Experimental Investigation and NSGA-III Multi-Criteria Optimization of 60CrMoV18-5 Cold-Work Tool Steel Machinability Under Dry CNC Hard Turning Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design of Experiments
2.2. Materials, Machining Set-Up and Measuring Equipment
3. Non-Dominated Sorting Genetic Algorithm, NSGA-III
4. Results and Discussion
4.1. Experimental Results and Analysis of Observations
4.2. Analysis of Variance (ANOVA) and Response Surface Regression
612 − 8.29 × Vc + 933 × f + 378 × α + 0.0228 × Vc2 − 2899 × f2 − 194.1 × α2 + 0.48 × Vc × f + 0.20 × Vc × α + 857 × f × α
−8.82 + 0.1292 × Vc − 31.1 × f + 1.64 × α − 0.000393 × Vc2 + 218.9 × f2 − 0.303 × α2 + 0.001 × Vc × f − 0.0047 × Vc × α − 1.20 × f × α
4.3. Optimization Problem Definition and Solving Using the NSGA-III
612 − 8.29 × Vc + 933 × f + 378 × α + 0.0228 × Vc2 − 2899 × f2 − 194.1 × α2 + 0.48 × Vc × f + 0.20 × Vc × α + 857 × f × α
−8.82 + 0.1292 × Vc − 31.1 × f + 1.64 × α − 0.000393 × Vc2 + 218.9 × f2 − 0.303 × α2 + 0.001 × Vc × f − 0.0047 × Vc × α − 1.20 × f × α
f (mm/rev): 0.05 ≤ f ≤ 0.2
α (mm): 0.5 ≤ α ≤ 1.5
4.4. Confirmatory CNC Dry Hard-Turning Experiment
5. Conclusions
- The interaction between cutting tool and work piece should be carefully examined owing to phenomena related to material softening. Cutting conditions with emphasis on dry hard turning should be carefully selected to sustain low cutting force magnitudes and fine surface finish.
- All cutting force components, -with emphasis on main cutting force, Fz, increase by increasing feed rate and depth of cut. Cutting temperature and resultant material softening may gradually reduce cutting force with noticeable reduction in surface finish.
- Surface roughness is primarily affected by feed rate followed by cutting speed, whereas depth of cut does not yield a strong effect. This result is quite encouraging, since high material removal rates and minimized machining times by applying relatively high cutting depths may be obtained. However, this should be further examined to guarantee the maximum advantageous limit for machining time reduction and high surface finish.
- The NSGA-III algorithm obtained advantageous non-dominated solutions for process planners to select from, given the production needs and constraints. Both machinability criteria, main cutting force Fz and surface roughness Ra, exhibited a quite complex experimental search domain. This observation can justify the implementation of intelligent algorithms to solve multi-criteria machining optimization problems.
- The results obtained agree with notable research findings available in the broader literature concerning the machinability of special engineering alloys, whilst the statistical analysis confirmed initially established research assumptions and expectations referring to main cutting force Fz and surface roughness Ra attributes as key machinability criteria.
- The major objectives of interest are surface integrity and surface finish. Therefore, based on the results obtained, the lowest experimental output for surface roughness Ra is equal to 0.98 μm while the non-dominated solution obtained by NSGA-III algorithm and applied for confirmation experiment was found equal to 0.74 μm. The gain between these two results is 24.49%, whilst by implementing the NSGA-III recommended values for cutting conditions the resultant surface roughness Ra was found equal to 0.53 μm. By comparing the actual confirmatory run to the lowest experimental run from the design of experiments established, a gain is observed equal to 45.92% in terms of surface finish.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Isik, Y. Investigating the machinability of tool steels in turning operation. Mater. Des. 2007, 28, 1417–1424. [Google Scholar] [CrossRef]
