A Flexible Terahertz Metamaterial Biosensor for Cancer Cell Growth and Migration Detection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design and Fabrication of Metamaterial
2.2. Cell Growth on Biosensor
2.3. Fluorescence and Terahertz Spectroscopy Measurement
3. Result and Discussion
3.1. Simulation of Metamaterial Biosensor
3.2. Cell Concentration Measurement
3.3. Cell Growth Rate Quantification
3.4. Effects of Transforming Growth Factors on Cell Migration
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, K.; Li, J.; Lamy de la Chapelle, M.; Huang, G.; Wang, Y.; Zhang, J.; Xu, D.; Yao, J.; Yang, X.; Fu, W. A Terahertz Metamaterial Biosensor for Sensitive Detection of MicroRNAs Based on Gold-Nanoparticles and Strand Displacement Amplification. Biosens. Bioelectron. 2021, 175, 112874. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Xu, D.; Zhang, W. High-Sensitivity and Label-Free Identification of a Transgenic Genome Using a Terahertz Meta-Biosensor. Opt. Express 2018, 26, 31589. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Xie, L.; Zhu, J.; Tang, L.; Singh, R.; Wang, C.; Ma, Y.; Chen, H.-T.; Ying, Y. Terahertz Biosensing with a Graphene-Metamaterial Heterostructure Platform. Carbon 2019, 141, 247–252. [Google Scholar] [CrossRef]
- Abdulkarim, Y.I.; Awl, H.N.; Alkurt, F.O.; Muhammadsharif, F.F.; Saeed, S.R.; Karaaslan, M.; Bakır, M.; Luo, H. A Thermally Stable and Polarization Insensitive Square-Shaped Water Metamaterial with Ultra-Broadband Absorption. J. Mater. Res. Technol. 2021, 13, 1150–1158. [Google Scholar] [CrossRef]
- Abdulkarim, Y.I.; Bakır, M.; Yaşar, İ.; Ulutaş, H.; Karaaslan, M.; Özkan Alkurt, F.; Sabah, C.; Dong, J. Highly Sensitive Metamaterial-Based Microwave Sensor for the Application of Milk and Dairy Products. Appl. Opt. 2022, 61, 1972. [Google Scholar] [CrossRef]
- Abdulkarim, Y.I.; Muhammadsharif, F.F.; Bakır, M.; Awl, H.N.; Karaaslan, M.; Deng, L.; Huang, S. Hypersensitized Metamaterials Based on a Corona-Shaped Resonator for Efficient Detection of Glucose. Appl. Sci. 2020, 11, 103. [Google Scholar] [CrossRef]
- Cui, N.; Guan, M.; Xu, M.; Zhao, C.; Shao, H.; Zhang, Y.; Zeng, Y. High Electric Field-Enhanced Terahertz Metamaterials with Bowtie Triangle Rings: Modeling, Mechanism, and Carbohydrate Antigen 125 Detection. J. Phys. Chem. C 2021, 125, 19374–19381. [Google Scholar] [CrossRef]
- Cui, N.; Guan, M.; Xu, M.; Fang, W.; Zhang, Y.; Zhao, C.; Zeng, Y. Design and Application of Terahertz Metamaterial Sensor Based on DSRRs in Clinical Quantitative Detection of Carcinoembryonic Antigen. Opt. Express 2020, 28, 16834. [Google Scholar] [CrossRef]
- Yang, M.; Zhang, Z.; Liang, L.; Yan, X.; Wei, D.; Song, X.; Zhang, H.; Lu, Y.; Wang, M.; Yao, J. Sensitive Detection of the Concentrations for Normal Epithelial Cells Based on Fano Resonance Metamaterial Biosensors in Terahertz Range. Appl. Opt. 2019, 58, 6268. [Google Scholar] [CrossRef]
