cognitive impairment: A randomized, double-blind, placebo-controlled trial. J. Alzheimers Dis. 2020, 77, 139–147. [Google Scholar] [CrossRef]
- Sakurai, K.; Toshimitsu, T.; Okada, E.; Anzai, S.; Shiraishi, I.; Inamura, N.; Kobayashi, S.; Sashihara, T.; Hisatsune, T. Effects of Lactiplantibacillus plantarum OLL2712 on memory function in older adults with declining memory: A randomized placebo-controlled trial. Nutrients 2022, 14, 4300. [Google Scholar] [CrossRef]
- Ishizuka, A.; Tomizuka, K.; Aoki, R.; Nishijima, T.; Saito, Y.; Inoue, R.; Ushida, K.; Mawatari, T.; Ikeda, T. Effects of administration of Bifidobacterium animalis subsp. lactis GCL2505 on defecation frequency and bifidobacterial microbiota composition in humans. J. Biosci. Bioeng. 2012, 113, 587–591. [Google Scholar] [PubMed]
- Tanaka, Y.; Takami, K.; Nishijima, T.; Aoki, R.; Mawatari, T.; Ikeda, T. Short- and long-term dynamics in the intestinal microbiota following ingestion of Bifidobacterium animalis subsp. lactis GCL2505. Biosci. Microbiota Food Health 2015, 34, 77–85. [Google Scholar] [CrossRef] [PubMed]
- Aoki, R.; Tsuchida, S.; Arai, Y.; Ohno, K.; Nishijima, T.; Mawatari, T.; Mikami, Y.; Ushida, K. Effect of Bifidobacterium animalis subsp. lactis GCL2505 on the physiological function of intestine in a rat model. Food Sci. Nutr. 2016, 4, 782–790. [Google Scholar]
- Aoki, R.; Kamikado, K.; Suda, W.; Takii, H.; Mikami, Y.; Suganuma, N.; Hattori, M.; Koga, Y. A proliferative probiotic Bifidobacterium strain in the gut ameliorates progression of metabolic disorders via microbiota modulation and acetate elevation. Sci. Rep. 2017, 7, 43522. [Google Scholar] [CrossRef]
- Horiuchi, H.; Kamikado, K.; Aoki, R.; Suganuma, N.; Nishijima, T.; Nakatani, A.; Kimura, I. Bifidobacterium animalis subsp. lactis GCL2505 modulates host energy metabolism via the short-chain fatty acid receptor GPR43. Sci. Rep. 2020, 10, 4158. [Google Scholar]
- Takahashi, S.; Anzawa, D.; Takami, K.; Ishizuka, A.; Mawatari, T.; Kamikado, K.; Sugimura, H.; Nishijima, T. Effect of Bifidobacterium animalis ssp. lactis GCL2505 on visceral fat accumulation in healthy Japanese adults: A randomized controlled trial. Biosci. Microbiota Food Health 2016, 35, 163–171. [Google Scholar] [CrossRef]
- Mensink, M.A.; Frijlink, H.W.; van der Voort Maarschalk, K.; Hinrichs, W.L.J. Inulin, a flexible oligosaccharide I: Review of its physicochemical characteristics. Carbohydr. Polym. 2015, 130, 405–419. [Google Scholar] [CrossRef]
- Anzawa, D.; Mawatari, T.; Tanaka, Y.; Yamamoto, M.; Genda, T.; Takahashi, S.; Nishijima, T.; Kamasaka, H.; Suzuki, S.; Kuriki, T. Effects of synbiotics containing Bifidobacterium animalis subsp. lactis GCL2505 and inulin on intestinal bifidobacteria: A randomized, placebo-controlled, crossover study. Food Sci. Nutr. 2019, 7, 1828–1837. [Google Scholar]
- Wu, W.; Sun, M.; Chen, F.; Cao, A.T.; Liu, H.; Zhao, Y.; Huang, X.; Xiao, Y.; Yao, S.; Zhao, Q.; et al. Microbiota metabolite short-chain fatty acid acetate promotes intestinal IgA response to microbiota which is mediated by GPR43. Mucosal Immunol. 2017, 10, 946–956. [Google Scholar] [CrossRef]