- Balanou, M.; Karmiris-Obratański, P.; Leszczyńska-Madej, B.; Papazoglou, E.L.; Markopoulos, A.P. Investigation of Surface Modification of 60CrMoV18-5 Steel by EDM with Cu-ZrO2 Powder Metallurgy Green Compact Electrode. Machines 2021, 9, 268. [Google Scholar] [CrossRef]
- Kumar, P.; Dewangan, S.; Pandey, C. Analysis of surface integrity and dimensional accuracy in EDM of P91 steels. Proc. Mater. Today 2020, 33, 5378–5383. [Google Scholar] [CrossRef]
- Günay, M.; Korkmaz, M.E. Understanding the Relationship between Surface Quality and Chip Morphology under Sustainable Cutting Environments. Materials 2024, 17, 1826. [Google Scholar] [CrossRef]
- Biruk-Urban, K.; Zagórski, I.; Kulisz, M.; Lelen, M. Analysis of Vibration, Deflection Angle and Surface Roughness in Water-Jet Cutting of AZ91D Magnesium Alloy and Simulation of Selected Surface Roughness Parameters Using ANN. Materials 2023, 16, 3384. [Google Scholar] [CrossRef]
- Mouralova, K.; Benes, L.; Zahradnicek, R.; Bednar, J.; Zadera, A.; Fries, J.; Kana, V. WEDM Used for Machining High Entropy Alloys. Materials 2020, 13, 4823. [Google Scholar] [CrossRef]
- Kenda, J.; Pusavec, F.; Kermouche, G.; Kopac, J. Surface Integrity in Abrasive Flow Machining of Hardened Tool Steel AISI D2. Proc. Eng. 2011, 19, 172–177. [Google Scholar] [CrossRef]
- Boujelbene, M.; Ezeddini, S.; Ben Said, L.; Bayraktar, E.; Alhadri, M.; Aich, W.; Ghachem, K.; Kolsi, L. Analysis of surface integrity of intermetallic composite based on titanium-aluminum machined by laser cutting. Opt. Laser Technol. 2023, 161, 109187. [Google Scholar] [CrossRef]
- Bouacha, K.; Yallese, M.A.; Mabrouki, T.; Rigal, J.-F. Statistical analysis of surface roughness and cutting forces using response surface methodology in hard turning of AISI 52100 bearing steel with CBN tool. Int. J. Refract. Hard Mater. 2010, 28, 349–361. [Google Scholar] [CrossRef]
- Patel, V.D.; Gandhi, A.H. Analysis and modeling of surface roughness based on cutting parameters and tool nose radius in turning of AISI D2 steel using CBN tool. Measurement 2019, 138, 34–38. [Google Scholar] [CrossRef]
- Lalwani, D.I.; Mehta, N.K.; Jain, P.K. Experimental investigations of cutting parameters influence on cutting forces and surface roughness in finish hard turning of MDN250 steel. J. Mater. Process. Technol. 2008, 206, 167–179. [Google Scholar] [CrossRef]
- Sahoo, A.K.; Sahoon, B. Experimental investigations on machinability aspects in finish hard turning of AISI 4340 steel using uncoated and multilayer coated carbide inserts. Measurement 2012, 45, 2153–2165. [Google Scholar] [CrossRef]
- Li, X.; Liu, X.; Yue, C.; Liang, S.Y.; Wang, L. Systematic review on tool breakage monitoring techniques in machining operations. Int. J. Mach. Tools Manuf. 2022, 176, 103882. [Google Scholar] [CrossRef]
- Benlahmidi, S.; Aouici, H.; Boutaghane, F.; Khellaf, A.; Fnides, B.; Yallese, M.A. Design optimization of cutting parameters when turning hardened AISI H11 steel (50 HRC) with CBN7020 tools. Int. J. Adv. Manuf. Technol. 2017, 89, 803–820. [Google Scholar] [CrossRef]
- Çydaş, U. Machinability evaluation in hard turning of AISI 4340 steel with different cutting tools using statistical techniques. Proc. Inst. Mech. Eng. B J. En. Manuf. 2010, 224, 1043–1055. [Google Scholar] [CrossRef]
