Dissecting the Relationship between Root Morphological Traits and Yield Attributes in Diverse Rice Cultivars under Subtropical Condition
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Site
2.2. Experimental Design and Crop Management
2.3. Determination of Root Morphological Traits
2.3.1. Root Number
2.3.2. Root Length (cm)
2.3.3. Root Volume (cm3 hill−1)
2.3.4. Root Porosity (%)
2.3.5. Physiological Traits
2.3.6. Total Dry Matter (TDM)
2.3.7. Yield and Yield Components
2.4. Statistical Analysis
3. Results
3.1. Root Morphological Traits, Total Dry Matter, and Leaf Area Index
3.2. Growth Parameters
3.3. Yield Attributing Characters and Yield
3.4. Cluster Analysis of Cultivars and Traits
3.5. Principal Component Analysis (PCA)
3.6. Correlation of Root and Morphological Traits with Yield
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. Rice Market Monitor (Food and Agricultural Organization, Rome). 2021. Available online: https://www.fao.org/markets-and-trade/commodities/rice/rmm/en/ (accessed on 24 July 2022).
- BBS. Yearbook of Agricultural Statistics; Bangladesh Bureau of Statistics: Dhaka, Bangladesh, 2021. [Google Scholar]
- Eshel, A.; Beeckman, T. Plant Roots: The Hidden Half, 4th ed.; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar]
- Mohd, R.N.A.; Djordjevic, M.A.; Imin, N. Nitrogen modulation of legume root architecture signalling pathways involve phytohormones and small regulatory molecules. Front. Plant Sci. 2013, 4, 385. [Google Scholar] [CrossRef]
- Tian, Q.Y.; Sun, P.; Zhang, W.H. Ethylene is involved in nitrate dependent root growth and branching in Arabidopsisthaliana. New Physiol. 2009, 184, 918–931. [Google Scholar] [CrossRef]
- Ota, R.; Ohkubo, Y.; Yamashita, Y.; Ogawa-Ohnishi, M.; Matsubayashi, Y. Shoot-to-root mobile CEPD-like 2 integrates shoot nitrogen status to systemically regulate nitrate uptake in Arabidopsis. Nat. Commun. 2020, 11, 641. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.Y.; Liu, W.X.; Li, Q.X.; Ma, D.Y.; Lu, H.F.; Feng, W.; Xie, Y.; Zhu, Y.; Guo, T. Effects of different irrigation and nitrogen regimes on root growth and its correlation with above-ground plant parts in high-yielding wheat under field conditions. Field Crops Res. 2014, 165, 138–149. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, S.; Sun, H.; Wang, Y.; Shao, L. Root size, distribution and soil water depletion as affected by cultivars and environmental factors. Field Crops Res. 2009, 114, 75–83. [Google Scholar] [CrossRef]
- Vamerali, T.; Ganis, A.; Bona, S.; Mosca, G. Roots: The Dynamic Interface between Plants and the Earth; Springer: Dordrecht, The Netherlands, 2003; pp. 169–177. [Google Scholar]
- Yang, W.; Peng, S.; Dionisio-Sese, M.L.; Laza, R.C.; Visperas, R.M. Grain filling duration, a crucial determinant of genotypic variation of grain yield in field-grown tropical irrigated rice. Field Crops Res. 2008, 105, 16–22. [Google Scholar] [CrossRef]
- Waines, J.G.; Ehdaie, B. Domestication and crop physiology: Roots of green-revolution wheat. Ann. Bot. 2007, 100, 991–998. [Google Scholar] [CrossRef] [PubMed]
- Bazzaz, F.A.; Ackerly, D.D.; Reekie, E.G. Reproductive Allocation in Plants. In Seeds: The Ecology and Regeneration of Plant Communities, 2nd ed.; Fenner, M., Ed.; CAB International: Wallingford, UK, 2000; pp. 1–29. [Google Scholar]
