The Lipidomic Profile Is Associated with the Dietary Pattern in Subjects with and without Diabetes Mellitus from a Mediterranean Area
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Clinical Data
2.3. Dietary Pattern Assessment
2.4. Lipidomic Study
2.5. Data Analysis
2.6. Statistical Analysis
3. Results
3.1. Demographic and Clinical Characteristics
3.2. Lipids Associated with Dietary Pattern
3.3. Lipids and Macronutrient Intake
3.4. Interaction between Diabetes and the Dietary Pattern
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- O’Donnell, V.B.; Ekroos, K.; Liebisch, G.; Wakelam, M. Lipidomics: Current State of the Art in a Fast Moving Field. Wiley Interdiscip. Rev. Syst. Biol. Med. 2020, 12, e1466. [Google Scholar] [CrossRef] [PubMed]
- Tabassum, R.; Ripatti, S. Integrating Lipidomics and Genomics: Emerging Tools to Understand Cardiovascular Diseases. Cell Mol. Life Sci. 2021, 78, 2565–2584. [Google Scholar] [CrossRef] [PubMed]
- Hyötyläinen, T.; Bondia-Pons, I.; Orešič, M. Lipidomics in Nutrition and Food Research. Mol. Nutr. Food Res. 2013, 57, 1306–1318. [Google Scholar] [CrossRef] [PubMed]
- Playdon, M.C.; Moore, S.C.; Derkach, A.; Reedy, J.; Subar, A.F.; Sampson, J.N.; Albanes, D.; Gu, F.; Kontto, J.; Lassale, C.; et al. Identifying Biomarkers of Dietary Patterns by Using Metabolomics. Am. J. Clin. Nutr. 2017, 105, 450–465. [Google Scholar] [CrossRef] [PubMed]
- Razquin, C.; Toledo, E.; Clish, C.B.; Ruiz-Canela, M.; Dennis, C.; Corella, D.; Papandreou, C.; Ros, E.; Estruch, R.; Guasch-Ferré, M.; et al. Plasma Lipidomic Profiling and Risk of Type 2 Diabetes in the PREDIMED Trial. Diabetes Care 2018, 41, 2617–2624. [Google Scholar] [CrossRef]
- Suvitaival, T.; Bondia-Pons, I.; Yetukuri, L.; Pöhö, P.; Nolan, J.J.; Hyötyläinen, T.; Kuusisto, J.; Orešič, M. Lipidome as a Predictive Tool in Progression to Type 2 Diabetes in Finnish Men. Metabolism 2018, 78, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, C.; Surma, M.A.; Klose, C.; Gerl, M.J.; Ottosson, F.; Ericson, U.; Oskolkov, N.; Ohro-Melander, M.; Simons, K.; Melander, O. Plasma Lipidome and Prediction of Type 2 Diabetes in the Population-Based Malmö Diet and Cancer Cohort. Diabetes Care 2020, 43, 366–373. [Google Scholar] [CrossRef] [PubMed]
- Wang-Sattler, R.; Yu, Z.; Herder, C.; Messias, A.C.; Floegel, A.; He, Y.; Heim, K.; Campillos, M.; Holzapfel, C.; Thorand, B.; et al. Novel Biomarkers for Pre-Diabetes Identified by Metabolomics. Mol. Syst. Biol. 2012, 8, 615. [Google Scholar] [CrossRef] [PubMed]
- Floegel, A.; Stefan, N.; Yu, Z.; Mühlenbruch, K.; Drogan, D.; Joost, H.-G.; Fritsche, A.; Häring, H.-U.; Hrabě de Angelis, M.; Peters, A.; et al. Identification of Serum Metabolites Associated with Risk of Type 2 Diabetes Using a Targeted Metabolomic Approach. Diabetes 2013, 62, 639–648. [Google Scholar] [CrossRef]
