Sacubitril/Valsartan Improves Left Atrial and Ventricular Strain and Strain Rate in Patients with Heart Failure with Reduced Ejection Fraction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Definition of Chronic HF with Optimized Standard of Care Therapy
- Treatment for at least 6 months with the maximum tolerable doses of an ACEI (or ARB if appropriate), a BB, and an MRA;
- Implantable cardioverter-defibrillator (ICD) and/or cardiac resynchronization therapy (CRT), if indicated;
- Adequate care in accordance with appropriate guidelines for mitral regurgitation and coronary artery disease [24];
- No anticipated therapy modifications for the ensuing 6 months;
- The analysis was conducted prospectively from October 2017 to June 2018, and at that time, recommendations did not consider SGLT2 inhibitors to be a part of optimal HF therapy for non-diabetic patients [24].
2.3. Exclusion Criteria
- Age under 18 years;
- Cardiac surgery; ICD/CRT implantation; atrial fibrillation ablation; or percutaneous mitral regurgitation treatment in the previous 6 months;
- Planned cardiac surgery; ICD/CRT implantation; atrial fibrillation ablation; or percutaneous mitral regurgitation treatment in the following 6 months;
- Glomerular filtration rate (GFR) < 30 mL/min;
- Baseline potassium values ≥ 5.5 mEq/L;
- Child–Pugh class B or C.
2.4. Study Protocol
2.5. Transthoracic Echocardiogram
2.6. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Sacubitril/Valsartan Dose
3.3. Clinical Assessment
3.4. ECG Analysis
3.5. Transthoracic Echocardiography Assessment
3.5.1. LA Strain Assessment
3.5.2. LV strain Assessment
3.5.3. Sinus Rhythm versus Atrial Fibrillation Subanalysis
3.5.4. Nonischemic versus Ischemic Etiology Subanalysis
4. Discussion
Study Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McMurray, J.J.V.; Packer, M.; Desai, A.S.; Gong, J.; Lefkowitz, M.P.; Rizkala, A.R.; Rouleau, J.L.; Shi, V.C.; Solomon, S.D.; Swedberg, K.; et al. Angiotensin–Neprilysin Inhibition versus Enalapril in Heart Failure. N. Engl. J. Med. 2014, 371, 993–1004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abumayyaleh, M.; El-Battrawy, I.; Kummer, M.; Pilsinger, C.; Sattler, K.; Kuschyk, J.; Aweimer, A.; Mügge, A.; Borggrefe, M.; Akin, I. Comparison of the prognosis and outcome of heart failure with reduced ejection fraction patients treated with sacubitril/valsartan according to age. Future Cardiol. 2021, 17, 1131–1142. [Google Scholar] [CrossRef]
- Abumayyaleh, M.; El-Battrawy, I.; Behnes, M.; Borggrefe, M.; Akin, I. Current evidence of sacubitril/valsartan in the treatment of heart failure with reduced ejection fraction. Future Cardiol. 2020, 16, 227–236. [Google Scholar] [CrossRef] [PubMed]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 2021, 42, 3599–3726. [Google Scholar] [CrossRef] [PubMed]
