Development of Pea Breeding Lines with Resistance to Orobanche crenata Derived from Pea Landraces and Wild Pisum spp.
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Smýkal, P.; Aubert, G.; Burstin, J.; Coyne, C.J.; Ellis, N.T.H.; Flavell, A.J.; Ford, R.; Hýbl, M.; Macas, J.; Neumann, P.; et al. Pea (Pisum sativum L.) in the Genomic Era. Agronomy 2012, 2, 74–115. [Google Scholar] [CrossRef]
- Parker, C. Parasitic Weeds: A World Challenge. Weed Sci. 2012, 60, 269–276. [Google Scholar] [CrossRef]
- Rubiales, D.; Pérez-de-Luque, A.; Cubero, J.I.; Sillero, J.C. Crenate broomrape (Orobanche crenata) infection in field pea cultivars. Crop Prot. 2003, 22, 865–872. [Google Scholar] [CrossRef]
- Fernández-Aparicio, M.; Flores, F.; Rubiales, D. The effect of Orobanche crenata infection severity in faba bean, field pea, and grass pea productivity. Front. Plant Sci. 2016, 7, 1409. [Google Scholar] [CrossRef] [Green Version]
- Rubiales, D.; Fernández-Aparicio, M. Innovations in parasitic weeds management in legume crops. A review. Agron. Sustain. Dev. 2012, 32, 433–449. [Google Scholar] [CrossRef]
- Rubiales, D.; Pérez-de-Luque, A.; Fernández-Aparicio, M.; Sillero, J.C.; Román, B.; Kharrat, M.; Khalil, S.; Joel, D.M.; Riches, C. Screening techniques and sources of resistance against parasitic weeds in grain legumes. Euphytica 2006, 147, 187–199. [Google Scholar] [CrossRef]
- Maalouf, F.; Khalil, S.; Ahmed, S.; Akintunde, A.N.; Kharrat, M.; El Shama’a, K.; Hajjar, S.; Malhotra, R.S. Yield stability of faba bean lines under diverse broomrape prone production environments. Field Crops Res. 2011, 124, 288–294. [Google Scholar] [CrossRef]
- Rubiales, D. Can we breed for durable resistance to broomrapes? Phytopathol. Medit. 2018, 57, 170–185. [Google Scholar]
- Pérez-de-Luque, A.; Jorrín, J.; Cubero, J.I.; Rubiales, D. Orobanche crenata resistance and avoidance in pea (Pisum spp.) operate at different developmental stages of the parasite. Weed Res. 2005, 45, 379–387. [Google Scholar] [CrossRef]
- Rubiales, D.; Moreno, M.T.; Sillero, J.C. Search for resistance to crenate broomrape (Orobanche crenata) in pea germplasm. Gen. Resour. Crop Evol. 2005, 52, 853–861. [Google Scholar] [CrossRef]
- Rubiales, D.; Fernández-Aparicio, M.; Pérez-de-Luque, A.; Prats, E.; Castillejo, M.A.; Sillero, J.; Rispail, N.; Fondevilla, S. Breeding approaches for crenate broomrape (Orobanche crenata Forsk.) management in pea (Pisum sativum L.). Pest Manag. Sci. 2009, 65, 553–559. [Google Scholar] [CrossRef] [PubMed]
- Fondevilla, S.; Fernández-Aparicio, M.; Satovic, Z.; Emeran, A.A.; Torres, A.M.; Moreno, M.T.; Rubiales, D. Identification of quantitative trait loci for specific mechanisms of resistance to Orobanche crenata Forsk. in pea (Pisum sativum L.). Mol. Breed. 2010, 25, 259–272. [Google Scholar] [CrossRef] [Green Version]
- Pérez-de-Luque, A.; González-Verdejo, C.I.; Lozano, M.D.; Dita, M.A.; Cubero, J.I.; González-Melendi, P.; Risueño, M.C.; Rubiales, D. Protein cross-linking, peroxidase and β-1,3-endoglucanase involved in resistance of pea against Orobanche crenata. J. Exp. Bot. 2006, 57, 1461–1469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castillejo, M.A.; Fernández-Aparicio, M.; Rubiales, D. Proteomic analysis by two-dimensional differential in gel electrophoresis (2D DIGE) of the early response of Pisum sativum to Orobanche crenata. J. Exp. Bot. 2012, 63, 107–119. [Google Scholar] [CrossRef]
- Fernández-Aparicio, M.; Rubiales, D. Differential response of pea (Pisum sativum) to Orobanche crenata, O. foetida and Phelipanche aegyptiaca. Crop Prot. 2012, 31, 27–30. [Google Scholar] [CrossRef]
