Migration and Transformation of Arsenic in Rice and Soil under Different Nitrogen Sources in Polymetallic Sulfide Mining Areas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Soil
2.2. Pot Experiment
2.3. Rice Treatments
2.4. Sample Testing and Data Analysis
3. Results and Discussion
3.1. Bioavailable As and pH in Rice Inter-Rhizosphere Soil under Different N Fertilizer Treatment Conditions
3.2. As Concentration in the Rice Roots under Different N Fertilizer Treatment Conditions
3.3. As Concentration in Rice Stems and Leaves under Different N Fertilizer Treatment Conditions
3.4. As Concentration in Rice Grains under Different N Fertilizer Treatment Conditions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, Y.G.; Xu, Y.N.; Zhang, J.H.; Hu, S.H. Evaluation of ecological risk and primary empirical research on heavy metals in polluted soil over Xiaoqinling gold mining region, Shaanxi, China. Trans. Nonferrous Met. Soc. China 2010, 20, 688–694. [Google Scholar] [CrossRef]
- Tiwary, R. Environmental impact of coal mining on water regime and its management. Water Air Soil Pollut. 2001, 132, 185–199. [Google Scholar] [CrossRef]
- Navarro, M.C.; Pérez Sirvent, C.; Martínez Sánchez, M.J.; Vidal, J.; Tovar, P.J.; Bech, J. Abandoned mine sites as a source of contamination by heavy metals: A case study in a semi-arid zone. J. Geochem. Explor. 2008, 96, 183–193. [Google Scholar] [CrossRef]
- Naidu, G.; Ryu, S.; Thiruvenkatachari, R.; Choi, Y.; Jeong, S.; Vigneswaran, S. A critical review on remediation, reuse, and resource recovery from acid mine drainage. Environ. Pollut. 2019, 247, 1110–1124. [Google Scholar] [CrossRef]
- Lei, M.; Tie, B.Q.; Song, Z.G.; Liao, B.H.; Lepo, J.E.; Huang, Y.Z. Heavy metal pollution and potential health risk assessment of white rice around mine areas in Hunan Province, China. Food Secur. 2015, 7, 45–54. [Google Scholar] [CrossRef]
- Zhao, F.J.; Wang, P. Arsenic and cadmium accumulation in rice and mitigation strategies. Plant. Soil. 2019, 446, 1–21. [Google Scholar] [CrossRef]
- Chen, M.Q.; Wu, F.J. Mechanisms and Remediation Technologies of Sulfate Removal from Acid Mine Drainage. Adv. Mater. Res. 2012, 610–613, 3252–3256. [Google Scholar] [CrossRef]
- Liu, Y.; Lin, C.; Ma, Y.; Lu, W.; Wu, Y.; Huang, S.; Zhu, L.; Li, J.; Chen, A. Toxic effects of two acid sulfate soils from the Dabaoshan Mine on Corymbia citriodora var.variegata and Daphnia carinata. J. Hazard. Mater. 2009, 166, 1162–1168. [Google Scholar] [CrossRef] [PubMed]
- Sokolova, T.A.; Alekseeva, S.A. Adsorption of sulfate ions by soils (A Review). Eurasian Soil Sci. 2008, 41, 140–148. [Google Scholar] [CrossRef]
- Garg, N.; Singla, P. Arsenic toxicity in crop plants: Physiological effects and tolerance mechanisms. Environ. Chem. Lett. 2011, 9, 303–321. [Google Scholar] [CrossRef]