- Chu, G.; Chen, S.; Xu, C.; Danying, W.; Xiufu, Z. Agronomic and physiological performance of indica/japonica hybrid rice cultivar under low nitrogen conditions. Field Crops Res. 2019, 243, 107625. [Google Scholar] [CrossRef]
- Xu, G.; Lu, D.K.; Wang, H.Z.; Li, Y. Morphological and physiological traits of rice roots and their relationships to yield and nitrogen utilization as influenced by irrigation regime and nitrogen rate. Agric. Water Manag. 2018, 203, 385–394. [Google Scholar] [CrossRef]
- Yang, C.; Yang, L.; Yang, Y.; Ouyang, Z. Rice root growth and nutrient uptake as influenced by organic manure in continuously and alternately flooded paddy soils. Agric. Water Manag. 2004, 70, 67–81. [Google Scholar] [CrossRef]
- DoVale, J.; Fritsche-Neto, R. Root Phenomics. In Phenomics; Fritsche-Neto, R., Borém, A., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 49–66. [Google Scholar]
- Yang, L.X.; Wang, Y.L.; Kobayashi, K.; Zhu, J.G.; Huang, J.Y.; Yang, H.J.; Wang, Y.X.; Dong, G.C.; Liu, G.; Han, Y. Seasonal changes in the effects of free-air CO2 enrichment (FACE) on growth, morphology and physiology of rice root at three levels of nitrogen fertilization. Glob. Change Biol. 2008, 14, 1844–1853. [Google Scholar] [CrossRef]
- Wang, H.; Inukai, Y.; Yamauchi, A. Root development and nutrient uptake. Crit. Rev. Plant Sci. 2006, 25, 279–301. [Google Scholar] [CrossRef]
- Samejima, H.; Kondo, M.; Ito, O.; Nozoe, T.; Shinano, T.; Osaki, M. Characterization of root systems with respect to morphological traits and nitrogen-absorbing ability in the New Plant Type of tropical rice lines. J. Plant Nutr. 2005, 28, 835–850. [Google Scholar] [CrossRef]
- Cai, K.Z.; Luo, S.M.; Duan, S.S. The response of the rice root system to nitrogen conditions under root confinement. Acta Ecol. Sin. 2003, 23, 1109–1116. (In Chinese) [Google Scholar]
- Yang, J.C. Relationships of rice root morphology and physiology with the formation of grain yield and quality and the nutrient absorption and utilization. Sci. Agric. Sin. 2011, 44, 36–46. [Google Scholar]
- Samejima, H.; Kondo, M.; Ito, O.; Nozoe, T.; Shinano, T.; Osaki, M. Root-shoot interaction as a limiting factor of biomass productivity in new tropical rice lines. Soil Sci. Plant Nutr. 2004, 50, 545–554. [Google Scholar] [CrossRef]
- Ma, S.C.; Li, F.M.; Xu, B.C.; Huang, Z.B. Effect of lowering the root/shoot ratio by pruning roots on water use efficiency and grain yield of winter wheat. Field Crops Res. 2010, 115, 158–164. [Google Scholar] [CrossRef]
- Tabata, M.; Iida, Y.; Okuno, K. Abnormal grain quality caused by partial excision of root system in rice. Jpn. J. Crop Sci. 2008, 77, 198–203. (In Japanese) [Google Scholar] [CrossRef]
- Wang, Q.; Fan, X.L.; Liu, F.; Li, F.M.; Klaus, D.; Sattemacher, B. Effect of root cutting on rice yield by shifting normal paddy to upland cultivation. Chin. J. Rice Sci. 2004, 18, 437–442. [Google Scholar]
- Kreszies, T.; Schreiber, L.; Ranathunge, K. Suberized transport barriers in Arabidopsis, barley and rice roots: From the model plant to crop species. J. Plant Physiol. 2018, 227, 75–83. [Google Scholar] [CrossRef]