- Zhan, X.; Yang, S.; Huang, G.; Yang, L.; Zhang, Y.; Tian, H.; Xie, F.; Lamy de la Chapelle, M.; Yang, X.; Fu, W. Streptavidin-Functionalized Terahertz Metamaterials for Attomolar Exosomal MicroRNA Assay in Pancreatic Cancer Based on Duplex-Specific Nuclease-Triggered Rolling Circle Amplification. Biosens. Bioelectron. 2021, 188, 113314. [Google Scholar] [CrossRef]
- Hou, X.; Chen, X.; Li, T.; Li, Y.; Tian, Z.; Wang, M. Highly Sensitive Terahertz Metamaterial Biosensor for Bovine Serum Albumin (BSA) Detection. Opt. Mater. Express 2021, 11, 2268. [Google Scholar] [CrossRef]
- Zhang, C.; Liang, L.; Ding, L.; Jin, B.; Hou, Y.; Li, C.; Jiang, L.; Liu, W.; Hu, W.; Lu, Y.; et al. Label-Free Measurements on Cell Apoptosis Using a Terahertz Metamaterial-Based Biosensor. Appl. Phys. Lett. 2016, 108, 241105. [Google Scholar] [CrossRef]
- Yang, M.; Liang, L.; Zhang, Z.; Xin, Y.; Wei, D.; Song, X.; Zhang, H.; Lu, Y.; Wang, M.; Zhang, M.; et al. Electromagnetically Induced Transparency-like Metamaterials for Detection of Lung Cancer Cells. Opt. Express 2019, 27, 19520. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Mu, N.; Liu, L.; Xie, J.; Feng, H.; Yao, J.; Chen, T.; Zhu, W. Highly Sensitive Detection of Malignant Glioma Cells Using Metamaterial-Inspired THz Biosensor Based on Electromagnetically Induced Transparency. Biosens. Bioelectron. 2021, 185, 113241. [Google Scholar] [CrossRef]
- Yan, X.; Yang, M.; Zhang, Z.; Liang, L.; Wei, D.; Wang, M.; Zhang, M.; Wang, T.; Liu, L.; Xie, J.; et al. The Terahertz Electromagnetically Induced Transparency-like Metamaterials for Sensitive Biosensors in the Detection of Cancer Cells. Biosens. Bioelectron. 2019, 126, 485–492. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, M.; Yan, X.; Guo, X.; Li, J.; Yang, Y.; Wei, D.; Liu, L.; Xie, J.; Liu, Y.; et al. The Antibody-Free Recognition of Cancer Cells Using Plasmonic Biosensor Platforms with the Anisotropic Resonant Metasurfaces. ACS Appl. Mater. Interfaces 2020, 12, 11388–11396. [Google Scholar] [CrossRef]
- Park, S.J.; Hong, J.T.; Choi, S.J.; Kim, H.S.; Park, W.K.; Han, S.T.; Park, J.Y.; Lee, S.; Kim, D.S.; Ahn, Y.H. Detection of Microorganisms Using Terahertz Metamaterials. Sci. Rep. 2015, 4, 4988. [Google Scholar] [CrossRef]
- Chung, S.; Sudo, R.; Mack, P.J.; Wan, C.-R.; Vickerman, V.; Kamm, R.D. Cell Migration into Scaffolds under Co-Culture Conditions in a Microfluidic Platform. Lab Chip 2009, 9, 269–275. [Google Scholar] [CrossRef]
- Yang, H.-H.; Zhang, C.; Lai, S.-H.; Zeng, C.-C.; Liu, Y.-J.; Wang, X.-Z. Isoliquiritigenin Induces Cytotoxicity in PC-12 Cells In Vitro. Appl. Biochem. Biotechnol. 2017, 183, 1173–1190. [Google Scholar] [CrossRef]
- Rojas, J.D.; Sennoune, S.R.; Maiti, D.; Bakunts, K.; Reuveni, M.; Sanka, S.C.; Martinez, G.M.; Seftor, E.A.; Meininger, C.J.; Wu, G.; et al. Vacuolar-Type H + -ATPases at the Plasma Membrane Regulate PH and Cell Migration in Microvascular Endothelial Cells. Am. J. Physiol.-Heart Circ. Physiol. 2006, 291, H1147–H1157. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Wang, Y.-L.; Ren, F.; Lele, T.P. Stamp Wound Assay for Studying Coupled Cell Migration and Cell Debris Clearance. Langmuir 2010, 26, 16672–16676. [Google Scholar] [CrossRef] [PubMed]