- Meikle, P.J.; Wong, G.; Barlow, C.K.; Weir, J.M.; Greeve, M.A.; MacIntosh, G.L.; Almasy, L.; Comuzzie, A.G.; Mahaney, M.C.; Kowalczyk, A.; et al. Plasma Lipid Profiling Shows Similar Associations with Prediabetes and Type 2 Diabetes. PLoS ONE 2013, 8, e74341. [Google Scholar] [CrossRef]
- Haus, J.M.; Kashyap, S.R.; Kasumov, T.; Zhang, R.; Kelly, K.R.; Defronzo, R.A.; Kirwan, J.P. Plasma Ceramides Are Elevated in Obese Subjects with Type 2 Diabetes and Correlate with the Severity of Insulin Resistance. Diabetes 2009, 58, 337–343. [Google Scholar] [CrossRef] [PubMed]
- Sorensen, C.M.; Ding, J.; Zhang, Q.; Alquier, T.; Zhao, R.; Mueller, P.W.; Smith, R.D.; Metz, T.O. Perturbations in the Lipid Profile of Individuals with Newly Diagnosed Type 1 Diabetes Mellitus: Lipidomics Analysis of a Diabetes Antibody Standardization Program Sample Subset. Clin. Biochem. 2010, 43, 948–956. [Google Scholar] [CrossRef] [PubMed]
- Oresic, M.; Gopalacharyulu, P.; Mykkänen, J.; Lietzen, N.; Mäkinen, M.; Nygren, H.; Simell, S.; Simell, V.; Hyöty, H.; Veijola, R.; et al. Cord Serum Lipidome in Prediction of Islet Autoimmunity and Type 1 Diabetes. Diabetes 2013, 62, 3268–3274. [Google Scholar] [CrossRef] [PubMed]
- Airhart, S.; Cade, W.T.; Jiang, H.; Coggan, A.R.; Racette, S.B.; Korenblat, K.; Spearie, C.A.; Waller, S.; O’Connor, R.; Bashir, A.; et al. A Diet Rich in Medium-Chain Fatty Acids Improves Systolic Function and Alters the Lipidomic Profile in Patients With Type 2 Diabetes: A Pilot Study. J. Clin. Endocrinol. Metab. 2016, 101, 504–512. [Google Scholar] [CrossRef] [PubMed]
- Chorell, E.; Otten, J.; Stomby, A.; Ryberg, M.; Waling, M.; Hauksson, J.; Svensson, M.; Olsson, T. Improved Peripheral and Hepatic Insulin Sensitivity after Lifestyle Interventions in Type 2 Diabetes Is Associated with Specific Metabolomic and Lipidomic Signatures in Skeletal Muscle and Plasma. Metabolites 2021, 11, 834. [Google Scholar] [CrossRef] [PubMed]
- Brady, E.M.; Cao, T.H.; Moss, A.J.; Athithan, L.; Ayton, S.L.; Redman, E.; Argyridou, S.; Graham-Brown, M.P.M.; Maxwell, C.B.; Jones, D.J.L.; et al. Circulating Sphingolipids and Relationship to Cardiac Remodelling before and Following a Low-Energy Diet in Asymptomatic Type 2 Diabetes. BMC Cardiovasc. Disord. 2024, 24, 25. [Google Scholar] [CrossRef]
- Toledo, E.; Wang, D.D.; Ruiz-Canela, M.; Clish, C.B.; Razquin, C.; Zheng, Y.; Guasch-Ferré, M.; Hruby, A.; Corella, D.; Gómez-Gracia, E.; et al. Plasma Lipidomic Profiles and Cardiovascular Events in a Randomized Intervention Trial with the Mediterranean Diet. Am. J. Clin. Nutr. 2017, 106, 973–983. [Google Scholar] [CrossRef]