- Somaweera, K.A.T.N.; Sirisena, D.N.; Costa, W.A.J.M.D. Age-related morphological and physiological responses of irrigated rice to declined soil phosphorus and potassium availability. Paddy Water Environ. 2017, 101, 499–511. [Google Scholar] [CrossRef]
- Osaki, M.; Shinano, T.; Matsumoto, M.; Zheng, T.; Tadano, T. A root-shoot interaction hypothesis for high productivity of field crops. Soil Sci. Plant Nutr. 1997, 43, 1079–1084. [Google Scholar] [CrossRef]
- Böhm, K.; Smidt, E.; Tintner, J. Application of Multivariate Data Analyses in Waste Management, 1st ed.; IntechOpen: London, UK, 2013. [Google Scholar]
- Ling, Q.H. Quality of Crop Population; Shanghai Scientific and Technical Publishers: Shanghai, China, 2000; pp. 42–107. [Google Scholar]
- UNDP and FAO (United Nations Development Program and Food and Agriculture Organization). Land Resources Appraisal of Bangladesh for Agricultural Development. Report 2. Agro-Ecological Region of Bangladesh; United Nations Development Program and Food and Agricultural Organization: Dhaka, Bangladesh, 1988; pp. 212–221. [Google Scholar]
- Bridgit, A.J.; Potty, N.N. Influence of root characters on rice productivity in iron soils of Kerala. Int. Rice Res. News 2002, 27, 45–46. [Google Scholar]
- Jensen, C.R.; Luxmoore, R.J.; Van Gundy, S.D.; Stolzy, L.H. Root air measurements by a pycnometer method. Agron. J. 1969, 61, 474–475. [Google Scholar] [CrossRef]
- Radford, P.J. Growth analysis formulae-their use and abuse. CropSci. 1967, 7, 171–175. [Google Scholar] [CrossRef]
- Hunt, R. Plant Growth Analysis. Studies in Biology; Edward Arnold: London, UK, 1978. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation Statistical Computation: Vienna, Austria, 2013; Available online: http://www.R-project.org/ (accessed on 25 July 2022).
- Ishimaru, T.; Qin, J.; Sasaki, K.; Fujita, D.; Gannaban, R.B.; Lumanglas, P.D.; Simon, E.-V.M.; Ohsumi, A.; Takai, T.; Kondo, M.; et al. Physiological and morphological characterization of a high-yielding rice introgression line, YTH183, with genetic background of Indica Group cultivar, IR 64. Field Crops Res. 2017, 213, 89–99. [Google Scholar] [CrossRef]
- Nguyen, H.T.; Babu, R.C.; Blum, A. Breeding for drought resistance in rice: Physiology and molecular genetics considerations. Crop Sci. 1997, 37, 1426–1434. [Google Scholar] [CrossRef]
- Yu, L.X.; Ray, J.D.; O’Toole, J.C.; Nguyen, H.T. Use of wax-petrolatum layers for screening rice root penetration. Crop Sci. 1995, 35, 684–687. [Google Scholar] [CrossRef]
- Sharma, P.K.; Pantuwan, G.; Ingram, K.T.; De Datta, S.K. Rainfed lowland rice roots: Soil and hydrological effects. In Rice Roots: Nutrient and Water Use; Kirk, G.J.D., Ed.; IRRI: Los Baiios, Philippines, 1994; pp. 55–66. [Google Scholar]
- Zhang, H.; Liu, H.; Hou, D.; Zhou, Y.; Liu, M.; Wang, Z. The effect of integrative crop management on root growth and methane emission of paddy rice. Crop J. 2019, 7, 444–457. [Google Scholar] [CrossRef]
- Ju, C.; Buresh, R.; Wang, Z.; Zhang, H.; Liu, L.; Yang, J. Root and shoot traits for rice varieties with higher grain yield and higher nitrogen use efficiency at lower nitrogen rates application. Field Crops Res. 2015, 175, 47–55. [Google Scholar] [CrossRef]