- Gualtieri, C.T.; Johnson, L.G. Reliability and validity of a computerized neurocognitive test battery, CNS Vital Signs. Arch. Clin. Neuropsychol. 2006, 21, 623–643. [Google Scholar] [CrossRef]
- Baba, Y.; Inagaki, S.; Nakagawa, S.; Kaneko, T.; Kobayashi, M.; Takihara, T. Effect of daily intake of green tea catechins on cognitive function in middle-aged and older subjects: A randomized, placebo-controlled study. Molecules 2020, 25, 4265. [Google Scholar] [CrossRef] [PubMed]
- Ware, J.E., Jr.; Sherbourne, C.D. The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection. Med. Care 1992, 30, 473–483. [Google Scholar] [CrossRef] [PubMed]
- Awata, S.; Bech, P.; Yoshida, S.; Hirai, M.; Suzuki, S.; Yamashita, M.; Ohara, A.; Hinokio, Y.; Matsuoka, H.; Oka, Y. Reliability and validity of the Japanese version of the World Health Organization-Five Well-Being Index in the context of detecting depression in diabetic patients. Psychiatry Clin. Neurosci. 2007, 61, 112–119. [Google Scholar] [CrossRef] [PubMed]
- Assarsson, E.; Lundberg, M.; Holmquist, G.; Björkesten, J.; Thorsen, S.B.; Ekman, D.; Eriksson, A.; Dickens, E.R.; Ohlsson, S.; Edfeldt, G.; et al. Homogenous 96-plex PEA immunoassay exhibiting high sensitivity, specificity, and excellent scalability. PLoS ONE 2014, 9, e95192. [Google Scholar] [CrossRef] [PubMed]
- Tourlousse, D.M.; Narita, K.; Miura, T.; Sakamoto, M.; Ohashi, A.; Shiina, K.; Matsuda, M.; Miura, D.; Shimamura, M.; Ohyama, Y.; et al. Validation and standardization of DNA extraction and library construction methods for metagenomics-based human fecal microbiome measurements. Microbiome 2021, 9, 95. [Google Scholar] [CrossRef]
- Tanaka, K.; Nakamura, Y.; Terahara, M.; Yanagi, T.; Nakahara, S.; Furukawa, O.; Tsutsui, H.; Inoue, R.; Tsukahara, T.; Koshida, S. Poor bifidobacterial colonization is associated with late provision of colostrum and improved with probiotic supplementation in low birth weight infants. Nutrients 2019, 11, 839. [Google Scholar] [CrossRef]
- Topp, C.H.; Østergaard, S.D.; Søndergaard, S.; Bech, P. The WHO-5 Well-Being Index: A systematic review of the literature. Psychother. Psychosom. 2015, 84, 167–176. [Google Scholar] [CrossRef]
- Gualtieri, C.T.; Johnson, L.G. Neurocognitive testing supports a broader concept of mild cognitive impairment. Am. J. Alzheimers Dis. Other Demen. 2005, 20, 359–366. [Google Scholar] [CrossRef]
- Birkeland, E.; Gharagozlian, S.; Birkeland, K.I.; Valeur, J.; Måge, I.; Rud, I.; Aas, A.-M. Prebiotic effect of inulin-type fructans on faecal microbiota and short-chain fatty acids in type 2 diabetes: A randomised controlled trial. Eur. J. Nutr. 2020, 59, 3325–3338. [Google Scholar] [CrossRef]
- Marques, F.Z.; Nelson, E.; Chu, P.-Y.; Horlock, D.; Fiedler, A.; Ziemann, M.; Tan, J.K.; Kuruppu, S.; Rajapakse, N.W.; El-Osta, A.; et al. High-fiber diet and acetate supplementation change the gut microbiota and prevent the development of hypertension and heart failure in hypertensive mice. Circulation 2017, 135, 964–977. [Google Scholar] [CrossRef]