- Luo, Y.; Sun, L.; Wu, Q.; Song, B.; Wu, Y.; Yang, X.; Zhou, P.; Niu, Z.; Zheng, H.; Li, H.; et al. Diet-Related Lipidomic Signatures and Changed Type 2 Diabetes Risk in a Randomized Controlled Feeding Study With Mediterranean Diet and Traditional Chinese or Transitional Diets. Diabetes Care 2023, 46, 1691–1699. [Google Scholar] [CrossRef] [PubMed]
- Lankinen, M.; Schwab, U.; Kolehmainen, M.; Paananen, J.; Nygren, H.; Seppänen-Laakso, T.; Poutanen, K.; Hyötyläinen, T.; Risérus, U.; Savolainen, M.J.; et al. A Healthy Nordic Diet Alters the Plasma Lipidomic Profile in Adults with Features of Metabolic Syndrome in a Multicenter Randomized Dietary Intervention. J. Nutr. 2015, 146, 662–672. [Google Scholar] [CrossRef]
- Lankinen, M.; Schwab, U.; Kolehmainen, M.; Paananen, J.; Poutanen, K.; Mykkänen, H.; Seppänen-Laakso, T.; Gylling, H.; Uusitupa, M.; Orešič, M. Whole Grain Products, Fish and Bilberries Alter Glucose and Lipid Metabolism in a Randomized, Controlled Trial: The Sysdimet Study. PLoS ONE 2011, 6, e22646. [Google Scholar] [CrossRef]
- Al-Sari, N.; Schmidt, S.; Suvitaival, T.; Kim, M.; Trošt, K.; Ranjan, A.G.; Christensen, M.B.; Overgaard, A.J.; Pociot, F.; Nørgaard, K.; et al. Changes in the Lipidome in Type 1 Diabetes Following Low Carbohydrate Diet: Post-hoc Analysis of a Randomized Crossover Trial. Endocrinol. Diabetes Metab. 2021, 4, e00213. [Google Scholar] [CrossRef]
- Dibay Moghadam, S.; Navarro, S.L.; Shojaie, A.; Randolph, T.W.; Bettcher, L.F.; Le, C.B.; Hullar, M.A.; Kratz, M.; Neuhouser, M.L.; Lampe, P.D.; et al. Plasma Lipidomic Profiles after a Low and High Glycemic Load Dietary Pattern in a Randomized Controlled Crossover Feeding Study. Metabolomics 2020, 16, 121. [Google Scholar] [CrossRef] [PubMed]
- Trichopoulou, A.; Costacou, T.; Bamia, C.; Trichopoulos, D. Adherence to a Mediterranean Diet and Survival in a Greek Population. N. Engl. J. Med. 2003, 348, 2599–2608. [Google Scholar] [CrossRef] [PubMed]
- McCullough, M.L.; Feskanich, D.; Stampfer, M.J.; Giovannucci, E.L.; Rimm, E.B.; Hu, F.B.; Spiegelman, D.; Hunter, D.J.; Colditz, G.A.; Willett, W.C. Diet Quality and Major Chronic Disease Risk in Men and Women: Moving toward Improved Dietary Guidance. Am. J. Clin. Nutr. 2002, 76, 1261–1271. [Google Scholar] [CrossRef] [PubMed]
- Fung, T.T.; McCullough, M.L.; Newby, P.; Manson, J.E.; Meigs, J.B.; Rifai, N.; Willett, W.C.; Hu, F.B. Diet-Quality Scores and Plasma Concentrations of Markers of Inflammation and Endothelial Dysfunction. Am. J. Clin. Nutr. 2005, 82, 163–173. [Google Scholar] [CrossRef] [PubMed]