- Luo, N.; Fonarow, G.C.; Lippmann, S.J.; Mi, X.; Heidenreich, P.A.; Yancy, C.W.; Greiner, M.A.; Hammill, B.G.; Hardy, N.C.; Turner, S.J.; et al. Early Adoption of Sacubitril/Valsartan for Patients With Heart Failure With Reduced Ejection Fraction. JACC Heart Fail. 2017, 5, 305–309. [Google Scholar] [CrossRef]
- Ozaki, A.F.; Krumholz, H.M.; Mody, F.V.; Tran, T.T.; Le, Q.T.; Yokota, M.; Jackevicius, C.A. Prior Authorization, Copayments, and Utilization of Sacubitril/Valsartan in Medicare and Commercial Plans in Patients With Heart Failure With Reduced Ejection Fraction. Circ. Cardiovasc. Qual. Outcomes 2021, 14, e007665. [Google Scholar] [CrossRef]
- Martens, P.; Beliën, H.; Dupont, M.; Vandervoort, P.; Mullens, W. The reverse remodeling response to sacubitril/valsartan therapy in heart failure with reduced ejection fraction. Cardiovasc. Ther. 2018, 36, e12435. [Google Scholar] [CrossRef] [Green Version]
- Almufleh, A.; Marbach, J.; Chih, S.; Stadnick, E.; Davies, R.; Liu, P.; Mielniczuk, L. Ejection fraction improvement and reverse remodeling achieved with Sacubitril/Valsartan in heart failure with reduced ejection fraction patients. Am. J. Cardiovasc. Dis. 2017, 7, 108–113. [Google Scholar]
- Abumayyaleh, M.; Pilsinger, C.; El-Battrawy, I.; Kummer, M.; Kuschyk, J.; Borggrefe, M.; Mügge, A.; Aweimer, A.; Akin, I. Clinical Outcomes in Patients with Ischemic versus Non-Ischemic Cardiomyopathy after Angiotensin-Neprilysin Inhibition Therapy. J. Clin. Med. 2021, 10, 4989. [Google Scholar] [CrossRef]
- Abumayyaleh, M.; Demmer, J.; Krack, C.; Pilsinger, C.; El-Battrawy, I.; Behnes, M.; Aweimer, A.; Mügge, A.; Lang, S.; Akin, I. Hemodynamic Effects of Sacubitril/Valsartan in Patients with Reduced Left Ventricular Ejection Fraction Over 24 Months: A Retrospective Study. Am. J. Cardiovasc. Drugs 2022, 22, 535–544. [Google Scholar] [CrossRef]
- El-Battrawy, I.; Demmer, J.; Abumayyaleh, M.; Crack, C.; Pilsinger, C.; Zhou, X.; Mügge, A.; Akin, I.; Aweimer, A. The impact of sacubitril/valsartan on outcome in patients suffering from heart failure with a concomitant diabetes mellitus. ESC Heart Fail. 2022, 10, 943–954. [Google Scholar] [CrossRef]
- El-Battrawy, I.; Pilsinger, C.; Liebe, V.; Lang, S.; Kuschyk, J.; Zhou, X.; Borggrefe, M.; Röger, S.; Akin, I. Impact of Sacubitril/Valsartan on the Long-Term Incidence of Ventricular Arrhythmias in Chronic Heart Failure Patients. J. Clin. Med. 2019, 8, 1582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoit, B.D. Left Atrial Size and Function. J. Am. Coll. Cardiol. 2014, 63, 493–505. [Google Scholar] [CrossRef] [PubMed]
- Badano, L.; Kolias, T.; Muraru, D.; Abraham, T.P.; Aurigemma, G.; Edvardsen, T.; D’Hooge, J.; Donal, E.; Fraser, A.G.; Marwick, T.; et al. Standardization of left atrial, right ventricular, and right atrial deformation imaging using two-dimensional speckle tracking echocardiography: A consensus document of the EACVI/ASE/Ind. Eur. Heart J. Cardiovasc. Imaging 2018, 19, 591–600. [Google Scholar] [CrossRef] [PubMed]