- Santhosh, A.J.; Tura, A.D.; Jiregna, I.T.; Gemechu, W.F.; Ashok, N.; Ponnusamy, M. Optimization of CNC turning parameters using face centred CCD approach in RSM and ANN-genetic algorithm for AISI 4340 alloy steel. Res. Eng. 2021, 11, 100251. [Google Scholar] [CrossRef]
- Abbas, A.T.; Al-Abduljabbar, A.A.; Alnaser, I.A.; Aly, M.F.; Abdelgaliel, I.H.; Elkaseer, A. A Closer Look at Precision Hard Turning of AISI4340: Multi-Objective Optimization for Simultaneous Low Surface Roughness and High Productivity. Materials 2022, 15, 2106. [Google Scholar] [CrossRef]
- Chavan, A.; Sargade, V. Surface Integrity of AISI 52100 Steel during Hard Turning in Different Near-Dry Environments. Adv. Mater. Sci. Eng. 2020, 2020, 1–13. [Google Scholar] [CrossRef]
- Davoudinejada, A.; Noordin, M.Y.; Ghodsiyehc, D.; Ashrafi, S.A.; Barzani, M.M. Effect of Tool Wear on Tool Life and Surface Finish when Machining DF-3 Hardened Tool Steel. Appl. Mech. Mater. 2013, 315, 241–245. [Google Scholar] [CrossRef]
- Sun, F.J.; Qu, S.G.; Pan, Y.X.; Li, X.Q.; Li, F.L. Effects of cutting parameters on dry machining Ti-6Al-4V alloy with ultra-hard tools. Int. J. Adv. Manuf. Technol. 2015, 79, 351–360. [Google Scholar] [CrossRef]
- Muthuswamy, P.; Murugesan, V.G.V. Machinability analysis in high speed turning of Ti-6Al-4V alloy and investigation of wear mechanism in AlTiN PVD coated tungsten carbide tool. Eng. Res. Express 2021, 3, 045011. [Google Scholar] [CrossRef]
- Malik, A.; Singh, A.K.; Prakash, A.; Mali, H.S. Experimental analysis for turning of Ti6Al4V alloy by tungsten carbide coated tool inserts. Mater. Today Proc. 2023, 92, 11–16. [Google Scholar] [CrossRef]
- Li, G.; Xu, W.; Jin, X.; Liu, L.; Ding, S.; Li, C. The machinability of stainless steel 316 L fabricated by selective laser melting: Typical cutting responses, white layer and evolution of chip morphology. J. Mater. Process. Technol. 2023, 315, 117926. [Google Scholar] [CrossRef]
- Rathod, N.J.; Chopra, M.K.; Chaurasiya, P.K.; Pawar, S.H.; Tiwari, D.; Kumar, R.; Saxena, K.K.; Buddhi, D. Design and optimization of process parameters for hard turning of AISI 304 stainless steel using Taguchi-GRA-PCA. Int. J. Interact. Des. Manuf. 2023, 17, 2403–2414. [Google Scholar] [CrossRef]
- Binali, R.; Demirpolat, H.; Kuntoglu, M.; Salur, E. Different Aspects of Machinability in Turning of AISI 304 Stainless Steel: A Sustainable Approach with MQL Technology. Metals 2023, 13, 1088. [Google Scholar] [CrossRef]
- Khan, M.M.A.; Mithu, M.A.H.; Dhar, N.R. Effects of minimum quantity lubrication on turning AISI 9310 alloy steel using vegetable oil-based cutting fluid. J. Mater. Process. Technol. 2009, 209, 5573–5583. [Google Scholar] [CrossRef]
- Moganapriya, C.; Rajasekar, R.; Santhosh, R.; Saran, S.; Santhosh, S.; Gobinath, V.K.; Kumar, P.S. Sustainable Hard Machining of AISI 304 Stainless Steel Through TiAlN, AlTiN, and TiAlSiN Coating and Multi-Criteria Decision Making Using Grey Fuzzy Coupled Taguchi Method. J. Mater. Eng. Perform. 2022, 16, 7302–7314. [Google Scholar] [CrossRef]
- Dhilip, J.D.J.; Jeevan, J.; Arulkirubakaran, D.; Ramesh, M. Investigation and optimization of parameters for hard turning of OHNS steel. Mater. Manuf. Process. 2020, 35, 1113–1119. [Google Scholar] [CrossRef]
- Sangwan, K.S.; Saxena, S.; Kant, G. Optimization of Machining Parameters to Minimize Surface Roughness using Integrated ANN-GA Approach. Proc. CIRP 2015, 29, 305–310. [Google Scholar] [CrossRef]