- Nakajima, H.; Nakanishi, N.; Miyoshi, T.; Okamura, T.; Hashimoto, Y.; Senmaru, T.; Majima, S.; Ushigome, E.; Asano, M.; Yamaguchi, M.; et al. Inulin reduces visceral adipose tissue mass and improves glucose tolerance through altering gut metabolites. Nutr. Metab. 2022, 19, 50. [Google Scholar] [CrossRef] [PubMed]
- Lauridsen, J.K.; Olesen, R.H.; Vendelbo, J.; Hyde, T.M.; Kleinman, J.E.; Bibby, B.M.; Brock, B.; Rungby, J.; Larsen, A. High BMI levels associate with reduced mRNA expression of IL10 and increased mRNA expression of iNOS (NOS2) in human frontal cortex. Transl. Psychiatry 2017, 7, e1044. [Google Scholar] [CrossRef] [PubMed]
- Waise, T.M.Z.; Toshinai, K.; Naznin, F.; NamKoong, C.; Moin, A.S.M.; Sakoda, H.; Nakazato, M. One-day high-fat diet induces inflammation in the nodose ganglion and hypothalamus of mice. Biochem. Biophys. Res. Commun. 2015, 464, 1157–1162. [Google Scholar] [CrossRef] [PubMed]
- Thaler, J.P.; Yi, C.-X.; Schur, E.A.; Guyenet, S.J.; Hwang, B.H.; Dietrich, M.O.; Zhao, X.; Sarruf, D.A.; Izgur, V.; Maravilla, K.R.; et al. Obesity is associated with hypothalamic injury in rodents and humans. J. Clin. Investig. 2012, 122, 153–162. [Google Scholar] [CrossRef]
- Mao, L.; Hochstetter, D.; Yao, L.; Zhao, Y.; Zhou, J.; Wang, Y.; Xu, P. Green tea polyphenol (-)-epigallocatechin gallate (EGCG) attenuates neuroinflammation in palmitic acid-stimulated BV-2 microglia and high-fat diet-induced obese mice. Int. J. Mol. Sci. 2019, 20, 5081. [Google Scholar] [CrossRef]
- Heneka, M.T.; Kummer, M.P.; Stutz, A.; Delekate, A.; Schwartz, S.; Vieira-Saecker, A.; Griep, A.; Axt, D.; Remus, A.; Tzeng, T.-C.; et al. NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice. Nature 2013, 493, 674–678. [Google Scholar] [CrossRef]
- Tzanavari, T.; Giannogonas, P.; Karalis, K.P. TNF-alpha and obesity. Curr. Dir. Autoimmun. 2010, 11, 145–156. [Google Scholar]
- Habbas, S.; Santello, M.; Becker, D.; Stubbe, H.; Zappia, G.; Liaudet, N.; Klaus, F.R.; Kollias, G.; Fontana, A.; Pryce, C.R.; et al. neuroinflammatory TNFα impairs memory via astrocyte signaling. Cell 2015, 163, 1730–1741. [Google Scholar] [CrossRef]
- Xiao, W.; Su, J.; Gao, X.; Yang, H.; Weng, R.; Ni, W.; Gu, Y. The microbiota-gut-brain axis participates in chronic cerebral hypoperfusion by disrupting the metabolism of short-chain fatty acids. Microbiome 2022, 10, 62. [Google Scholar]
- Dohi, T.; Burkly, L.C. The TWEAK/Fn14 pathway as an aggravating and perpetuating factor in inflammatory diseases: Focus on inflammatory bowel diseases. J. Leukoc. Biol. 2012, 92, 265–279. [Google Scholar] [CrossRef]
- Lee, S.J.; Kim, J.; Ko, J.; Lee, E.J.; Koh, H.J.; Yoon, J.S. Tumor necrosis factor-like weak inducer of apoptosis induces inflammation in Graves’ orbital fibroblasts. PLoS ONE 2018, 13, e0209583. [Google Scholar] [CrossRef] [PubMed]
- Arruda-Silva, F.; Bianchetto-Aguilera, F.; Gasperini, S.; Polletti, S.; Cosentino, E.; Tamassia, N.; Cassatella, M.A. Human neutrophils produce CCL23 in response to various TLR-agonists and TNFα. Front. Cell. Infect. Microbiol. 2017, 7, 176. [Google Scholar] [CrossRef] [PubMed]