- Voigt, J.U.; Pedrizzetti, G.; Lysyansky, P.; Marwick, T.H.; Houle, H.; Baumann, R.; Pedri, S.; Ito, Y.; Abe, Y.; Metz, S.; et al. Definitions for a common standard for 2D speckle tracking echocardiography: Consensus document of the EACVI/ASE/Industry Task Force to standardize deformation imaging. Eur. Heart J. Cardiovasc. Imaging 2015, 28, 183–193. [Google Scholar] [CrossRef]
- Mizuguchi, Y.; Oishi, Y.; Miyoshi, H.; Iuchi, A.; Nagase, N.; Oki, T. The Functional Role of Longitudinal, Circumferential, and Radial Myocardial Deformation for Regulating the Early Impairment of Left Ventricular Contraction and Relaxation in Patients With Cardiovascular Risk Factors: A Study With Two-Dimensional Strain Imaging. J. Am. Soc. Echocardiogr. 2008, 21, 1138–1144. [Google Scholar] [CrossRef]
- Shah, A.M.; Claggett, B.; Prasad, N.; Li, G.; Volquez, M.; Jering, K.; Cikes, M.; Kovacs, A.; Mullens, W.; Nicolau, J.C.; et al. Impact of Sacubitril/Valsartan Compared With Ramipril on Cardiac Structure and Function After Acute Myocardial Infarction: The PARADISE-MI Echocardiographic Substudy. Circulation 2022, 146, 1067–1081. [Google Scholar] [CrossRef]
- Mondillo, S.; Galderisi, M.; Mele, D.; Cameli, M.; Lomoriello, V.S.; Zacà, V.; Ballo, P.; D’Andrea, A.; Muraru, D.; Losi, M.; et al. Speckle-Tracking Echocardiography. J. Ultrasound Med. 2011, 30, 71–83. [Google Scholar] [CrossRef]
- de Vecchis, R.; Paccone, A.; di Maio, M. Sacubitril/Valsartan Therapy for 14 Months Induces a Marked Improvement of Global Longitudinal Strain in Patients With Chronic Heart Failure: A Retrospective Cohort Study. Cardiol. Res. 2019, 10, 293–302. [Google Scholar] [CrossRef]
- Elshafey, W.E.H.; al Khoufi, E.A.; Elmelegy, E.K. Effects of Sacubitril/Valsartan Treatment on Left Ventricular Myocardial Torsion Mechanics in Patients with Heart Failure Reduced Ejection Fraction 2D Speckle Tracking Echocardiography. J. Cardiovasc. Echogr. 2021, 31, 59–67. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, M.; Hao, Z.; Wang, N.; Zhang, M. Sacubitril/valsartan attenuates atrial structural remodelling in atrial fibrillation patients. ESC Heart Fail. 2022, 9, 2428–2434. [Google Scholar] [CrossRef]
- Suo, Y.; Yuan, M.; Li, H.; Zhang, Y.; Li, Y.; Fu, H.; Han, F.; Ma, C.; Wang, Y.; Bao, Q.; et al. Sacubitr.il/Valsartan Improves Left Atrial and Left Atrial Appendage Function in Patients With Atrial Fibrillation and in Pressure Overload-Induced Mice. Front. Pharmacol. 2019, 10, 1285. [Google Scholar] [CrossRef] [PubMed]
- Moon, M.G.; Hwang, I.C.; Lee, H.J.; Kim, S.-H.; Yoon, Y.E.; Park, J.-B.; Lee, S.-P.; Kim, H.-K.; Kim, Y.-J.; Cho, G.-Y. Reverse Remodeling Assessed by Left Atrial and Ventricular Strain Reflects Treatment Response to Sacubitril/Valsartan. JACC Cardiovasc. Imaging 2022, 15, 1525–1541. [Google Scholar] [CrossRef]
- Ponikowski, P.; Voors, A.A.; Anker, S.D.; Bueno, H.; Cleland, J.G.F.; Coats, A.J.S.; Falk, V.; González-Juanatey, J.R.; Harjola, V.-P.; Jankowska, E.A.; et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. J. Heart Fail. 2016, 18, 891–975. [Google Scholar] [CrossRef]