- Fan, J.; Zhang, Y.; Turner, D.; Duan, Y.; Wang, D.; Shen, Q. Difference in root morphology and activity of two rice cultivars with different nitrogen use efficiency. Pedosphere 2010, 20, 446–455. [Google Scholar] [CrossRef]
- Fageria, N.K.; Baligar, V.C.; Clark, R.B. Physiology of Crop Production, 1st ed.; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar]
- Maqueira, L.A.; González, D.; Torres, W.; Masaaki, Y.S. Evaluation of growth variables behaviors in varieties of Japonica rice under rainfed favored condition. Cultiv. Trop. 2014, 35, 43–49. [Google Scholar]
- Moradpour, S.; Koohi, R.; Babaei, M.; Khordhidi, G. Effect of planting date and planting density on rice yield and growth analysis (Fajr variety). Int. J. Agric. Crop Sci. 2013, 5, 267–272. [Google Scholar]
- Reddy, T.G.; Mahadevappa, M.; Kurcarni, K.R. Rice ratoon crop management in hilly regions of Karmataca, India. Int. Rice Res. Newsl. 2000, 4, 22–23. [Google Scholar]
- Laza, M.R.; Peng, S.; Atika, S.; Saka, H. Contribution of biomass partitioning and translocation to grain yield under sub-optimum growing conditions in irrigated rice. Plant Prod. Sci. 2003, 6, 28–35. [Google Scholar] [CrossRef]
- Alam, M.N.; Ali, M.H.; Hasanuzzaman, M.; Nahar, K.; Islam, M.R. Dry matter partitioning in hybrid and inbred rice varieties under variable doses of phosphorus. Int. J. Sustain. Agric. 2009, 1, 10–19. [Google Scholar]
- Xiao, G.; Zhang, Q.; Yao, Y.; Yang, S.; Wang, R.; Xiong, Y.; Sunl, Z. Effects of temperature increase on water use and crop yields in a pea-spring wheat-potato rotation. Agric. Water Manag. 2007, 91, 86–91. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, T.T.; Liu, L.J.; Wang, Z.Q.; Yand, J.C.; Zhang, J.H. Performance in grain yield and physiological traits of rice in the Yangtze River Basin of China during the last 60 yr. J. Integr. Agric. 2013, 12, 57–66. [Google Scholar] [CrossRef]
- Zhang, H.; Huang, Z.H.; Wang, J.C.; Wang, Z.Q.; Yang, J.C. Changes in morphological and physiological traits of roots and their relationships with grain yield during the evolution of mid-season Indica rice cultivars in Jiangsu Province. Acta Agron. Sin. 2011, 37, 1020–1030. [Google Scholar] [CrossRef]
- Yang, J.C.; Zhang, H.; Zhang, J.H. Root morphology and physiology in relation to the yield formation of rice. J. Integr. Agric. 2012, 11, 920–926. [Google Scholar] [CrossRef]
- Liu, T.J.; Qi, C.H.; Tang, J.J. Studies on relationship between the character parameters of root and yield formation in rice. Sci. Agric. Sin. 2002, 35, 1416–1419. [Google Scholar]
- Liu, W.Z.; Li, Y.Y. Effect of crop root-cutting on grain yield and water use efficiency: A review. Acta Bot. Boreali-Occident. Sin. 2003, 23, 1320–1324. [Google Scholar]
- Wade, L.J.; Bartolome, V.; Mauleon, R.; Vasant, V.D.; Prabakar, S.M.; Chelliah, M.; Kameoka, E.; Nagendra, K.; Reddy, K.R.K.; Varma, C.M.K.; et al. Environmental Response and Genomic Regions Correlated with Rice Root Growth and Yield under Drought in the OryzaSNP Panel across Multiple Study Systems. PLoS ONE 2015, 10, e0124127. [Google Scholar] [CrossRef] [PubMed]
- Saengwilai, P.; Klinsawang, S.; Sangachart, M.; Bucksch, A. Comparing phenotypic variation of root traits in thai rice (Oryza sativa L.) across growing systems. Appl. Ecol. Environ. Res. 2018, 16, 1069–1083. [Google Scholar] [CrossRef]