- Asaoka, D.; Xiao, J.; Takeda, T.; Yanagisawa, N.; Yamazaki, T.; Matsubara, Y.; Sugiyama, H.; Endo, N.; Higa, M.; Kasanuki, K.; et al. Effect of probiotic Bifidobacterium breve in improving cognitive function and preventing brain atrophy in older patients with suspected mild cognitive impairment: Results of a 24-week randomized, double-blind, placebo-controlled trial. J. Alzheimers Dis. 2022, 88, 75–95. [Google Scholar] [CrossRef] [PubMed]
- Shi, S.; Zhang, Q.; Sang, Y.; Ge, S.; Wang, Q.; Wang, R.; He, J. Probiotic Bifidobacterium longum BB68S improves cognitive functions in healthy older adults: A randomized, double-blind, placebo-controlled trial. Nutrients 2022, 15, 51. [Google Scholar] [CrossRef] [PubMed]
- Akbari, E.; Asemi, Z.; Kakhaki, R.D.; Bahmani, F.; Kouchaki, E.; Tamtaji, O.R.; Hamidi, G.A.; Salami, M. Effect of probiotic supplementation on cognitive function and metabolic status in Alzheimer’s disease: A randomized, double-blind and controlled trial. Front. Aging Neurosci. 2016, 8, 256. [Google Scholar] [CrossRef]
- Kim, C.-S.; Cha, L.; Sim, M.; Jung, S.; Chun, W.Y.; Baik, H.W.; Shin, D.-M. Probiotic supplementation improves cognitive function and mood with changes in gut microbiota in community-dwelling older adults: A randomized, double-blind, placebo-controlled, multicenter trial. J. Gerontol. A Biol. Sci. Med. Sci. 2021, 76, 32–40. [Google Scholar] [CrossRef]
- Melzack, R. The McGill Pain Questionnaire: Major properties and scoring methods. Pain 1975, 1, 277–299. [Google Scholar] [CrossRef]
- Schulz, K.F.; Altman, D.G.; Moher, D. CONSORT 2010 Statement: Updated guidelines for reporting parallel group randomised trials. BMC Med. 2010, 8, 18. [Google Scholar] [CrossRef]
- Bercik, P.; Denou, E.; Collins, J.; Jackson, W.; Lu, J.; Jury, J.; Deng, Y.; Blennerhassett, P.; Macri, J.; McCoy, K.D.; et al. The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology 2011, 141, 599–609. [Google Scholar] [CrossRef]
- Rahimlou, M.; Hosseini, S.A.; Majdinasab, N.; Haghighizadeh, M.H.; Husain, D. Effects of long-term administration of multi-strain probiotic on circulating levels of BDNF, NGF, IL-6 and mental health in patients with multiple sclerosis: A randomized, double-blind, placebo-controlled trial. Nutr. Neurosci. 2022, 25, 411–422. [Google Scholar] [CrossRef]
- Dehghani, F.; Abdollahi, S.; Shidfar, F.; Clark, C.C.T.; Soltani, S. Probiotics supplementation and brain-derived neurotrophic factor (BDNF): A systematic review and meta-analysis of randomized controlled trials. Nutr. Neurosci. 2023, 26, 942–952. [Google Scholar] [CrossRef] [PubMed]
Placebo | Active | |
---|---|---|
Energy, kcal/100 g | 48.0 | 52.0 |
Moisture, g/100 g | 86.9 | 84.9 |
Protein, g/100 g | 2.8 | 2.8 |
Fat, g/100 g | 0.1 | 0.1 |
Carbohydrate, g/100 g | 9.1 | 11.2 |
Ash, g/100 g | 1.1 | 1.1 |
Placebo Group | Active Group | p-Value | |
---|---|---|---|
Age, years | 62.7 (6.9) | 64.6 (7.1) | 0.229 |
MMSE-J | 28.0 (1.6) | 28.0 (1.3) | 0.878 |
Corrected MOCA-J | 22.9 (1.8) | 22.9 (2.1) | 0.955 |
GDS-S-J | 2.1 (1.6) | 1.8 (1.7) | 0.372 |
Height, cm | 161.5 (9.0) | 161.8 (8.0) | 0.907 |
Body weight, kg | 59.0 (11.3) | 59.5 (12.1) | 0.842 |
Body mass index, kg/m2 | 22.4 (2.8) | 22.6 (3.1) | 0.861 |