- Sugimoto, T.; Dulgheru, R.; Bernard, A.; Ilardi, F.; Contu, L.; Addetia, K.; Caballero, L.; Akhaladze, N.; Athanassopoulos, G.D.; Barone, D.; et al. Echocardiographic reference ranges for normal left ventricular 2D strain: Results from the EACVI NORRE study. Eur. Heart J. Cardiovasc. Imaging 2017, 18, 833–840. [Google Scholar] [CrossRef] [PubMed]
- Nagueh, S.F.; Smiseth, O.A.; Appleton, C.P.; Byrd, B.F., 3rd; Dokainish, H.; Edvardsen, T.; Flachskampf, F.A.; Gillebert, T.C.; Klein, A.L.; Lancellotti, P.; et al. Recommendations for the Evaluation of Left Ventricular Diastolic Function by Echocardiography: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 2016, 29, 277–314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donal, E.; Galli, E.; Schnell, F. Left Atrial Strain. Circ. Cardiovasc. Imaging 2017, 10, e007023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donal, E.; Behagel, A.; Feneon, D. Value of left atrial strain: A highly promising field of investigation. Eur. Heart J. Cardiovasc. Imaging 2015, 16, 356–357. [Google Scholar] [CrossRef] [Green Version]
- Sarvari, S.I.; Haugaa, K.H.; Stokke, T.M.; Ansari, H.Z.; Leren, I.S.; Hegbom, F.; Smiseth, O.A.; Edvardsen, T. Strain echocardiographic assessment of left atrial function predicts recurrence of atrial fibrillation. Eur. Heart J. Cardiovasc. Imaging 2016, 17, 660–667. [Google Scholar] [CrossRef] [Green Version]
- Rausch, K.; Shiino, K.; Putrino, A.; Lam, A.K.Y.; Scalia, G.M.; Chan, J. Reproducibility of global left atrial strain and strain rate between novice and expert using multi-vendor analysis software. Int. J. Cardiovasc. Imaging 2019, 35, 419–426. [Google Scholar] [CrossRef]
- Everett, T.H.; Olgin, J.E. Atrial fibrosis and the mechanisms of atrial fibrillation. Heart Rhythm. 2007, 4, S24–S27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inoue, K.; Khan, F.H.; Remme, E.W.; Ohte, N.; García-Izquierdo, E.; Chetrit, M.; Moñivas-Palomero, V.; Mingo-Santos, S.; Andersen, S.; Gude, E.; et al. Determinants of left atrial reservoir and pump strain and use of atrial strain for evaluation of left ventricular filling pressure. Eur. Heart J. Cardiovasc. Imaging 2021, 23, 61–70. [Google Scholar] [CrossRef]
- Huynh, Q.L.; Kalam, K.; Iannaccone, A.; Negishi, K.; Thomas, L.; Marwick, T.H. Functional and Anatomic Responses of the Left Atrium to Change in Estimated Left Ventricular Filling Pressure. J. Am. Soc. Echocardiogr. 2015, 28, 1428–1433.e1. [Google Scholar] [CrossRef]
- Januzzi, J.L.; Prescott, M.F.; Butler, J.; Felker, G.M.; Maisel, A.S.; McCague, K.; Camacho, A.; Piña, I.L.; Rocha, R.A.; Shah, A.M.; et al. Association of Change in N-Terminal Pro–B-Type Natriuretic Peptide Following Initiation of Sacubitril-Valsartan Treatment With Cardiac Structure and Function in Patients With Heart Failure With Reduced Ejection Fraction. JAMA 2019, 322, 1085. [Google Scholar] [CrossRef]