- Vilanova, M.B.; Falguera, M.; Marsal, J.R.; Rubinat, E.; Alcubierre, N.; Castelblanco, E.; Granado-Casas, M.; Miró, N.; Molló, À.; Mata-Cases, M.; et al. Prevalence, Clinical Features and Risk Assessment of Pre-Diabetes in Spain: The Prospective Mollerussa Cohort Study. BMJ Open 2017, 7, e015158. [Google Scholar] [CrossRef]
- Alcubierre, N.; Rubinat, E.; Traveset, A.; Martinez-Alonso, M.; Hernandez, M.; Jurjo, C.; Mauricio, D. A Prospective Cross-Sectional Study on Quality of Life and Treatment Satisfaction in Type 2 Diabetic Patients with Retinopathy without Other Major Late Diabetic Complications. Health Qual. Life Outcomes 2014, 12, 131. [Google Scholar] [CrossRef] [PubMed]
- Granado-Casas, M.; Alcubierre, N.; Martín, M.; Real, J.; Ramírez-Morros, A.M.; Cuadrado, M.; Alonso, N.; Falguera, M.; Hernández, M.; Aguilera, E.; et al. Improved Adherence to Mediterranean Diet in Adults with Type 1 Diabetes Mellitus. Eur. J. Nutr. 2019, 58, 2271–2279. [Google Scholar] [CrossRef] [PubMed]
- Bernstein, M.S.; Morabia, A.; Sloutskis, D. Definition and Prevalence of Sedentarism in an Urban Population. Am. J. Public Health 1999, 89, 862–867. [Google Scholar] [CrossRef]
- de León, A.C.; Rodríguez-Pérez, M.D.L.C.; Rodríguez-Benjumeda, L.M.; Anía-Lafuente, B.; Brito-Díaz, B.; de Fuentes, M.M.; Almeida-González, D.; Batista-Medina, M.; Aguirre-Jaime, A. Sedentary lifestyle: Physical activity duration versus percentage of energy expenditure. Rev. Esp. Cardiol. 2007, 60, 244–250. [Google Scholar] [CrossRef]
- Willett, W.C.; Sampson, L.; Stampfer, M.J.; Rosner, B.; Bain, C.; Witschi, J.; Hennekens, C.H.; Speizer, F.E. Reproducibility and Validity of a Semiquantitative Food Frequency Questionnaire. Am. J. Epidemiol. 1985, 122, 51–65. [Google Scholar] [CrossRef]
- Vioque, J.; Navarrete-Muñoz, E.-M.; Gimenez-Monzó, D.; García-de-la-Hera, M.; Granado, F.; Young, I.S.; Ramón, R.; Ballester, F.; Murcia, M.; Rebagliato, M.; et al. Reproducibility and Validity of a Food Frequency Questionnaire among Pregnant Women in a Mediterranean Area. Nutr. J. 2013, 12, 26. [Google Scholar] [CrossRef] [PubMed]
- US Department of Agriculture Agricultural Research Service. USDA National Nutrient Database for Standard Reference; Nutrient Data Laboratory, Beltsville Human Nutrition Research Center, ARS, USDA: Beltsville, MD, USA. Available online: https://www.ars.usda.gov/ (accessed on 10 October 2020).
- Palma, I.; Farran, P.; Cervera, P. Tablas de Composición de Alimentos Por Medidas Caseras de Consumo Habitual En España; Mc Graw Hill Interamericana: Madrid, Spain, 2008. [Google Scholar]
- McCance, R.A.; Widdowson, E.M. McCance and Widdowson’s The Composition of Foods/R. A. McCance, 6th ed.; Royal Society of Chemistry: Cambridge, UK, 2002; ISBN 0854044280. [Google Scholar]