Systolic blood pressure, mmHg | 129.5 (17.0) | 128.3 (16.3) | 0.733 |
Diastolic blood pressure, mmHg | 77.8 (12.8) | 75.7 (10.7) | 0.439 |
Heartbeat, bpm | 70.6 (10.7) | 71.1 (12.0) | 0.830 |
White blood cell count, /µL | 5817.5 (1731.7) | 5685.0 (1543.8) | 0.719 |
Red blood cell count, ×10⁴/µL | 446 (40.9) | 445.5 (41.1) | 0.957 |
Hemoglobin, g/dL | 13.7 (1.3) | 13.7 (1.1) | 0.978 |
Hematocrit, % | 43.3 (3.7) | 43.4 (3.3) | 0.914 |
Platelet count, ×10⁴/μL | 24.6 (5.1) | 23.5 (5.1) | 0.354 |
Mean corpuscular volume, fL | 97.3 (4.3) | 97.6 (3.8) | 0.764 |
Mean corpuscular hemoglobin, pg | 30.9 (1.8) | 30.9 (1.3) | 0.966 |
Mean corpuscular hemoglobin concentration, % | 31.7 (1.1) | 31.7 (0.9) | 0.711 |
Neutrophil ratio, % | 54.9 (7.7) | 55.4 (8.8) | 0.777 |
Lymphocyte ratio, % | 35.1 (6.7) | 34.2 (7.7) | 0.573 |
Monocyte ratio, % | 6.3 (1.8) | 6.0 (1.5) | 0.501 |
Eosinophil ratio, % | 2.9 (2.0) | 3.6 (2.5) | 0.173 |
Basophil ratio, % | 0.8 (0.3) | 0.8 (0.3) | 0.461 |
Total serum protein, g/dL | 7.1 (0.4) | 7.1 (0.4) | 0.358 |
Albumin, g/dL | 4.4 (0.2) | 4.4 (0.2) | 0.718 |
Aspartate aminotransferase, U/L | 22.0 (6.2) | 22.2 (9.6) | 0.923 |
Alanine aminotransferase, U/L | 18.1 (9.0) | 17.5 (9.1) | 0.777 |
Lactate dehydrogenase, U/L | 185.1 (23.8) | 187.5 (23.5) | 0.655 |
Total bilirubin, mg/dL | 1.0 (0.4) | 0.9 (0.3) | 0.175 |
Alkaline phosphatase, U/L | 59.8 (14.6) | 66.1 (13.0) | 0.045 |
γ-Glutamyl transpeptidase, U/L | 26.3 (13.7) | 30.4 (32.7) | 0.467 |
Blood urea nitrogen, mg/dL | 14.8 (2.5) | 14.4 (3.4) | 0.594 |
Creatinine, mg/dL | 0.8 (0.2) | 0.8 (0.1) | 0.788 |
Uric acid, mg/dL | 5.6 (1.6) | 5.1 (1.3) | 0.181 |
Sodium (Na), mEq/L | 141.5 (1.7) | 141.2 (1.9) | 0.392 |
Chlorine (Cl), mEq/L | 104.3 (2.0) | 104.1 (2.1) | 0.664 |
Potassium (K), mEq/L | 4.3 (0.4) | 4.3 (0.3) | 0.667 |
Calcium (Ca), mg/dL | 9.3 (0.3) | 9.3 (0.3) | 0.966 |
Total cholesterol, mg/dL | 216.3 (35.0) | 212.7 (36.0) | 0.649 |
LDL cholesterol, mg/dL | 125.0 (30.8) | 118.9 (25.6) | 0.338 |
HDL cholesterol, mg/dL | 71.3 (17.0) | 73.1 (24.1) | 0.705 |
Triglycerides, mg/dL | 98.8 (49.1) | 103.0 (52.6) | 0.711 |
Phospholipid, mg/dL | 233.9 (31.5) | 233.9 (37.9) | 0.995 |
Glucose, mg/dL | 88.6 (8.4) | 87.5 (9.8) | 0.601 |
HbA1c (NGSP), % | 5.5 (0.3) | 5.5 (0.3) | 0.778 |
Urine pH | 6.2 (0.7) | 6.2 (0.8) | 0.759 |
Week 0 | Week 8 | Week 12 | ||||
---|---|---|---|---|---|---|
Mean (SD) | Mean (SD) | p-Value | Mean (SD) | p-Value | ||
Neurocognitive index | Placebo | 103.5 (5.7) | 104.8 (4.9) | 0.090 | 105.7 (5.9) | 0.003 |
Active | 101.6 (6.8) | 104.5 (8.2) | 0.045 | 107.2 (5.1) | <0.001 | |
∆ Neurocognitive index | Placebo | 1.4 (4.4) | 0.345 | 2.3 (4.0) | 0.027 | |
Active | 2.9 (7.6) | 5.5 (7.1) | ||||
Composite memory | Placebo | 105.3 (13.6) | 102.7 (15.9) | 0.264 | 102.6 (12.3) | 0.231 |
Active | 104.4 (14.8) | 107.6 (13.6) | 0.147 | 107.2 (13.3) | 0.297 | |
∆ Composite memory | Placebo | −2.7 (13.2) | 0.070 | −2.8 (12.7) | 0.114 | |
Active | 3.2 (12.1) | 2.8 (14.7) | ||||
Verbal memory | Placebo | 105.3 (13.6) | 106.1 (15.0) | 0.746 | 105.1 (13.2) | 0.926 |
Active | 104.6 (14.3) | 107.9 (13.6) | 0.129 | 108.5 (14.6) | 0.142 | |
