Chemical Structure and Microscopic Morphology Changes of Dyed Wood Holocellulose Exposed to UV Irradiation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Holocellulose Separation
2.3. Dyeing Treatment
2.4. UV Radiation Treatment
2.5. Crystallization and Thermal Performance Analysis
2.6. Chemical Structure and Microscopic Morphology Analysis
3. Results
3.1. Effect of UV Radiation on the Crystalline Properties of Dyed Wood
3.2. Effect of UV Radiation on the Relative Crystallinity of Dyed Holocellulose
3.3. Effect of UV Radiation on the Thermal Stability of Dyed Holocellulose
3.4. Effect of UV Radiation on the Chemical Structure of Dyed Holocellulose
3.5. Effect of UV Radiation on the Microscopic Morphology of Dyed Wood
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, Y.; Gao, Y.; Yu, Z.; Zhang, Y. Study on infection behavior and characteristics of poplar wood dyed by Lasiodiplodia theobromae. Eur. J. Wood Prod. 2022, 80, 1151–1163. [Google Scholar] [CrossRef]
- Liu, Y.; Shao, L.; Gao, J.; Guo, H.; Chen, Y.; Cheng, Q.; Via, B. Surface photo-discoloration and degradation of dyed wood veneer exposed to different wavelengths of artificial light. Appl. Surf. Sci. 2015, 331, 353–361. [Google Scholar] [CrossRef]
- Zhao, B.; Yu, Z.; Zhang, Y.; Qi, C. Physical and mechanical properties of rubberwood (Hevea brasiliensis) dyed with Lasiodiplodia theobromae. J. Wood Sci. 2019, 65, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Guo, H.; Gao, J.; Zhang, F.; Shao, L.; Via, B. Effect of bleach pretreatment on surface discoloration of dyed wood veneer exposed to artificial light irradiation. Bioresources 2015, 10, 5607–5619. [Google Scholar] [CrossRef]
- Liu, Y.; Yu, Z.; Zhang, Y.; Wang, H. Microbial dyeing for inoculation and pigment used in wood processing: Opportunities and challenges. Dyes Pigm. 2021, 186, 109021. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, J.; Gao, J.; Guo, H.; Chen, Y.; Cheng, Q.; Via, B. Wood veneer dyeing enhancement by ultrasonic-assisted treatment. Bioresources 2015, 10, 1198–1212. [Google Scholar] [CrossRef] [Green Version]
- Pandey, K. Study of the effect of photo-irradiation on the surface chemistryof wood. Polym. Degrad. Stab. 2005, 90, 9–20. [Google Scholar] [CrossRef]
- Chang, T.; Chang, H.; Wu, C.; Chang, S. Influences of extractives on the photodegradation of wood. Polym. Degrad. Stab. 2010, 95, 516–521. [Google Scholar] [CrossRef]
- Wang, X.; Tang, R.; Zhang, Y.; Yu, Z.; Qi, C. Preparation of a novel chitosan based biopolymer dye and application in wood dyeing. Polymers 2016, 8, 338. [Google Scholar] [CrossRef]
- Widsten, P.; Chittenden, C.; West, M.; Thumm, A.; Donaldson, L. Enzymatic treatments for improved dyeing of solid wood. Holzforschung 2022, 76, 493–502. [Google Scholar] [CrossRef]
- Nguyen, N.; Ozarska, B.; Fergusson, M.; Vinden, P. Comparison of two dye uptake measurement methods for dyed wood veneer assessment. Eur. J. Wood Prod. 2018, 76, 1757–1759. [Google Scholar] [CrossRef]
- Hu, J.; Li, Y.; Yi, L.; Guo, H.; Li, L. Evaluation of the dyeing properties of basswood veneer treated by dichlorotriazine reactive dye based on gray correlation analysis. Bioresources 2016, 11, 466–481. [Google Scholar] [CrossRef] [Green Version]
- Pandey, K.; Vuorinen, T. Comparative study of photodegradation of wood by a UV laser and a xenon light source. Polym. Degrad. Stab. 2008, 93, 2138–2146. [Google Scholar] [CrossRef]