- Mandoli, G.E.; Pastore, M.C.; Giannoni, A.; Benfari, G.; Dini, F.L.; Rosa, G.; Pugliese, N.R.; Taddei, C.; Correale, M.; Brunetti, N.D.; et al. Deformation Imaging by Strain in Chronic Heart Failure Over Sacubitril-Valsartan: A Multicenter Echocardiographic Registry. ESC Heart Fail. 2022, 10, 846–857. [Google Scholar] [CrossRef]
- Morimont, P.; Lambermont, B. Left Ventricular Ejection Fraction Depends on Loading Conditions. ASAIO J. 2019, 65, e64. [Google Scholar] [CrossRef] [PubMed]
- Urheim, S.; Edvardsen, T.; Torp, H.; Angelsen, B.; Smiseth, O.A. Myocardial Strain by Doppler Echocardiography. Circulation 2000, 102, 1158–1164. [Google Scholar] [CrossRef] [Green Version]
- Valentim Gonçalves, A.; Galrinho, A.; Pereira-da-Silva, T.; Branco, L.; Rio, P.; Timóteo, A.T.; Abreu, J.; Soares, R.M.; Feliciano, J.; Moreira, R.I.; et al. Myocardial work improvement after sacubitril–valsartan therapy. J. Cardiovasc. Med. 2020, 21, 223–230. [Google Scholar] [CrossRef]
- McMurray, J.J.V.; Solomon, S.D.; Inzucchi, S.E.; Køber, L.; Kosiborod, M.N.; Martinez, F.A.; Ponikowski, P.; Sabatine, M.S.; Anand, I.S.; Bělohlávek, J.; et al. Dapagliflozin in Patients with Heart Failure and Reduced Ejection Fraction. N. Engl. J. Med. 2019, 381, 1995–2008. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Packer, M.; Anker, S.D.; Butler, J.; Filippatos, G.; Pocock, S.J.; Carson, P.; Januzzi, J.; Verma, S.; Tsutsui, H.; Brueckmann, M.; et al. Cardiovascular and Renal Outcomes with Empagliflozin in Heart Failure. N. Engl. J. Med. 2020, 383, 1413–1424. [Google Scholar] [CrossRef]
- Gamaza-Chulián, S.; Díaz-Retamino, E.; González-Testón, F.; Gaitero, J.C.; Castillo, M.J.; Alfaro, R.; Rodríguez, E.; González-Caballero, E.; Martín-Santana, A. Effect of sodium-glucose cotransporter 2 (SGLT2) inhibitors on left ventricular remodelling and longitudinal strain: A prospective observational study. BMC Cardiovasc. Disord. 2021, 21, 456. [Google Scholar] [CrossRef] [PubMed]
- Dural, İ.E.; Sarı, A.; Ersoy, İ. Effects of 3 months of treatment with empagliflozin on left ventricle global longitudinal strain and myocardial mechano-energetic effiency. Echocardiography 2022, 39, 1095–1100. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, Z.; Fei, H.; Yu, Y.; Ren, S.; Lin, Q.; Li, H.; Tang, Y.; Hou, Y.; Li, M. Left atrial strain reproducibility using vendor-dependent and vendor-independent software. Cardiovasc. Ultrasound 2019, 17, 9. [Google Scholar] [CrossRef] [Green Version]
- Nagata, Y.; Takeuchi, M.; Mizukoshi, K.; Wu, V.C.-C.; Lin, F.-C.; Negishi, K.; Nakatani, S.; Otsuji, Y. Intervendor Variability of Two-Dimensional Strain Using Vendor-Specific and Vendor-Independent Software. J. Am. Soc. Echocardiogr. 2015, 28, 630–641. [Google Scholar] [CrossRef] [PubMed]
Characteristics | n (%) |
---|---|
Mean age (years) | 58.6 ± 11.1 |
Male gender | 29 (82.9%) |
Ischemic etiology | 15 (42.9%) |
NYHA ≥ III | 18 (51.4%) |
Mean BMI (kg/m2) | 28.1 ± 3.8 |