- Fondevilla, S.; Flores, F.; Emeran, A.A.; Kharrat, M.; Rubiales, D. High productivity of dry pea genotypes resistant to crenate broomrape in Mediterranean environments. Agron. Sustain. Dev. 2017, 37, 61. [Google Scholar] [CrossRef] [Green Version]
- Pérez-de-Luque, A.; Fondevilla, S.; Pérez-Vich, B.; Aly, R.; Thoiron, S.; Simier, S.; Castillejo, M.A.; Fernández-Martínez, J.M.; Jorrín, J.; Rubiales, D.; et al. Understanding Orobanche and Phelipanche—host plant interaction and developing resistance. Weed Res. 2009, 49, 8–22. [Google Scholar] [CrossRef]
- Rubiales, D. Parasitic plants, wild relatives and the nature of resistance. New Phytol. 2003, 160, 459–461. [Google Scholar] [CrossRef]
- Fernández-Aparicio, M.; Flores, F.; Rubiales, D. Escape and true resistance to crenate broomrape (Orobanche crenata Forsk.) in grass pea (Lathyrus sativus L.) germplasm. Field Crops Res. 2011, 125, 92–97. [Google Scholar] [CrossRef]
- Pavan, S.; Schiavulli, A.; Marcotrigiano, A.R.; Bardaro, N.; Bracuto, V.; Ricciardi, F.; Charnikova, T.; Lotti, C.; Bouwmeester, H.; Ricciardi, L. Characterization of low-strigolactone germplasm in pea (Pisum sativum L.) resistant to crenate broomrape (Orobanche crenata Forsk.). Mol. Plant Microbe Interact. 2016, 29, 743–749. [Google Scholar] [CrossRef] [Green Version]
- Goldwasser, Y.; Kleifeld, Y.; Plakhine, D.; Rubin, B. Variation in vetch (Vicia spp.) response to Orobanche aegyptiaca. Weed Sci. 1997, 45, 756–762. [Google Scholar] [CrossRef]
- Labrousse, P.; Arnaud, M.C.; Serieys, H.; Bervillé, A.; Thalouarn, P. Several mechanisms are involved in resistance of Helianthus to Orobanche cumana Wallr. Ann. Bot. 2001, 88, 859–868. [Google Scholar] [CrossRef] [Green Version]
- Rubiales, D.; Alcántara, C.; Joel, D.M.; Pérez-de-Luque, A.; Sillero, J.C. Characterization of the resistance to Orobanche crenata in chickpea. Weed Sci. 2003, 51, 702–707. [Google Scholar] [CrossRef]
- Rubiales, D.; Rojas-Molina, M.M.; Sillero, J.C. Characterization of Resistance Mechanisms in Faba Bean (Vicia faba) against Broomrape Species (Orobanche and Phelipanche spp.). Front. Plant Sci. 2016, 7, 1747. [Google Scholar] [CrossRef] [Green Version]
- Pérez-de-Luque, A.; Moreno, M.T.; Rubiales, D. Host plant resistance against broomrapes (Orobanche spp.): Defence reactions and mechanisms of resistance. Ann. Appl. Biol. 2008, 152, 131–141. [Google Scholar] [CrossRef]
- Thorogood, C.J.; Hiscock, S.J. Compatibility interactions at the cellular level provide the basis for host specificity in the parasitic plant Orobanche. New Phytol. 2010, 186, 571. [Google Scholar] [CrossRef]
- Gutiérrez, N.; Palomino, C.; Satovic, Z.; Ruiz-Rodríguez, M.D.; Vitale, S.; Gutiérrez, M.V.; Rubiales, D.; Kharrat, M.; Amri, M.; Emeran, A.A.; et al. QTLs for Orobanche spp. resistance in faba bean: Identification and validation across different environments. Mol. Breed. 2013, 32, 909–922. [Google Scholar] [CrossRef]
- Kreplak, J.; Madoui, M.A.; Cápal, P.; Novák, P.; Labadie, K.; Aubert, G.; Bayer, P.E.; Gali, K.K.; Syme, R.A.; Main, D.; et al. A reference genome for pea provides insight into legume genome evolution. Nat. Genet. 2019, 51, 1411–1422. [Google Scholar] [CrossRef]
- Westwood, J.H.; Depamphilis, C.W.; Das, M.; Fernández-Aparicio, M.; Honaas, L.; Timko, M.P.; Wafula, E.; Wickett, N.; Yoder, J.I. The parasitic plant genome project: New tools for understanding the biology of Orobanche and Striga. Weed Sci. 2012, 60, 295–306. [Google Scholar] [CrossRef]
- Gouzy, J.; Pouill, N.; Boniface, M.C.; Bouchez, O.; Carrère, S.; Catrice, O.; Cauet, S.; Claudel, C.; Cottret, L.; Faure, S.; et al. The complete genome sequence of Orobanche cumana (sunflower broomrape). In Proceedings of the 14th World Congress on Parasitic Plants, Pacific Grove, CA, USA, 25–30 June 2017. [Google Scholar]