- Sivarajan, S.; Elango, M.; Sasikumar, M.; Doss, A.S.A. Prediction of surface roughness in hard machining of EN31 steel with TiAlN coated cutting tool using fuzzy logic. Mater. Today Proc. 2022, 65, 35–41. [Google Scholar] [CrossRef]
- Vasanth, X.A.; Paul, P.S.; Varadarajan, A.S. A neural network model to predict surface roughness during turning of hardened SS410 steel. Int. J. Syst. Assur. Eng. Manag. 2020, 11, 704–715. [Google Scholar] [CrossRef]
- Das, P.P.; Chakraborty, S. SWARA-CoCoSo method-based parametric optimization of green dry milling processes. J. Eng. Appl. Sci. 2022, 69, 1–21. [Google Scholar] [CrossRef]
- Ghosh, T.; Martinsen, K. NSGA III for CNC End Milling Process Optimization. In Machine Learning and Metaheuristics Algorithms, and Applications; Thampi, S., Trajkovic, L., Li, K.C., Das, S., Wozniak, M., Berretti, S., Eds.; SoMMA 2019. Communications in Computer and Information Science; Springer: Singapore, 2020; Volume 1203. [Google Scholar] [CrossRef]
- Gajevic, S.; Marković, A.; Milojević, S.; Ašonja, A.; Ivanović, L.; Stojanović, B. Multi-objective optimization of tribological characteristics for aluminum composite using taguchi grey and TOPSIS approaches. Lubricants 2024, 12, 171. [Google Scholar] [CrossRef]
- Bukvić, M.; Gajević, S.; Skulić, A.; Savić, S.; Ašonja, A.; Stojanović, B. Tribological Application of Nanocomposite Additives in Industrial Oils. Lubricants 2024, 12, 6. [Google Scholar] [CrossRef]
- Myers, R.H.; Montgomery, D.C. Response Surface Methodology—Process and Product Optimization Using Designed Experiments, 2nd ed.; Wiley Series in Probability and Statistics; Wiley: New York, NY, USA, 2002. [Google Scholar]
- Deb, K.; Jain, H. An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-Based Nondominated Sorting Approach, Part I: Solving Problems With Box Constraints. IEEE Trans. Evolut. Comput. 2014, 18, 577–601. [Google Scholar] [CrossRef]
- Jain, H.; Deb, K. An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point Based Nondominated Sorting Approach, Part II: Handling Constraints and Extending to an Adaptive Approach. IEEE Trans. Evolut. Comput. 2014, 18, 602–622. [Google Scholar] [CrossRef]
Central Composite Design of Experiments | |||||
---|---|---|---|---|---|
Parameter | Symbol | Level | |||
Low (−1) | Center (0) | High (1) | Unit | ||
Cutting speed | Vc | 141.3 | 164.8 | 188.4 | m/min |
Feed rate | f | 0.050 | 0.125 | 0.200 | mm/rev |
Depth of cut | α | 0.500 | 1.000 | 1.500 | mm |
No. | Vc (m/min) | f (mm/rev) | a (mm) | Fz (N) | Ra (μm) |
---|---|---|---|---|---|
1 | 141.3 | 0.050 | 0.50 | 128.5 | 1.11 |
2 | 188.4 | 0.050 | 0.50 | 104.2 | 0.98 |
3 | 141.3 | 0.200 | 0.50 | 208.9 | 4.00 |
4 | 188.4 | 0.200 | 0.50 | 179.4 | 3.80 |
5 | 141.3 | 0.050 | 1.50 | 181.1 | 1.47 |
6 | 188.4 | 0.050 | 1.50 | 157.7 | 1.04 |
7 | 141.3 | 0.200 | 1.50 | 381.4 | 4.10 |
8 | 188.4 | 0.200 | 1.50 | 370.0 | 3.76 |
9 | 164.8 | 0.125 | 1.00 | 241.5 | 2.07 |
10 | 164.8 | 0.125 | 1.00 | 236.6 | 1.97 |
11 | 164.8 | 0.125 | 1.00 | 346.4 | 1.69 |
12 | 164.8 | 0.125 | 1.00 | 327.7 | 1.33 |
13 | 126.4 | 0.125 | 1.00 | 331.0 | 1.57 |
14 | 203.3 | 0.125 | 1.00 | 285.8 | 1.30 |
15 | 164.8 | 0.025 | 1.00 | 83.80 | 0.98 |
16 | 164.8 | 0.250 | 1.00 | 404.3 | 8.95 |
17 | 164.8 | 0.125 | 0.18 | 22.10 | 1.72 |
18 | 164.8 | 0.125 | 1.82 | 266.2 | 1.90 |
19 | 164.8 | 0.125 | 1.00 | 236.3 | 1.87 |
20 | 164.8 | 0.125 | 1.00 | 241.1 | 1.76 |
Source | DF | Seq.SS | Contribution % | Adj.SS | Adj.MS | F-Val. | p-Val. |