Heart failure hospitalization in the previous year | 15 (42.9%) |
Mean BNP (pg/mL) | 375.3 ± 342.2 |
Current smoker | 7 (20.0%) |
Previous hypertension | 25 (71.4%) |
Dyslipidemia | 25 (71.4%) |
Diabetes mellitus | 11 (31.4%) |
Peripheral artery disease | 4 (11.4%) |
Family history of heart failure | 1 (2.9%) |
Atrial fibrillation | 14 (40%) |
Chronic kidney disease | 2 (5.7%) |
Chronic liver disease | 0 (0) |
Angiotensin-converting enzyme inhibitors | 29 (82.9%) |
Angiotensin II receptor blocker | 6 (17.1%) |
Beta-blocker | 35 (100%) |
Mineralocorticoid receptor antagonist | 33 (94.3%) |
Sodium-glucose co-transporter 2 inhibitor | 11 (31.4%) |
Ivabradine | 13 (37.1%) |
Digoxin | 9 (25.7%) |
Implantable cardioverter-defibrillator | 30 (85.6%) |
Cardiac resynchronization therapy | 7 (20%) |
Percutaneous mitral valve repair (TEER) | 3 (8.6%) |
Characteristics | Time 0 | 6 Months | p-Value |
---|---|---|---|
LV end-diastolic diameter (mm) | 71.3 ± 8.4 | 66.9 ± 7.6 | 0.001 |
LV end-systolic diameter (mm) | 57.8 ± 9.4 | 53.1 ± 9.3 | 0.002 |
Interventricular septum (mm) | 9.6 ± 1.7 | 9.9 ± 1.9 | 0.280 |
LV ejection fraction (%) | 29.3 ± 6.4 | 35.2 ± 8.6 | 0.001 |
Mean septal/lateral E/e’ | 13.6 ± 4.5 | 12.8 ± 4.6 | 0.449 |
Pulmonary artery systolic pressure (mmHg) | 38.3 ± 12.2 | 30.9 ± 10.6 | <0.001 |
Left atrium volume (mL/m2) | 51.5 ± 22.6 | 43.7 ± 15.8 | 0.004 |
Right atrium volume (mL/m2) | 33.1 ± 4.4 | 28.5 ± 13.5 | 0.036 |
Tricuspid annular systolic excursion (mm) | 19.2 ± 4.4 | 20.0 ± 4.8 | 0.404 |
Left atrial strain parameters | |||
LA strain reservoir (%) | 11.5 ± 6.2 | 16.1 ± 7.8 | <0.001 |
LA strain conduit (%) | −6.3 [−8.5–−4.4] | −7.4 [−11.4–−5.0] | 0.003 |
LA strain contraction (%) * | −7.2 ± 4.1 | −10.9 ± 3.9 | 0.003 |
LA strain rate reservoir (s−1) | 0.49 ± 0.22 | 0.65 ± 0.22 | <0.001 |
LA strain rate conduit (s−1) | −0.47 [−0.68–−0.29] | −0.58 [−0.87–−0.39] | 0.018 |
LA strain rate contraction (s−1) * | −0.82 [−1.14–−0.47] | −1.08 [−1.48–−0.94] | 0.018 |
Left ventricular strain parameters | |||
Global longitudinal strain (%) | −7.0 ± 2.6 | −8.9 ± 2.8 | 0.001 |
Peak longitudinal strain (%) | −5.6 ± 2.0 | −9.3 ± 2.7 | <0.001 |
Longitudinal systolic strain rate (s−1) | −0.32 ± 0.11 | −0.47 ± 0.14 | <0.001 |
Longitudinal early diastolic strain rate (s−1) | 0.25 [0.18–0.41] | 0.46 [0.27–0.62] | <0.001 |
Longitudinal late diastolic strain rate (s−1) * | 0.31 ± 0.17 | 0.44 ± 0.19 | 0.002 |
Peak radial strain (%) | 5.9 [4.3–9.2] | 11.7 [7.7–14.7] | <0.001 |
Radial systolic strain rate (s−1) | 0.66 ± 0.26 | 0.90 ± 0.30 | 0.001 |
Radial early diastolic strain rate (s−1) | −0.54 ± 0.48 | −0.95 ± 0.72 | 0.001 |
Radial late diastolic strain rate (s−1) * | −0.58 [−0.86–−0.37] | −0.71 [−1.20–−0.51] | 0.061 |
Peak circumferential strain (%) | −7.7 ± 2.3 | −9.9 ± 2.5 | 0.001 |
Circumferential systolic strain rate (s−1) | −0.78 [−0.97–−0.58] | −0.87 [−1.10–−0.73] | 0.026 |
Circumferential early diastolic strain rate (s−1) | 0.87 ± 0.24 | 0.95 ± 0.21 | 0.102 |