- Felder, M.; Sallin, P.; Barbe, L.; Haenni, B.; Gazdhar, A.; Geiser, T.; Guenat, O. Microfluidic Wound-Healing Assay to Assess the Regenerative Effect of HGF on Wounded Alveolar Epithelium. Lab Chip 2012, 12, 640–646. [Google Scholar] [CrossRef] [PubMed]
- Zheng, C.; Wang, J.; Pang, Y.; Wang, J.; Li, W.; Ge, Z.; Huang, Y. High-Throughput Immunoassay through in-Channel Microfluidic Patterning. Lab Chip 2012, 12, 2487. [Google Scholar] [CrossRef]
- Gao, A.; Tian, Y.; Shi, Z.; Yu, L. A Cost-Effective Microdevice Bridges Microfluidic and Conventional in Vitro Scratch/Wound-Healing Assay for Personalized Therapy Validation. BioChip J. 2016, 10, 56–64. [Google Scholar] [CrossRef]
- Quan, Q.; Zhang, S.; Wang, X.; Ouyang, Q.; Wang, Y.; Yang, G.; Luo, C. A Parallel and Quantitative Cell Migration Assay Using a Novel Multi-Well-Based Device. Biomed. Microdevices 2016, 18, 99. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Li, L.; Tu, Q.; Wang, J.; Liu, W.; Wang, X.; Ren, L.; Wang, J. On-Chip Cell Migration Assay for Quantifying the Effect of Ethanol on MCF-7 Human Breast Cancer Cells. Microfluid. Nanofluidics 2011, 10, 1333–1341. [Google Scholar] [CrossRef]
- Timm, D.M.; Chen, J.; Sing, D.; Gage, J.A.; Haisler, W.L.; Neeley, S.K.; Raphael, R.M.; Dehghani, M.; Rosenblatt, K.P.; Killian, T.C.; et al. A High-Throughput Three-Dimensional Cell Migration Assay for Toxicity Screening with Mobile Device-Based Macroscopic Image Analysis. Sci. Rep. 2013, 3, 3000. [Google Scholar] [CrossRef]
- Lv, X.; Geng, Z.; Fan, Z.; Wang, S.; Pei, W.; Chen, H. A PDMS Device Coupled with Culture Dish for In Vitro Cell Migration Assay. Appl. Biochem. Biotechnol. 2018, 186, 633–643. [Google Scholar] [CrossRef]
- Lv, X.; Geng, Z.; Fan, Z.; Wang, S.; Pei, W.; Chen, H. An Integrated Method for Cell Isolation and Migration on a Chip. Sci. Rep. 2017, 7, 8963. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, W.; Lv, X.; Ma, Z.; Liu, J.; Pei, W.; Geng, Z. A Flexible Terahertz Metamaterial Biosensor for Cancer Cell Growth and Migration Detection. Micromachines 2022, 13, 631. https://doi.org/10.3390/mi13040631
Fang W, Lv X, Ma Z, Liu J, Pei W, Geng Z. A Flexible Terahertz Metamaterial Biosensor for Cancer Cell Growth and Migration Detection. Micromachines. 2022; 13(4):631. https://doi.org/10.3390/mi13040631
Chicago/Turabian StyleFang, Weihao, Xiaoqing Lv, Zhengtai Ma, Jian Liu, Weihua Pei, and Zhaoxin Geng. 2022. "A Flexible Terahertz Metamaterial Biosensor for Cancer Cell Growth and Migration Detection" Micromachines 13, no. 4: 631. https://doi.org/10.3390/mi13040631
APA StyleFang, W., Lv, X., Ma, Z., Liu, J., Pei, W., & Geng, Z. (2022). A Flexible Terahertz Metamaterial Biosensor for Cancer Cell Growth and Migration Detection. Micromachines, 13(4), 631. https://doi.org/10.3390/mi13040631