---|---|---|---|---|---|---|---|
Model | 9 | 192.360 | 90.99 | 192.360 | 21.373 | 11.22 | <0.005 |
Linear | 3 | 146.571 | 69.33 | 143.425 | 47.808 | 25.09 | <0.005 |
Vc (m/min) | 1 | 1977 | 0.94 | 1845.0 | 1844.9 | 0.97 | 0.348 |
f (mm/rev) | 1 | 88.083 | 41.66 | 78.308 | 78.308 | 41.10 | <0.005 |
a (mm) | 1 | 56.511 | 26.73 | 63.268 | 63.268 | 33.21 | <0.005 |
Square | 3 | 37.482 | 17.73 | 37.482 | 12.494 | 6.56 | 0.010 |
Vc2 | 1 | 3580 | 1.69 | 2114 | 2114.2 | 1.11 | 0.317 |
f2 | 1 | 2215 | 1.07 | 2830 | 2829.8 | 1.49 | 0.251 |
a2 | 1 | 31.647 | 14.94 | 31.647 | 31.647 | 16.61 | 0.002 |
2-way int. | 3 | 8307 | 3.93 | 8307 | 2769 | 1.45 | 0.285 |
Vc × f | 1 | 6 | 0.00 | 6 | 5.8 | 0.00 | 0.957 |
Vc × a | 1 | 45 | 0.02 | 45 | 45.1 | 0.02 | 0.881 |
f × a | 1 | 8256 | 3.91 | 8256 | 8256.1 | 4.33 | 0.064 |
Error | 10 | 19.051 | 9.01 | 19.051 | 1905.1 | ||
Lack-of-fit | 5 | 6002 | 2.84 | 6002 | 1200.3 | 0.46 | 0.793 |
Pure error | 5 | 13.050 | 6.17 | 13.050 | 2609.9 | ||
Total | 19 | 211.412 | 100 | ||||
R2 | 90.99% |
Source | DF | Seq.SS | Contribution % | Adj.SS | Adj.MS | F-Val. | p-Val. |
---|---|---|---|---|---|---|---|
Model | 9 | 62.7894 | 95.43 | 62.7894 | 6.9766 | 23.19 | <0.005 |
Linear | 3 | 45.6637 | 69.40 | 54.0243 | 18.0081 | 59.85 | <0.005 |
Vc (m/min) | 1 | 0.1783 | 0.27 | 0.1693 | 0.1693 | 0.56 | 0.470 |
f (mm/rev) | 1 | 45.4405 | 69.06 | 53.8218 | 53.8218 | 178.88 | <0.005 |
a (mm) | 1 | 0.0449 | 0.07 | 0.0325 | 0.0325 | 0.11 | 0.749 |
Square | 3 | 17.0853 | 25.97 | 17.0853 | 5.6951 | 18.93 | <0.005 |
Vc2 | 1 | 0.7883 | 1.20 | 0.6288 | 0.6288 | 2.09 | 0.179 |
f2 | 1 | 16.2201 | 24.65 | 16.1315 | 16.1315 | 53.61 | <0.005 |
a2 | 1 | 0.0768 | 0.12 | 0.0768 | 0.0768 | 0.26 | 0.624 |
2-way int. | 3 | 0.0404 | 0.06 | 0.0404 | 0.0135 | 0.04 | 0.987 |
Vc × f | 1 | 0.0000 | 0.00 | 0.0000 | 0.0000 | 0.00 | 0.990 |
Vc × a | 1 | 0.0242 | 0.04 | 0.0242 | 0.0242 | 0.08 | 0.783 |
f × a | 1 | 0.0162 | 0.02 | 0.0162 | 0.0162 | 0.05 | 0.821 |
Error | 10 | 3.0088 | 4.57 | 3.0088 | 0.3009 | ||
Lack-of-fit | 5 | 2.6696 | 4.06 | 2.6696 | 0.5339 | 7.87 | 0.220 |
Pure error | 5 | 0.3393 | 0.52 | 0.3393 | 0.0679 | ||
Total | 19 | 65.7983 | 100 | ||||
R2 | 95.43% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fountas, N.A.; Papantoniou, I.G.; Manolakos, D.E.; Vaxevanidis, N.M. Experimental Investigation and NSGA-III Multi-Criteria Optimization of 60CrMoV18-5 Cold-Work Tool Steel Machinability Under Dry CNC Hard Turning Conditions. Machines 2024, 12, 772. https://doi.org/10.3390/machines12110772
Fountas NA, Papantoniou IG, Manolakos DE, Vaxevanidis NM. Experimental Investigation and NSGA-III Multi-Criteria Optimization of 60CrMoV18-5 Cold-Work Tool Steel Machinability Under Dry CNC Hard Turning Conditions. Machines. 2024; 12(11):772. https://doi.org/10.3390/machines12110772
Chicago/Turabian StyleFountas, Nikolaos A., Ioannis G. Papantoniou, Dimitrios E. Manolakos, and Nikolaos M. Vaxevanidis. 2024. "Experimental Investigation and NSGA-III Multi-Criteria Optimization of 60CrMoV18-5 Cold-Work Tool Steel Machinability Under Dry CNC Hard Turning Conditions" Machines 12, no. 11: 772. https://doi.org/10.3390/machines12110772
APA StyleFountas, N. A., Papantoniou, I. G., Manolakos, D. E., & Vaxevanidis, N. M. (2024). Experimental Investigation and NSGA-III Multi-Criteria Optimization of 60CrMoV18-5 Cold-Work Tool Steel Machinability Under Dry CNC Hard Turning Conditions. Machines, 12(11), 772. https://doi.org/10.3390/machines12110772