- Duriez, P.; Vautrin, S.; Auriac, M.C.; Bazerque, J.; Boniface, M.C.; Callot, C.; Carrère, S.; Cauet, S.; Chabaud, M.; Gentou, F.; et al. A receptor-like kinase enhances sunflower resistance to Orobanche cumana. Nat. Plants 2019, 5, 1211–1215. [Google Scholar] [CrossRef]
- Cvejić, S.; Radanović, A.; Dedić, B.; Jocković, M.; Jocić, S.; Miladinović, D. Genetic and Genomic Tools in Sunflower Breeding for Broomrape Resistance. Genes 2020, 11, 152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Line | Pedigree | FC/LT | Field Studies | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Cor07 | Cor08 | Cor09 | Esc08 | Esc09 | ||||||||
Oc/pl | Kg/ha | Oc/pl | Kg/ha | lOc/pl | Kg/ha | Oc/pl | Kg/ha | Oc/pl | Kg/ha | |||
Messire | Check cv | WF/NL | 3.50 | 1051 | 3.89 | 491 | 1.54 | 1264 | 1.83 | - | 0.02 | 1537 |
GC248-NS46 | Ps624/Messire | WF/NL | 0.13 *** | 1638 | 0.43 ** | 3002 ** | 0.15 ** | 709 | 0.17 *** | - | 0.00 | 640 ** |
GC233-J5 | Ps565/Ps624 | WF/NL | 0.13 *** | 3417 *** | 0.59 ** | 1934 * | 0.18 ** | 1517 | 0.07 *** | - | 0.00 | 1338 |
GCC136-J24 | Ps624/Ps423/Radley | WF/AT | 0.23 *** | 2411 * | 1.44 * | 804 | 0.18 ** | 388 * | 1.03 * | - | 0.03 | 568 ** |
BC20-J10 | Messire/P660 | WF/NL | 0.17 *** | 1003 | 0.51 ** | 2493 ** | 0.12 ** | 719 | 0.08 *** | - | 0.00 | 735 |
BC20-J11 | Messire/P660 | WF/NL | 0.20 *** | 3456 *** | 0.54 ** | 1643 | 0.08 ** | 697 | 0.13 *** | - | 0.01 | 998 |
BC20-J13 | Messire/P660 | WF/NL | 0.27 *** | 1955 | 0.70 ** | 2431 ** | 0.20 ** | 765 | 0.17 *** | - | 0.00 | 1251 |
BC20-J15 | Messire/P660 | WF/NL | 0.17 *** | 2077 | 0.51 ** | 1854 * | 0.21 ** | 690 | 0.17 *** | - | 0.00 | 855 * |
GCC99-J17 | P675/P665/JI1760/Messire/Ballet | CF/AT | 0.07 *** | 1671 | 0.39 *** | 1472 | 0.06 *** | 54 | 0.07 *** | - | 0.01 | 514 ** |
GCC124-J19 | Messire/P660/Ballet | CF/NL | 0.20 *** | 3579 *** | 0.47 ** | 1855 * | 0.26 ** | 918 | 0.10 *** | - | 0.03 | 1533 |
Genotype | In Vitro Study | |||
---|---|---|---|---|
Oc Tubercle(%) | Tubercle Necrosis (%) | Tubercle Developmental Stage | ||
30 dai | 45 dai | 30 dai | 45 dai | |
Messire | 71.1 | 0.0 | T2–T3 | T3–T4 |
GC248-NS46 | 34.7 ** | 0.0 | T1–T3 | T2–T3 |
GC233-J5 | 31.2 *** | 0.0 | T1–T3 | T3–T4 |
GCC136-J24 | 12.5 *** | 0.0 | T1–T3 | T3–T4 |
BC20-J10 | 29.2 ** | 0.0 | T2–T3 | T3–T4 |
BC20-J11 | 25.3 *** | 50.0 * | T1–T2 | T2–T4 |
BC20-J13 | 30.6 ** | 0.0 | T1–T3 | T2–T3 |
BC20-J15 | 0.5 *** | 0.0 | T2 | T2 |
GCC99-J17 | 15.6 *** | 0.0 | T1–T3 | T3–T4 |
GCC124-J19 | 8.3 *** | 100.0 *** | T3 | T3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rubiales, D.; Fondevilla, S.; Fernández-Aparicio, M. Development of Pea Breeding Lines with Resistance to Orobanche crenata Derived from Pea Landraces and Wild Pisum spp. Agronomy 2021, 11, 36. https://doi.org/10.3390/agronomy11010036
Rubiales D, Fondevilla S, Fernández-Aparicio M. Development of Pea Breeding Lines with Resistance to Orobanche crenata Derived from Pea Landraces and Wild Pisum spp. Agronomy. 2021; 11(1):36. https://doi.org/10.3390/agronomy11010036
Chicago/Turabian StyleRubiales, Diego, Sara Fondevilla, and Mónica Fernández-Aparicio. 2021. "Development of Pea Breeding Lines with Resistance to Orobanche crenata Derived from Pea Landraces and Wild Pisum spp." Agronomy 11, no. 1: 36. https://doi.org/10.3390/agronomy11010036
APA StyleRubiales, D., Fondevilla, S., & Fernández-Aparicio, M. (2021). Development of Pea Breeding Lines with Resistance to Orobanche crenata Derived from Pea Landraces and Wild Pisum spp. Agronomy, 11(1), 36. https://doi.org/10.3390/agronomy11010036