- Guimaraes, P.H.R.; de Lima, I.P.; de Castro, A.P.; Lanna, A.C.; Melo, P.G.S.; de Raïssac, M. Phenotyping Root Systems in a Set of Japonica Rice Accessions: Can Structural Traits Predict the Response to Drought? Rice 2020, 13, 67. [Google Scholar] [CrossRef]
- Verma, H.; Borah, J.L.; Sarma, R.N. Variability Assessment for Root and Drought Tolerance Traits and Genetic Diversity Analysis of Rice Germplasm using SSR Markers. Sci. Rep. 2019, 9, 16513. [Google Scholar] [CrossRef]
- Li, C.S.; Ye, S.H.; Chen, Y.Z.; Ruan, G.H.; Huang, F.D.; Zhang, X.M. The study on yield component factors of high yielding Japonica rice varieties. Acta Agric. Zhejiangensis 2005, 174, 177–181. (In Chinese) [Google Scholar]
- Yoshida, H.; Horie, T.; Shiraiwa, T. A model explaining genotypic and environmental variation of rice spikelet number per unit area measured by cross-locational experiments in Asia. Field Crops Res. 2006, 97, 337–343. [Google Scholar] [CrossRef]
- Chu, G.; Chen, T.; Wang, Z.; Yang, J.; Zhang, J. Morphological and physiological traits of roots and their relationships with water productivity in water-saving and drought-resistant rice. Field Crops Res. 2013, 165, 36–48. [Google Scholar] [CrossRef]
- Chen, M.Y.; Li, X.F.; Chen, Y.F.; Ren, H.R.; Wang, W.; Jing, P.P. Effects of different irrigation methods on yield and water use efficiency of rice in different soil types. China Rice 2018, 24, 10–15. [Google Scholar]
Sl. No | Cultivar | Genetic Origin | Parental Source/Accession Number | Source |
---|---|---|---|---|
1. | BRRI dhan29 | Inbred | BG90-2 x BR51-46-5 | BRRI |
2. | BRRI dhan58 | Inbred | Somaclone of BRRI dhan29 (Tissue culture) | BRRI |
3. | BRRI dhan67 | Inbred | BR61247-3B-8-2-1 x BRRI dhan36 | BRRI |
4. | BRRI dhan74 | Inbred | BRRI dhan29 x IR68144 | BRRI |
5. | BRRI dhan81 | Inbred | Amol-3 x BRRI dhan28 | BRRI |
6. | Binadhan-8 | Inbred | IR29 x Pokkali | BINA |
7. | Binadhan-10 | Inbred | IR42598-B-B-B-B-12 x Nona Bokra | BINA |
8. | Hira-2 | Hybrid | - | Local market |
9. | Tej gold | Hybrid | - | Local market |
10. | SL8H | Hybrid | - | Local market |
11. | Jagliboro | Local | 8409 | Farmer |
12. | Rata boro | Local | 8208 | Farmer |
13. | Lakhai | Local | 4372 | Farmer |
Cultivars | Root Number | Root Length (cm) | Root Volume (cm3 hill−1) | Root Porosity (%) | Total Dry Mass (g plant−1) | Leaf Area Index |
---|---|---|---|---|---|---|
BRRI dhan 29 | 330.33 b | 1467.66 bc | 8.01 bc | 21.03 ab | 22.72 bc | 4.80 b |
BRRI dhan58 | 315.33 d | 1460.08 de | 7.88 d | 19.76 bc | 21.97 d | 4.77 d |
BRRI dhan67 | 304.66 e | 1454.83 fg | 7.59 f | 18.18 c | 20.97 f | 4.75 e |
BRRI dhan74 | 262.33 h | 1447.41 h | 7.21 h | 18.46 c | 19.74 h | 4.72 h |
BRRIdhan81 | 288.00 f | 1452.41 f–h | 7.50 fg | 19.30 bc | 20.45 g | 4.74 f |
Binadhan-8 | 275.00 g | 1450.83 gh | 7.43 g | 18.61 c | 20.16 g | 4.73 g |
Binadhan-10 | 340.66 a | 1476.16 a | 8.15 a | 22.18 a | 24.12 a | 4.82 a |
Hira-2 | 332.00 b | 1470.66 b | 8.08 ab | 22.02 a | 23.02 b | 4.81 ab |
Tej gold | 322.33 c | 1463.50 cd | 7.95 cd | 19.96 bc | 22.44 c | 4.79 c |
SL8H | 308.00 e | 1456.75 ef | 7.75 e | 19.45 bc | 21.59 e | 4.77 d |
Jagliboro | 193.66 k | 1426.00 j | 5.90 k | 14.55 d | 15.98 j | 4.64 k |
Rata boro | 237.33 i | 1437.33 i | 6.31 i | 15.94 d | 16.84 i | 4.68 i |