- Zhang, X.X.; Zhang, X.X.; Lv, S.J.; Shi, L.; Wang, R.P. Migration and transformation of cadmium in rice-soil under different nitrogen sources in polymetallic sulfide mining areas. Sci. Rep. 2020, 10, 2418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Finnegan, P.M.; Chen, W. Arsenic toxicity: The effects on plant metabolism. Front. Physiol. 2012, 3, 182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uddin, M.S.; Kurosawa, K. Effect of chemical nitrogen fertilizer application on the release of arsenic from sediment to groundwater in Bangladesh. Procedia Environ. Sci. 2011, 4, 294–302. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.Y.; Zeng, Q.R.; Zhou, X.H.; Jiang, Z.H.; Liao, B.H. The Short-term Changes of Soil pH and Available as by Fertilizing Urea in Contaminated Soils. Chin. J. Soil Sci. 2008, 39, 1441–1444. [Google Scholar] [CrossRef]
- Tang, X.J.; Li, L.Y.; Wu, C.; Khan, M.I.; Manzoo, M.; Zou, L.; Shi, J.Y. The response of arsenic bioavailability and microbial community in paddy soil with the application of sulfur fertilizers. Environ. Pollut. 2020, 264, 114679. [Google Scholar] [CrossRef]
- Dixit, G.; Singh, A.P.; Kumar, A.; Dwivedi, S.; Deeba, F.; Kumar, S.; Suman, S.; Adhikari, B.; Shukla, Y.; Trivedi, P.K.; et al. Sulfur alleviates arsenic toxicity by reducing its accumulation and modulating proteome, amino acids and thiol metabolism in rice leaves. Sci. Rep. 2015, 5, 16205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shri, M.; Kumar, S.; Chakrabarty, D.; Trivedi, P.K.; Mallick, S.; Misra, P.; Shukla, D.; Mishra, S.; Srivastava, S.; Tripathi, R.D.; et al. Effect of arsenic on growth, oxidative stress, and antioxidant system in rice seedlings. Ecotoxicol. Environ. Saf. 2009, 72, 1102–1110. [Google Scholar] [CrossRef]
- Tuli, R.; Chakrabarty, D.; Trivedi, P.K.; Tripathi, R.D. Recent advances in arsenic accumulation and metabolism in rice. Mol. Breed. 2010, 26, 307–323. [Google Scholar] [CrossRef]
- Srivastava, S.; D’Souza, S.F. Effect of variable sulfur supply on arsenic tolerance and antioxidant responses in Hydrilla verticillata (L.f.) Royle. Ecotoxicol. Environ. Saf. 2010, 73, 1314–1322. [Google Scholar] [CrossRef] [PubMed]
- Fazili, I.S.; Jamal, A.; Ahmad, S.; Masoodi, M.; Khan, J.S.; Abdin, M.Z. Interactive Effect of Sulfur and Nitrogen on Nitrogen Accumulation and Harvest in Oilseed Crops Differing in Nitrogen Assimilation Potential. J. Plant Nutr. 2008, 31, 1203–1220. [Google Scholar] [CrossRef]
- Venegas, A.; Rigol, A.; Vidal, M. Viability of organic wastes and biochars as amendments for the remediation of heavy metal-contaminated soils. Chemosphere 2015, 119, 190–198. [Google Scholar] [CrossRef]
- Nelson, D.A.; Sommers, L.E. Total carbon, organic carbon, and organic matter. Methods Soil Anal. 1983, 9, 539–579. [Google Scholar] [CrossRef]
- Murphy, J.; Riley, J.P. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 1962, 27, 31–36. [Google Scholar] [CrossRef]
- Bremner, J.; Tabatabai, M. Use of an ammonia electrode for determination of ammonium in Kjeldahl analysis of soils. Commun. Soil Sci. Plant Anal. 1972, 3, 159–165. [Google Scholar] [CrossRef]
- Chen, X.P.; Zhu, Y.G.; Hong, M.N.; Kappler, A.; Xu, Y.X. Effects of different forms of nitrogen fertilizers on arsenic uptake by rice plants. Environ. Toxicol. Chem. 2008, 27, 881–887. [Google Scholar] [CrossRef] [Green Version]
- Huang, L.H.; Liu, X.; Wang, Z.C.; Liang, Z.G.; Wang, M.M.; Liu, M.; Suarez, D.L. Interactive effects of pH, EC and nitrogen on yields and nutrient absorption of rice (Oryza sativa L.). Agric. Water Manag. 2017, 194, 48–57. [Google Scholar] [CrossRef]