- Barranco-Altirriba, M.; Alonso, N.; Weber, R.J.M.; Lloyd, G.R.; Hernandez, M.; Yanes, O.; Capellades, J.; Jankevics, A.; Winder, C.; Falguera, M.; et al. Lipidome Characterisation and Sex-Specific Differences in Type 1 and Type 2 Diabetes Mellitus. Cardiovasc. Diabetol. 2024, 23, 109. [Google Scholar] [CrossRef] [PubMed]
- Chambers, M.C.; Maclean, B.; Burke, R.; Amodei, D.; Ruderman , D.L.; Neumann, S.; Gatto, L.; Fischer, B.; Pratt, B.; Egertson, J.; et al. A Cross-Platform Toolkit for Mass Spectrometry and Proteomics. Businesslive 2012, 30, 918–920. [Google Scholar] [CrossRef]
- Smith, C.A.; Want, E.J.; O’Maille, G.; Abagyan, R.; Siuzdak, G. XCMS: Processing Mass Spectrometry Data for Metabolite Profiling Using Nonlinear Peak Alignment, Matching, and Identification. Anal. Chem. 2006, 78, 779–787. [Google Scholar] [CrossRef]
- Libiseller, G.; Dvorzak, M.; Kleb, U.; Gander, E.; Eisenberg, T.; Madeo, F.; Neumann, S.; Trausinger, G.; Sinner, F.; Pieber, T.; et al. IPO: A Tool for Automated Optimization of XCMS Parameters. BMC Bioinform. 2015, 16, 118. [Google Scholar] [CrossRef]
- Kirwan, J.A.; Broadhurst, D.I.; Davidson, R.L.; Viant, M.R. Characterising and Correcting Batch Variation in an Automated Direct Infusion Mass Spectrometry (DIMS) Metabolomics Workflow. Anal. Bioanal. Chem. 2013, 405, 5147–5157. [Google Scholar] [CrossRef]
- Jankevics, A.; Lloyd, G.R.; Weber, R.J.M. Pmp: Peak Matrix Processing and Signal Batch Correction for Metabolomics Datasets; R package: Birmingham, England, 2021. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018; Available online: https://www.r-project.org/ (accessed on 8 May 2024).
- Chen, S.; Zong, G.; Wu, Q.; Yun, H.; Niu, Z.; Zheng, H.; Zeng, R.; Sun, L.; Lin, X. Associations of Plasma Glycerophospholipid Profile with Modifiable Lifestyles and Incident Diabetes in Middle-Aged and Older Chinese. Diabetologia 2022, 65, 315–328. [Google Scholar] [CrossRef]
- Eichelmann, F.; Sellem, L.; Wittenbecher, C.; Jäger, S.; Kuxhaus, O.; Prada, M.; Cuadrat, R.; Jackson, K.G.; Lovegrove, J.A.; Schulze, M.B. Deep Lipidomics in Human Plasma: Cardiometabolic Disease Risk and Effect of Dietary Fat Modulation. Circulation 2022, 146, 21–35. [Google Scholar] [CrossRef]
- Adamska-Patruno, E.; Samczuk, P.; Ciborowski, M.; Godzien, J.; Pietrowska, K.; Bauer, W.; Gorska, M.; Barbas, C.; Kretowski, A. Metabolomics Reveal Altered Postprandial Lipid Metabolism After a High-Carbohydrate Meal in Men at High Genetic Risk of Diabetes. J. Nutr. 2019, 149, 915–922. [Google Scholar] [CrossRef]