- Guan, X.; Li, W.; Huang, Q.; Huang, J. Intelligent color matching model for wood dyeing using genetic algorithm and extreme learning machine. J. Intell. Fuzzy Syst. 2022, 42, 4907–4917. [Google Scholar] [CrossRef]
- Wu, M.; Guan, X.; Li, W.; Huang, Q. Color spectra algorithm of hyperspectral wood dyeing using particle swarm optimization. Wood Sci. Technol. 2021, 55, 49–66. [Google Scholar] [CrossRef]
- Zhu, T.; Liu, S.; Ren, K.; Chen, J.; Lin, J.; Li, J. Colorability of dyed wood veneer using natural dye extracted from Dalbergia cochinchinensis with different organic solvents. Bioresources 2018, 13, 7197–7211. [Google Scholar] [CrossRef]
- Arai, K.; Nakajima, K. Ribbon-like variegation of pinus radiata using the adsorption of basic dyes in the capillary penetration process IV. Dying wood in parallel colored strips through the process of capillary penetration. J. Jpn. Wood Res. Soc. 2011, 57, 34–41. [Google Scholar] [CrossRef] [Green Version]
- Agresti, G.; Bonifazi, G.; Calienno, L.; Capobianco, G.; Monaco, A.; Pelosi, C.; Picchio, R.; Serranti, S. Surface investigation of photo-degraded wood by colour monitoring, infrared spectroscopy, and hyperspectral imaging. J. Spectrosc. 2013, 2013, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Rosu, D.; Teaca, C.; Bodirlau, R.; Rosu, L. FTIR and color change of the modified wood as a result of artificial light irradiation. J. Photochem. Photobiol. B Biol. 2010, 99, 144–149. [Google Scholar] [CrossRef]
- Kocaefe, D.; Saha, S. Comparison of the protection effectiveness of acrylic polyurethane coatings containing bark extracts on three heat-treated North American wood species: Surface degradation. Appl. Surf. Sci. 2012, 258, 5283–5290. [Google Scholar] [CrossRef]
- Wang, S.; Wang, L.; Wu, M.; Song, K.; Yu, Z. Dyeing of silk fabric with natural wall nut tree wood dye and its ultraviolet protection properties. J. Nat. Fibers 2022, 19, 11181–11192. [Google Scholar] [CrossRef]
- Huang, X.; Kocaefe, D.; Kocaefe, Y.; Boluk, Y.; Krause, C. Structural analysis of heat-treated birch (Betule papyrifera) surface during artificial weathering. Appl. Surf. Sci. 2013, 264, 117–127. [Google Scholar] [CrossRef]
Radiation Time (h) | CrI (%) | 2θ(002) (°) | d(002) (nm) | FWHM(002) (nm) | D(002) (nm) |
---|---|---|---|---|---|
0 | 45.13 | 22.38 | 3.97 | 4.07 | 0.72 |
1 | 45.42 | 22.34 | 3.98 | 4.08 | 0.81 |
3 | 46.67 | 22.12 | 4.02 | 4.19 | 2.18 |
5 | 47.21 | 22.12 | 4.02 | 4.28 | 2.18 |
10 | 47.49 | 22.05 | 4.03 | 4.26 | 2.76 |
20 | 47.82 | 22.12 | 4.02 | 4.13 | 2.18 |
40 | 47.50 | 22.10 | 4.02 | 4.12 | 2.57 |
60 | 46.25 | 22.27 | 3.99 | 4.18 | 1.01 |
100 | 45.95 | 22.22 | 4.00 | 4.07 | 1.23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, H.; Ni, Y.; Guo, H.; Liu, Y. Chemical Structure and Microscopic Morphology Changes of Dyed Wood Holocellulose Exposed to UV Irradiation. Polymers 2023, 15, 1125. https://doi.org/10.3390/polym15051125
Shi H, Ni Y, Guo H, Liu Y. Chemical Structure and Microscopic Morphology Changes of Dyed Wood Holocellulose Exposed to UV Irradiation. Polymers. 2023; 15(5):1125. https://doi.org/10.3390/polym15051125
Chicago/Turabian StyleShi, Hui, Yongqing Ni, Hongwu Guo, and Yi Liu. 2023. "Chemical Structure and Microscopic Morphology Changes of Dyed Wood Holocellulose Exposed to UV Irradiation" Polymers 15, no. 5: 1125. https://doi.org/10.3390/polym15051125
APA StyleShi, H., Ni, Y., Guo, H., & Liu, Y. (2023). Chemical Structure and Microscopic Morphology Changes of Dyed Wood Holocellulose Exposed to UV Irradiation. Polymers, 15(5), 1125. https://doi.org/10.3390/polym15051125