∆ Verbal memory | Placebo | 0.8 (14.1) | 0.452 | −0.2 (13.3) | 0.241 | |
Active | 3.3 (11.7) | 3.9 (14.5) | ||||
Visual memory | Placebo | 103.7 (14.8) | 98.3 (15.7) | 0.035 | 99.2 (14.8) | 0.124 |
Active | 103.3 (12.8) | 105.1 (11.8) | 0.495 | 103.7 (11.0) | 0.861 | |
∆ Visual memory | Placebo | −5.4 (14.0) | 0.047 | −4.5 (16.1) | 0.202 | |
Active | 1.8 (14.3) | 3.9 (14.5) | ||||
Psychomotor speed | Placebo | 106.3 (8.8) | 108.5 (9.3) | 0.045 | 108.3 (10.1) | 0.073 |
Active | 106.2 (8.3) | 108.9 (8.4) | 0.016 | 108.6 (7.6) | 0.054 | |
∆ Psychomotor speed | Placebo | 2.1 (5.7) | 0.664 | 1.9 (5.8) | 0.720 | |
Active | 2.8 (6.1) | 2.5 (6.9) | ||||
Reaction time | Placebo | 94.7 (11.3) | 94.8 (11.8) | 0.906 | 98.8 (11.1) | <0.001 |
Active | 96.6 (9.1) | 98.8 (10.6) | 0.112 | 100.8 (9.5) | 0.003 | |
∆ Reaction time | Placebo | 0.1 (6.0) | 0.230 | 4.2 (4.8) | 0.981 | |
Active | 2.2 (7.3) | 4.2 (7.1) | ||||
Complex attention | Placebo | 108.3 (8.9) | 111.9 (6.2) | 0.028 | 111.5 (6.4) | 0.015 |
Active | 104.0 (11.2) | 105.2 (23.4) | 0.762 | 112.3 (4.7) | <0.001 | |
∆ Complex attention | Placebo | 3.6 (8.8) | 0.580 | 3.2 (6.9) | 0.041 | |
Active | 1.2 (22.4) | 8.3 (11.8) | ||||
Cognitive flexibility | Placebo | 102.8 (9.3) | 106.1 (7.3) | 0.004 | 107.5 (8.4) | <0.001 |
Active | 96.7 (10.9) | 102.2 (9.8) | 0.014 | 106.5 (6.4) | <0.001 | |
∆ Cognitive flexibility | Placebo | 3.3 (6.0) | 0.359 | 4.8 (6.7) | 0.038 | |
Active | 5.5 (11.6) | 9.8 (11.5) | ||||
Processing speed | Placebo | 114.4 (9.3) | 115.9 (9.9) | 0.312 | 116.8 (10.2) | 0.100 |
Active | 114 (9.3) | 117.2 (11.1) | 0.058 | 118.4 (9.3) | 0.004 | |
∆ Processing speed | Placebo | 1.4 (7.9) | 0.403 | 2.3 (7.7) | 0.291 | |
Active | 3.3 (9.2) | 4.4 (7.8) | ||||
Executive function | Placebo | 102.8 (9.3) | 105.3 (7.5) | 0.016 | 107.2 (9) | 0.001 |
Active | 96.8 (11.1) | 102.0 (9.9) | 0.022 | 106.3 (6.4) | <0.001 | |
∆ Executive function | Placebo | 2.5 (5.5) | 0.265 | 4.5 (6.9) | 0.044 | |
Active | 5.2 (11.9) | 9.5 (11.8) | ||||
Social acuity | Placebo | 86.2 (14.7) | 92.0 (14.5) | 0.052 | 94.0 (18.0) | 0.013 |
Active | 90.0 (17.6) | 94.5 (17.2) | 0.213 | 98.1 (14.9) | 0.018 | |
∆ Social acuity | Placebo | 5.8 (16.3) | 0.790 | 7.8 (16.8) | 0.937 | |
Active | 4.6 (20.1) | 8.2 (18.1) | ||||
Reasoning | Placebo | 94.7 (16.5) | 91.3 (18.3) | 0.264 | 95.0 (17.5) | 0.929 |
Active | 92.8 (15.9) | 96.6 (14.5) | 0.166 | 93.9 (14.2) | 0.706 | |
∆ Reasoning | Placebo | −3.4 (16.9) | 0.078 | 0.3 (15.8) | 0.837 | |
Active | 3.8 (14.9) | 1.1 (15.6) | ||||
Working memory | Placebo | 105.7 (12.1) | 105.0 (14.1) | 0.779 | 105.6 (11.0) | 0.952 |
Active | 103.5 (13.7) | 109.2 (9.3) | 0.010 | 107.7 (10.6) | 0.095 | |
∆ Working memory | Placebo | −0.7 (14.3) | 0.056 | −0.1 (11.6) | 0.180 | |
Active | 5.7 (11.6) | 4.2 (13.5) | ||||
Sustained attention | Placebo | 108.3 (10.0) | 108.8 (9.0) | 0.767 | 109.0 (10.3) | 0.737 |
Active | 106.7 (9.9) | 110.6 (9.1) | 0.020 | 111.7 (7.2) | 0.013 | |
∆ Sustained attention | Placebo | 0.6 (10.6) | 0.184 | 0.7 (11.5) | 0.126 | |
Active | 3.9 (8.8) | 5.0 (10.6) | ||||