- Lou, Y.L.; Zhang, Y.S.; Lin, X.Y. Effects of f orms of nitrogen fertilizer on the bioavailability of heavy metals in the soils amended with biosolids and their uptake by corn plant. J. Zhejiang Univ. 2005, 31, 392–398. [Google Scholar] [CrossRef]
- Chen, J.; Wang, X.J.; Zhu, L.J. Effect of pH on adsorption and transformation of arsenic in red soil in GuiZhou. Soils 2004, 36, 211–214. [Google Scholar] [CrossRef]
- Hassan, M.J.; Wang, F.; Ali, S.; Zhang, G. Toxic Effect of Cadmium on Rice as Affected by Nitrogen Fertilizer Form. Plant. Soil. 2005, 277, 359–365. [Google Scholar] [CrossRef]
- Tu, S.; Ma, L.Q. Interactive effects of pH, arsenic and phosphorus on uptake of As and P and growth of the arsenic hyperaccumulator Pteris vittata L. under hydroponic conditions. Environ. Exp. Bot. 2003, 50, 243–251. [Google Scholar] [CrossRef]
- Yamaguchi, N.; Nakamura, T.; Dong, D.; Takahashi, Y.; Amachi, S.; Makino, T. Arsenic release from flooded paddy soils is influenced by speciation, Eh, pH, and iron dissolution. Chemosphere 2011, 83, 925–932. [Google Scholar] [CrossRef]
- Chen, H.; Shan, H.J.; Peng, S.X.; Huang, J.; Liao, D.X.; Yan, Z.W. Hydrochemical influences on arsenic adsorption by river sand. Acta Sci. Circumst. 2021, 41, 2727–2739. [Google Scholar] [CrossRef]
- Hu, Z.Y.; Zhu, Y.G.; Li, M.; Zhang, L.G.; Cao, Z.H.; Smith, F.A. Sulfur (S)-induced enhancement of iron plaque formation in the rhizosphere reduces arsenic accumulation in rice (Oryza sativa L.) seedlings. Environ. Pollut. 2007, 147, 387–393. [Google Scholar] [CrossRef]
- Liao, X.Y.; Chen, T.B.; Xiao, X.Y.; Xie, H.; Yan, X.L.; Zhai, L.M.; Wu, B. Selecting appropriate forms of nitrogen fertilizer to enhance soil arsenic removal by Pteris vittata: A new approach in phytoremediation. Int. J. Phytorem. 2007, 9, 269–280. [Google Scholar] [CrossRef]
- Xue, P.Y.; Liu, W.J.; Liu, H.L.; Duan, G.L.; Hu, Y. Arsenic behaviors in the system of arsenic contaminated soil-rhizosphere-rice plants. Acta Pedol. Sin. 2010, 47, 872–879. [Google Scholar]
- Heikens, A.; Panaullah, G.M.; Meharg, A.A. Arsenic behaviour from groundwater and soil to crops: Impacts on agriculture and food safety. Rev. Environ. Contam. Toxicol. 2007, 189, 43–87. [Google Scholar] [CrossRef]
- Raddatz, N.; Morales de los Ríos, L.; Lindahl, M.; Quintero, F.J.; Pardo, J.M. Coordinated transport of nitrate, potassium, and sodium. Front. Plant Sci. 2020, 11, 247. [Google Scholar] [CrossRef] [Green Version]
- Leao, G.A.; Oliveira, J.A.; Farnese, F.S.; Gusman, G.S.; Felipe, R.T. Sulfur metabolism: Different tolerances of two aquatic macrophytes exposed to arsenic. Ecotoxicol. Environ. Saf. 2014, 105, 36–42. [Google Scholar] [CrossRef]
- Nishida, S.; Duan, G.L.; Ohkama-Ohtsu, N.; Uraguchi, S.; Fujiwara, T. Enhanced arsenic sensitivity with excess phytochelatin accumulation in shoots of a SULTR1;2 knockout mutant of Arabidopsis thaliana (L.) Heynh. Soil Sci. Plant Nutr. 2016, 62, 367–372. [Google Scholar] [CrossRef] [Green Version]
- National Health and Family Planning Commission of the People’s Republic of China & China Food and Drug Administration. National Food Safety Standard. Maximum Levels of Contaminants in Foods GB2762–2017. 2017. Available online: https://sppt.cfsa.net.cn:8086/db (accessed on 31 August 2022).