Characteristics | Control (N = 187) | T1D (N = 112) | T2D (N = 80) | p-Overall | Control vs. T1D | Control vs. T2D | T1D vs. T2D |
---|---|---|---|---|---|---|---|
Age (y) | 54.2 (12.2) | 48.2 (9.3) | 58.3 (10.1) | <0.001 | <0.001 | 0.030 | <0.001 |
Women | 87 (46.0%) | 62 (52.1%) | 40 (45.5%) | 0.500 | 0.260 | 0.790 | 0.500 |
DM duration (y) | - | 24.3 (10.5) | 10.5 (7.7) | <0.001 | - | - | <0.001 |
BMI (kg/m2) | 26.6 (4.0) | 25.9 (3.8) | 31.7 (5.6) | <0.001 | 0.130 | <0.001 | <0.001 |
Hypertension | 39 (20.6%) | 38 (31.9%) | 50 (56.8%) | <0.001 | 0.022 | <0.001 | 0.006 |
Dyslipidemia | 60 (31.7%) | 64 (53.8%) | 50 (56.8%) | <0.001 | <0.001 | <0.001 | 0.760 |
Smoking habit | 96 (50.8%) | 60 (50.4%) | 54 (61.4%) | 0.206 | 0.830 | 0.250 | 0.390 |
Physically active | 133 (71.1%) | 88 (76.5%) | 40 (46.0%) | <0.001 | 0.460 | <0.001 | <0.001 |
Waist (cm) | 96.1 (11.7) | 89.7 (11.8) | 106.0 (12.3) | <0.001 | <0.001 | <0.001 | <0.001 |
sBP (mmHg) | 125 (15.2) | 130 (17.9) | 140 (18.6) | <0.001 | 0.014 | <0.001 | 0.014 |
dBP (mmHg) | 78.2 (9.6) | 73.6 (9.7) | 76.9 (10.7) | <0.001 | <0.001 | 0.560 | 0.017 |
HbA1c (%) | 5.5 (0.4) | 7.6 (0.9) | 8.1 (1.5) | <0.001 | <0.001 | <0.001 | <0.001 |
Total cholesterol (mg/dL) | 207.0 (34.1) | 182.0 (28.8) | 176.0 (38.1) | <0.001 | <0.001 | <0.001 | 0.500 |
HDL (mg/dL) | 57.9 (13.7) | 65.2 (17.3) | 48.8 (12.7) | <0.001 | <0.001 | <0.001 | <0.001 |
LDL (mg/dL) | 127.0 (29.8) | 102.0 (24.3) | 102.0 (33.5) | <0.001 | <0.001 | <0.001 | 0.720 |
TG (mg/dL) | 111.0 (52.7) | 72.2 (36.9) | 127.0 (65.5) | <0.001 | <0.001 | 0.030 | <0.001 |
Characteristics | Control (N = 187) | T1D (N = 112) | T2D (N = 80) | p-Overall | Control vs. T1D | Control vs. T2D | T1D vs. T2D |
---|---|---|---|---|---|---|---|
aMED | 3.3 (1.7) | 3.9 (1.7) | 4.2 (1.5) | <0.001 | 0.003 | <0.001 | 0.230 |
aHEI | 38.8 (7.1) | 41.5 (6.4) | 43.8 (6.3) | <0.001 | <0.001 | <0.001 | 0.030 |
Energy intake (kcal/day) | 2171.0 (564.0) | 2060.0 (481.0) | 2165.0 (527.0) | 0.212 | 0.100 | 0.840 | 0.220 |
Protein (g/day) | 95.8 (15.6) | 96.9 (15.9) | 109.0 (24.5) | <0.001 | 0.420 | <0.001 | <0.001 |
Carbohydrates (g/day) | 209.0 (36.8) | 193.0 (33.1) | 211.0 (40.3) | <0.001 | <0.001 | 0.820 | 0.010 |
Total fat (g/day) | 91.7 (15.5) | 102 (15.0) | 86.7 (14.0) | <0.001 | <0.001 | 0.080 | <0.001 |
SFA (g/day) | 25.5 (5.3) | 25.7 (4.7) | 22.9 (4.9) | <0.001 | 0.860 | <0.001 | <0.001 |
MUFA (g/day) | 44.2 (11.2) | 52.0 (10.4) | 41.3 (9.6) | <0.001 | <0.001 | 0.180 | <0.001 |
PUFA (g/day) | 15.3 (3.7) | 17.3 (5.4) | 15.7 (6.3) | 0.003 | <0.001 | 0.240 | 0.170 |
Omega 3 (g/day) | 1.6 (0.6) | 1.7 (0.4) | 1.8 (0.8) | 0.002 | 0.070 | 0.002 | 0.080 |
Omega 6 (g/day) | 13.6 (3.4) | 15.5 (4.0) | 13.8 (6.3) | 0.003 | <0.001 | 0.440 | 0.110 |