Lakhai | 227.66 j | 1427.50 j | 6.10 j | 15.18 d | 16.76 i | 4.65 j |
S | 7.5 | 8.13 | 0.01 | 1.08 | 0.03 | 0.01 |
Level of sig. | ** | ** | ** | ** | ** | ** |
CV (%) | 0.95 | 0.19 | 0.76 | 5.53 | 0.90 | 0.12 |
Cultivars | Effective Tillers Hill−1 | Panicle Length (cm) | Grains Panicle−1 (no) | 1000–Grain weight (g) | Grain yield (g Pot−1) | Straw Yield (g pot−1) | Biological Yield (g pot−1) | Harvest Index (%) |
---|---|---|---|---|---|---|---|---|
BRRI dhan29 | 13.66 a–c | 23.65 ab | 122.00 ab | 25.11 ab | 24.22 bc | 24.38 b | 48.60 b | 49.80 |
BRRI dhan58 | 12.33 b–e | 22.37 bc | 119.66 bc | 23.97 b–d | 23.09 cd | 23.28 bc | 46.38 bc | 49.79 |
BRRI dhan67 | 11.66 de | 20.91 d | 117.33 cd | 22.94 cd | 21.82 de | 22.01 cd | 43.83 cd | 49.78 |
BRRI dhan74 | 10.66 e | 19.97 d–f | 115.00 d | 21.90 d | 20.98 e | 21.41 d | 42.39 d | 49.51 |
BRRI dhan81 | 11.33 de | 20.51 de | 116.66 cd | 22.23 d | 21.65 de | 21.89 cd | 43.55 cd | 49.71 |
Binadhan-8 | 11.00 de | 20.21 d–f | 115.00 d | 22.05 d | 21.22 e | 21.70 cd | 42.92 cd | 49.43 |
Binadhan-10 | 14.66 a | 25.01 a | 125.00 a | 26.49 a | 26.26 a | 26.57 a | 52.83 a | 49.69 |
Hira-2 | 14.00 ab | 24.78 a | 122.66 ab | 25.26 ab | 25.78 ab | 26.21 a | 52.00 a | 49.58 |
Tej gold | 12.66 b–d | 22.83 b | 120.00 bc | 24.55 a–c | 23.70 c | 23.94 b | 47.64 b | 49.75 |
SL8H | 12.00 c–e | 21.14 cd | 118.00 cd | 23.65 b–d | 22.54 c–e | 22.85 b–d | 45.40 b–d | 49.66 |
Jagliboro | 8.33 f | 18.25 g | 89.66 g | 17.91 e | 17.28 f | 17.72 e | 35.01 e | 49.36 |
Rata boro | 9.00 f | 19.16 e–g | 98.33 e | 19.50 e | 18.73 f | 19.01 e | 37.75 e | 49.63 |
Lakhai | 8.66 f | 18.81 fg | 94.00 f | 18.89 e | 17.88 f | 18.18 e | 36.07 e | 49.58 |
S | 0.84 | 0.61 | 3.92 | 1.26 | 1.01 | 0.89 | 3.47 | 0.42 |
Level of sig. | ** | ** | ** | ** | ** | ** | ** | NS |
CV (%) | 7.97 | 3.68 | 1.74 | 4.95 | 4.58 | 4.24 | 4.21 | 1.31 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaysar, M.S.; Sarker, U.K.; Monira, S.; Hossain, M.A.; Haque, M.S.; Somaddar, U.; Saha, G.; Chaki, A.K.; Uddin, M.R. Dissecting the Relationship between Root Morphological Traits and Yield Attributes in Diverse Rice Cultivars under Subtropical Condition. Life 2022, 12, 1519. https://doi.org/10.3390/life12101519
Kaysar MS, Sarker UK, Monira S, Hossain MA, Haque MS, Somaddar U, Saha G, Chaki AK, Uddin MR. Dissecting the Relationship between Root Morphological Traits and Yield Attributes in Diverse Rice Cultivars under Subtropical Condition. Life. 2022; 12(10):1519. https://doi.org/10.3390/life12101519
Chicago/Turabian StyleKaysar, Md. Salahuddin, Uttam Kumer Sarker, Sirajam Monira, Md. Alamgir Hossain, Md. Sabibul Haque, Uzzal Somaddar, Gopal Saha, Apurbo Kumar Chaki, and Md. Romij Uddin. 2022. "Dissecting the Relationship between Root Morphological Traits and Yield Attributes in Diverse Rice Cultivars under Subtropical Condition" Life 12, no. 10: 1519. https://doi.org/10.3390/life12101519
APA StyleKaysar, M. S., Sarker, U. K., Monira, S., Hossain, M. A., Haque, M. S., Somaddar, U., Saha, G., Chaki, A. K., & Uddin, M. R. (2022). Dissecting the Relationship between Root Morphological Traits and Yield Attributes in Diverse Rice Cultivars under Subtropical Condition. Life, 12(10), 1519. https://doi.org/10.3390/life12101519