Simple attention | Placebo | 102.5 (11.6) | 103.0 (14.1) | 0.892 | 103.8 (9.8) | 0.528 |
Active | 105.6 (7.3) | 81.4 (136.6) | 0.337 | 105.7 (6.8) | 0.948 | |
∆ Simple attention | Placebo | 0.5 (19.3) | 0.320 | 1.3 (11.3) | 0.683 | |
Active | −24.2 (137.7) | 0.1 (10.9) | ||||
Motor speed | Placebo | 99.7 (10.7) | 101.4 (10.0) | 0.101 | 100.5 (11.4) | 0.523 |
Active | 99.2 (11.7) | 100.8 (10.4) | 0.129 | 99.8 (10.2) | 0.673 | |
∆ Motor speed | Placebo | 1.8 (5.9) | 0.926 | 0.8 (7.1) | 0.901 | |
Active | 1.6 (5.8) | 0.6 (7.6) |
Week 0 | Week 8 | Week 12 | ||||
---|---|---|---|---|---|---|
Mean (SD) | Mean (SD) | p-Value | Mean (SD) | p-Value | ||
Physical functioning | Placebo | 52.2 (5.4) | 51.7 (6.0) | 0.682 | 52.8 (4.8) | 0.633 |
Active | 53.2 (5.0) | 53.6 (4.0) | 0.660 | 53.7 (5.1) | 0.556 | |
∆ Physical functioning | Placebo | −0.6 (5.4) | 0.115 | 0.6 (4.0) | 0.473 | |
Active | 0.4 (3.0) | 0.5 (3.1) | ||||
Role physical | Placebo | 52.8 (5.6) | 53.6 (5.1) | 0.534 | 53.6 (5.5) | 0.471 |
Active | 53.3 (6.8) | 53.7 (4.7) | 0.873 | 54 (4.4) | 0.710 | |
∆ Role physical | Placebo | 0.8 (4.3) | 0.895 | 0.9 (6.0) | 0.777 | |
Active | 0.4 (7.2) | 0.7 (6.0) | ||||
Bodily pain | Placebo | 49.9 (8.8) | 48.6 (7.9) | 0.472 | 49.3 (10.1) | 0.825 |
Active | 50.9 (10.3) | 50.9 (9.2) | 1.000 | 51.8 (9.4) | 0.648 | |
∆ Bodily pain | Placebo | −1.4 (6.8) | 0.273 | −0.7 (9.6) | 0.296 | |
Active | 0.0 (6.2) | 0.9 (7.7) | ||||
General health perceptions | Placebo | 58.2 (6.9) | 57.2 (6.9) | 0.256 | 58.2 (6.8) | 1.000 |
Active | 57.1 (6.8) | 57.5 (7.1) | 0.846 | 57.2 (8.0) | 0.981 | |
∆ General health perceptions | Placebo | −1.0 (4.3) | 0.877 | 0.0 (4.7) | 0.575 | |
Active | 0.4 (3.9) | 0.1 (5.2) | ||||
Vitality | Placebo | 55.5 (7.0) | 55.8 (7.7) | 0.930 | 56.0 (6.2) | 0.854 |
Active | 56.8 (6.7) | 57.2 (6.2) | 0.862 | 57.0 (6.4) | 0.963 | |
∆ Vitality | Placebo | 0.3 (6.6) | 0.443 | 0.5 (6.5) | 0.535 | |
Active | 0.4 (5.0) | 0.2 (5.6) | ||||
Social functioning | Placebo | 54.2 (6.6) | 55.3 (6.3) | 0.423 | 55.0 (6.3) | 0.632 |
Active | 53.5 (7.0) | 55.1 (5.7) | 0.183 | 55.2 (5.2) | 0.128 | |
∆ Social functioning | Placebo | 1.1 (5.1) | 0.877 | 0.8 (7.0) | 0.850 | |
Active | 1.6 (6.7) | 1.8 (5.6) | ||||
Role emotional | Placebo | 52.8 (6.3) | 54.9 (4.5) | 0.041 | 54.6 (4.3) | 0.093 |
Active | 54.4 (5.1) | 53.8 (4.8) | 0.779 | 54.9 (4.2) | 0.783 | |
∆ Role emotional | Placebo | 2.1 (6.1) | 0.332 | 1.8 (6.3) | 0.720 | |
Active | −0.6 (7.2) | 0.6 (3.2) | ||||
Mental health | Placebo | 56.9 (4.4) | 57.6 (5.5) | 0.663 | 57.6 (6.9) | 0.718 |
Active | 57.1 (6.7) | 57.1 (6.5) | 0.993 | 57.5 (5.4) | 0.775 | |
∆ Mental health | Placebo | 0.7 (6.1) | 0.732 | 0.7 (5.2) | 0.982 | |
Active | 0.1 (5.1) | 0.5 (4.4) |
Parameter | Week 0 | Week 12 | Change | |||
---|---|---|---|---|---|---|
Mean (SD) | Mean (SD) | p-Value | Mean (SD) | p-Value | ||
LIF-R, NPX | Placebo | 3.36 (0.27) | 3.39 (0.23) | 0.459 | 0.02 (0.19) | 0.012 |
Active | 3.49 (0.30) | 3.40 (0.20) | 0.008 | −0.10 (0.19) | ||
ST1A1, NPX | Placebo | 2.19 (1.16) | 1.75 (0.83) | 0.111 | −0.36 (1.10) | 0.020 |
Active | 1.82 (0.82) | 2.10 (1.00) | 0.079 | 0.33 (0.86) | ||