m/z | Rt | Lipids | Class | q-Value | Beta | Ionization | Confirmed | Analyses |
---|---|---|---|---|---|---|---|---|
372.3107 | 87.1 | AcCa_(14:0)+H | AcCa | 0.0008 | −0.29 | Positive | 1 | aHEI_all subjects |
612.5195 | 352.2 | TG(33:1)+NH4 | TG | 0.0404 | −0.20 | Positive | 0 | aHEI_all subjects |
878.8171 | 619.0 | TG(52:1)+NH4 | TG | 0.0141 | −0.23 | Positive | 1 | aHEI_all subjects |
372.3107 | 87.1 | AcCa(14:0)+H | AcCa | 0.0262 | −0.31 | Positive | 1 | aHEI_controls |
640.6023 | 596.5 | ChE(16:1)+NH4 | ChE | 0.0289 | −0.31 | Positive | 1 | aHEI_controls |
776.5454 | 461.5 | PC(32:1)+HCOO | PC | 0.0342 | −0.25 | Negative | 1 | aHEI_controls |
807.5037 | 436.3 | PI(32:1)-H | PI | 0.0308 | −0.26 | Negative | 1 | aHEI_controls |
876.5768 | 455.1 | PC(40:7)+HCOO | PC | 0.0161 | 0.28 | Negative | 1 | aHEI_controls |
728.5193 | 428.4 | PC(32:3)+H | PC | 0.0491 | 0.16 | Positive | 0 | CARB_all subjects |
812.6159 | 493.4 | PC(38:3)+H | PC | 0.0171 | 0.19 | Positive | 0 | CARB_all subjects |
826.6306 | 503.3 | PC(39:3)+H | PC | 0.0290 | 0.19 | Positive | 0 | CARB_all subjects |
834.5990 | 461.0 | PC(40:6)+H | PC | 0.0316 | 0.19 | Positive | 0 | CARB_all subjects |
858.5996 | 454.1 | MePC(39:5)+Na | MePC | 0.0290 | 0.19 | Positive | 0 | CARB_all subjects |
860.6135 | 499.3 | PC(40:4)+Na | PC | 0.0019 | 0.24 | Positive | 0 | CARB_all subjects |
870.5999 | 423.6 | MePC(40:6)+Na | MePC | 0.0342 | −0.19 | Positive | 0 | CARB_all subjects |
881.5141 | 438.4 | PI(36:4)+Na | PI | 0.0352 | 0.19 | Positive | 1 | CARB_all subjects |
908.7693 | 586.9 | TG(55:7)+NH4 | TG | 0.0353 | −0.19 | Positive | 1 | CARB_all subjects |
951.7407 | 584.5 | TG(58:9)+Na | TG | 0.0352 | −0.18 | Positive | 1 | CARB_all subjects |
970.7848 | 580.0 | TG(60:5)+NH4 | TG | 0.0316 | −0.18 | Positive | 1 | CARB_all subjects |
733.6215 | 491.8 | SM(d36:0)+H | SM | 0.0431 | −0.27 | Positive | 0 | CARB_controls |
856.6080 | 494.6 | PC(38:3)+HCOO | PC | 0.0040 | 0.20 | Negative | 1 | CARB_all subjects |
882.6240 | 500.4 | PC(40:4)+HCOO | PC | 0.0218 | 0.19 | Negative | 1 | CARB_all subjects |
710.6314 | 533.4 | Cer(t42:1)+HCOO | Cer | 0.0028 | −0.32 | Negative | 1 | CARB_controls |
746.5138 | 468.1 | CerP(m41:7)+CH3COO | CerP | 0.0281 | −0.27 | Negative | 0 | CARB_controls |
743.6064 | 472.6 | SM(d37:2)+H | SM | 0.0089 | 0.19 | Positive | 0 | FAT all subjects |
771.6375 | 496.4 | SM(d39:2)+H | SM | 0.0115 | 0.18 | Positive | 0 | FAT all subjects |
860.6135 | 499.3 | PC(40:4)+Na | PC | 0.0174 | −0.20 | Positive | 0 | FAT all subjects |
789.6145 | 495.4 | SM(d37:1)+HCOO | SM | 0.0240 | 0.20 | Negative | 1 | FAT all subjects |