- Zhang, L.; Wang, S.R.; Jiao, L.X.; Zhao, H.C.; Zhang, Y.; Li, Y.P. Physiological response of a submerged plant (Myriophyllum spicatum) to different NH4Cl concentrations in sediments. Ecol. Eng. 2013, 58, 91–98. [Google Scholar] [CrossRef]
- Zhou, J.M.; Dang, Z.; Chen, N.C. TOC and heavy metals dynamic in contaminated soil solution and their correlations with the addition of chelating agents. Environ. Chem. 2007, 26, 605. [Google Scholar]
Risk Screening Value a (pH ≤ 5.5) | Risk Intervention Value a (pH ≤ 5.5) | Test Value | |
---|---|---|---|
pH | 4.21 | ||
Cd (mg·kg−1) | 0.3 | 1.5 | 0.54 |
As (mg·kg−1) | 30 | 200 | 70.28 |
Cu (mg·kg−1) | 50 | 298.25 | |
Zn (mg·kg−1) | 200 | 302.66 | |
Cr (mg·kg−1) | 250 | 800 | 46.28 |
Pb (mg·kg−1) | 80 | 400 | 201.00 |
Fe (g·kg−1) | 30.37 | ||
S (mg·kg−1) | 443.66 | ||
Bioavailable S (mg·kg−1) | 133.38 | ||
Bulk density (g·cm−3) | 1.20 | ||
organic matter (g·kg−1) | 11.20 | ||
CEC (cmol·kg−1) | 9.52 | ||
Hydrolyzed N (mg·kg−1) | 10.59 | ||
N (g·kg−1) | 1.10 | ||
P (g·kg−1) | 1.20 | ||
K2O (g·kg−1) | 24.2 |
Fertilizer | N (g N·kg−1 Soil) | ||
---|---|---|---|
0.1 g·kg−1 | 0.2 g·kg−1 | 0.4 g·kg−1 | |
NH4Cl | 7.6 g | 15.2 g | 30.4 g |
(NH4)2SO4 | 9.4 g | 18.8 g | 37.6 g |
NH4NO3 | 5.8 g | 11.6 g | 23.2 g |
Fertilizer | N (g N·kg−1 Soil) | ||
---|---|---|---|
0.1 g·kg−1 | 0.2 g·kg−1 | 0.4 g·kg−1 | |
NH4Cl | 109 days | 109 days | (120–131) days |
(NH4)2SO4 | 109 days | 109 days | (114–123) days |
NH4NO3 | 109 days | 109 days | 109 days |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, S.; Yang, D.; Zhang, X.; Shi, L.; Zhang, X. Migration and Transformation of Arsenic in Rice and Soil under Different Nitrogen Sources in Polymetallic Sulfide Mining Areas. Life 2022, 12, 1541. https://doi.org/10.3390/life12101541
Yao S, Yang D, Zhang X, Shi L, Zhang X. Migration and Transformation of Arsenic in Rice and Soil under Different Nitrogen Sources in Polymetallic Sulfide Mining Areas. Life. 2022; 12(10):1541. https://doi.org/10.3390/life12101541
Chicago/Turabian StyleYao, Shuhua, Dan Yang, Xuexia Zhang, Lei Shi, and Xiaoxia Zhang. 2022. "Migration and Transformation of Arsenic in Rice and Soil under Different Nitrogen Sources in Polymetallic Sulfide Mining Areas" Life 12, no. 10: 1541. https://doi.org/10.3390/life12101541
APA StyleYao, S., Yang, D., Zhang, X., Shi, L., & Zhang, X. (2022). Migration and Transformation of Arsenic in Rice and Soil under Different Nitrogen Sources in Polymetallic Sulfide Mining Areas. Life, 12(10), 1541. https://doi.org/10.3390/life12101541