CCL23, NPX | Placebo | 10.86 (0.35) | 10.88 (0.25) | 0.718 | 0.02 (0.25) | 0.021 |
Active | 11.09 (0.46) | 10.90 (0.40) | 0.012 | −0.15 (0.32) | ||
TWEAK, NPX | Placebo | 9.10 (0.34) | 9.08 (0.33) | 0.658 | −0.01 (0.18) | 0.033 |
Active | 9.22 (0.26) | 9.10 (0.20) | 0.002 | −0.12 (0.19) | ||
ADA, NPX | Placebo | 5.39 (0.41) | 5.46 (0.39) | 0.068 | 0.08 (0.23) | 0.052 |
Active | 5.53 (0.37) | 5.50 (0.30) | 0.345 | −0.04 (0.24) | ||
OPG, NPX | Placebo | 10.49 (0.4) | 10.58 (0.41) | 0.134 | 0.09 (0.34) | 0.052 |
Active | 10.60 (0.30) | 10.60 (0.20) | 0.188 | −0.04 (0.17) | ||
CCL11, NPX | Placebo | 8.66 (0.43) | 8.76 (0.36) | 0.029 | 0.09 (0.24) | 0.054 |
Active | 8.72 (0.29) | 8.70 (0.20) | 0.649 | −0.02 (0.21) | ||
GDNF, NPX | Placebo | 1.98 (0.47) | 2.19 (0.44) | 0.003 | 0.20 (0.33) | 0.055 |
Active | 2.15 (0.33) | 2.10 (0.30) | 0.447 | 0.04 (0.28) | ||
CX3CL1, NPX | Placebo | 3.66 (0.48) | 3.82 (0.51) | 0.059 | 0.17 (0.48) | 0.058 |
Active | 3.86 (0.41) | 3.80 (0.40) | 0.520 | −0.04 (0.34) | ||
IL-8, NPX | Placebo | 5.97 (0.41) | 6.22 (0.49) | 0.012 | 0.24 (0.53) | 0.063 |
Active | 6.15 (0.75) | 6.20 (0.70) | 0.733 | 0.02 (0.37) | ||
CCL28, NPX | Placebo | 2.62 (0.50) | 2.64 (0.49) | 0.711 | 0.02 (0.27) | 0.063 |
Active | 2.73 (0.46) | 2.60 (0.50) | 0.009 | −0.09 (0.18) | ||
IL-18, NPX | Placebo | 9.10 (0.67) | 9.28 (0.68) | 0.002 | 0.18 (0.30) | 0.064 |
Active | 9.14 (0.63) | 9.20 (0.50) | 0.912 | 0.01 (0.41) | ||
IL-10, NPX | Placebo | 3.22 (0.52) | 3.44 (0.78) | 0.035 | 0.22 (0.56) | 0.064 |
Active | 3.47 (0.44) | 3.50 (0.40) | 0.975 | 0.00 (0.28) | ||
CCL19, NPX | Placebo | 8.73 (0.77) | 8.88 (0.90) | 0.163 | 0.15 (0.60) | 0.081 |
Active | 8.72 (0.49) | 8.70 (0.60) | 0.278 | −0.06 (0.31) | ||
CD5, NPX | Placebo | 5.92 (0.40) | 5.91 (0.37) | 0.864 | −0.01 (0.19) | 0.092 |
Active | 6.02 (0.39) | 5.90 (0.30) | 0.017 | −0.09 (0.20) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Azuma, N.; Mawatari, T.; Saito, Y.; Tsukamoto, M.; Sampei, M.; Iwama, Y. Effect of Continuous Ingestion of Bifidobacteria and Dietary Fiber on Improvement in Cognitive Function: A Randomized, Double-Blind, Placebo-Controlled Trial. Nutrients 2023, 15, 4175. https://doi.org/10.3390/nu15194175
Azuma N, Mawatari T, Saito Y, Tsukamoto M, Sampei M, Iwama Y. Effect of Continuous Ingestion of Bifidobacteria and Dietary Fiber on Improvement in Cognitive Function: A Randomized, Double-Blind, Placebo-Controlled Trial. Nutrients. 2023; 15(19):4175. https://doi.org/10.3390/nu15194175
Chicago/Turabian StyleAzuma, Naoki, Takashi Mawatari, Yasuo Saito, Masashi Tsukamoto, Masatoshi Sampei, and Yoshitaka Iwama. 2023. "Effect of Continuous Ingestion of Bifidobacteria and Dietary Fiber on Improvement in Cognitive Function: A Randomized, Double-Blind, Placebo-Controlled Trial" Nutrients 15, no. 19: 4175. https://doi.org/10.3390/nu15194175
APA StyleAzuma, N., Mawatari, T., Saito, Y., Tsukamoto, M., Sampei, M., & Iwama, Y. (2023). Effect of Continuous Ingestion of Bifidobacteria and Dietary Fiber on Improvement in Cognitive Function: A Randomized, Double-Blind, Placebo-Controlled Trial. Nutrients, 15(19), 4175. https://doi.org/10.3390/nu15194175