856.6080 | 494.6 | PC(38:3)+HCOO | PC | 0.0230 | −0.19 | Negative | 1 | FAT all subjects |
882.6240 | 500.4 | PC(40:4)+HCOO | PC | 0.0346 | −0.20 | Negative | 1 | FAT all subjects |
400.3417 | 136.9 | AcCa(16:0)+H | AcCa | 0.0242 | −0.28 | Positive | 1 | PROT_T2D |
428.3734 | 215.1 | AcCa(18:0)+H | AcCa | 0.0421 | −0.24 | Positive | 1 | PROT_T2D |
758.5689 | 463.8 | PC(34:2)+H | PC | 0.0231 | 0.33 | Positive | 0 | PROT_T2D |
764.5546 | 477.4 | PC(34:3e)+Na | PC | 0.0231 | 0.30 | Positive | 0 | PROT_T2D |
786.6003 | 487.6 | PC(36:2)+H | PC | 0.0231 | 0.36 | Positive | 0 | PROT_T2D |
787.6686 | 524.9 | SM(d40:1)+H | SM | 0.0231 | −0.40 | Positive | 0 | PROT_T2D |
820.5249 | 445.8 | PC(36:4)+K | PC | 0.0242 | 0.31 | Positive | 0 | PROT_T2D |
824.5574 | 490.5 | MePC(38:8e)+Na | MePC | 0.0231 | 0.30 | Positive | 0 | PROT_T2D |
830.5658 | 460.8 | PC(38:5)+Na | PC | 0.0352 | 0.29 | Positive | 1 | PROT_T2D |
833.6497 | 509.2 | SM(d44:6)+H | SM | 0.0323 | 0.28 | Positive | 0 | PROT_T2D |
835.6654 | 528.0 | SM(d42:2)+Na | SM | 0.0280 | 0.29 | Positive | 1 | PROT_T2D |
905.7555 | 603.0 | TG(54:4)+Na | TG | 0.0291 | 0.28 | Positive | 1 | PROT_T2D |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rojo-López, M.I.; Barranco-Altirriba, M.; Rossell, J.; Antentas, M.; Castelblanco, E.; Yanes, O.; Weber, R.J.M.; Lloyd, G.R.; Winder, C.; Dunn, W.B.; et al. The Lipidomic Profile Is Associated with the Dietary Pattern in Subjects with and without Diabetes Mellitus from a Mediterranean Area. Nutrients 2024, 16, 1805. https://doi.org/10.3390/nu16121805
Rojo-López MI, Barranco-Altirriba M, Rossell J, Antentas M, Castelblanco E, Yanes O, Weber RJM, Lloyd GR, Winder C, Dunn WB, et al. The Lipidomic Profile Is Associated with the Dietary Pattern in Subjects with and without Diabetes Mellitus from a Mediterranean Area. Nutrients. 2024; 16(12):1805. https://doi.org/10.3390/nu16121805
Chicago/Turabian StyleRojo-López, Marina Idalia, Maria Barranco-Altirriba, Joana Rossell, Maria Antentas, Esmeralda Castelblanco, Oscar Yanes, Ralf J. M. Weber, Gavin R. Lloyd, Catherine Winder, Warwick B. Dunn, and et al. 2024. "The Lipidomic Profile Is Associated with the Dietary Pattern in Subjects with and without Diabetes Mellitus from a Mediterranean Area" Nutrients 16, no. 12: 1805. https://doi.org/10.3390/nu16121805
APA StyleRojo-López, M. I., Barranco-Altirriba, M., Rossell, J., Antentas, M., Castelblanco, E., Yanes, O., Weber, R. J. M., Lloyd, G. R., Winder, C., Dunn, W. B., Julve, J., Granado-Casas, M., & Mauricio, D. (2024). The Lipidomic Profile Is Associated with the Dietary Pattern in Subjects with and without Diabetes Mellitus from a Mediterranean Area. Nutrients, 16(12), 1805. https://doi.org/10.3390/nu16121805