Circumferential late diastolic strain rate (s−1) * | 0.48 [0.34–0.78] | 0.59 [0.50–0.82] | 0.041 |
Sinus Rhythm (n = 21) | Atrial Fibrillation (n = 14) | ||||||
---|---|---|---|---|---|---|---|
Left Atrial Parameters | Time 0 | 6 Months | p-Value | Time 0 | 6 Months | p-Value | p-Value (Interaction) |
LA volume (mL/m2) | 43.8 ± 13.2 | 38.6 ± 13.4 | 0.041 | 67.6 ± 29.6 | 54.4 ± 15.3 | 0.051 | 0.147 |
Reservoir strain (%) | 13.9 ± 5.9 | 19.8 ± 6.5 | <0.001 | 7.0 ± 3.6 | 9.0 ± 4.5 | 0.080 | 0.027 |
Conduit strain (%) | −6.0 [−8.3–−4.4] | −7.3 [−10.8–−4.8] | 0.024 | −6.3 [−10.8–−3.9] | −7.4 [−14.4–−5.3] | 0.056 | 0.850 |
Reservoir strain rate (s−1) | 0.54 ± 0.20 | 0.74 ± 0.15 | 0.001 | 0.38 ± 0.23 | 0.46 ± 0.24 | 0.135 | 0.111 |
Conduit strain rate (s−1) | −0.49 [−0.74–−0.37] | −0.59 [−0.90–−0.41] | 0.060 | −0.34 [−0.60–−0.27] | −0.42 [−0.72–−0.34] | 0.090 | 0.769 |
Left ventricular strain parameters | |||||||
LV end-diastolic diameter (mm) | 70.8 ± 8.8 | 66.4 ± 7.4 | 0.006 | 72.6 ± 7.6 | 68.0 ± 8.4 | 0.052 | 0.975 |
LV ejection fraction (%) | 29.6 ± 6.4 | 40.1 ± 7.9 | <0.001 | 28.7 ± 6.5 | 33.9 ± 8.8 | 0.070 | 0.032 |
Global longitudinal strain (%) | −7.4 ± 2.5 | −9.7 ± 2.5 | 0.001 | −5.9 ± 2.7 | −7.1 ± 2.7 | 0.227 | 0.299 |
Peak longitudinal strain (%) | −6.1 ± 2.0 | −10.0 ± 2.6 | <0.001 | −4.5 ± 1.7 | −7.8 ± 2.3 | <0.001 | 0.477 |
Longitudinal systolic strain rate (s−1) | −0.32 ± 0.11 | −0.50 ± 0.12 | <0.001 | −0.34 ± 0.12 | −0.42 ± 0.17 | 0.095 | 0.046 |
Longitudinal early diastolic strain rate (s−1) | 0.24 [0.17–0.41] | 0.50 [0.27–0.65] | 0.001 | 0.27 [0.20–0.41] | 0.44 [0.25–0.52] | 0.014 | 0.078 |
Peak radial strain (%) | 5.9 [4.9–9.4] | 11.3 [7.6–14.3] | 0.001 | 5.2 [4.0–9.2] | 12.9 [8.8–14.9] | 0.005 | 0.618 |
Radial systolic strain rate (s−1) | 0.68 ± 0.25 | 0.95 ± 0.30 | 0.002 | 0.63 ± 0.31 | 0.78 ± 0.19 | 0.227 | 0.357 |
Radial early diastolic strain rate (s−1) | −0.66 ± 0.31 | −1.10 ± 0.62 | 0.005 | −0.26 ± 0.67 | −0.61 ± 0.85 | 0.117 | 0.739 |
Peak circumferential strain (%) | −7.5 ± 2.3 | −10.7 ± 2.4 | <0.001 | −8.0 ± 2.4 | −8.2 ± 1.7 | 0.855 | 0.028 |
Circumferential systolic strain rate (s−1) | −0.79 [−1.10–−0.62] | −0.98 [−1.25–−0.77] | 0.009 | −0.64 [−0.85–−0.50] | −0.67 [−0.74–−0.64] | 0.919 | 0.129 |
Circumferential early diastolic strain rate (s−1) | 0.84 ± 0.26 | 0.98 ± 0.23 | 0.025 | 0.90 ± 0.15 | 0.94 ± 0.17 | 0.563 | 0.065 |
Nonischemic Etiology (n = 20) | Ischemic Etiology (n = 15) | ||||||
---|---|---|---|---|---|---|---|
Left Atrial Parameters | Time 0 | 6 Months | p-Value | Time 0 | 6 Months | p-Value | p-Value (Interaction) |
LA volume (mL/m2) | 56.2 ± 26.9 | 44.5 ± 15.8 | 0.005 | 44.9 ± 12.6 | 42.6 ± 16.2 | 0.442 | 0.053 |
Reservoir strain (%) | 10.1 ± 4.8 | 15.0 ± 7.8 | 0.001 | 13.5 ± 7.4 | 17.7 ± 7.9 | 0.011 | 0.726 |
Conduit strain (%) | −5.5 [−9.5–−4.2] | −6.0 [−12.5–−4.2] | 0.059 | −6.4 [−8.5–−4.4] | −7.8 [−10.9–−6.9] | 0.033 | 0.957 |
Contraction strain (%) | −6.2 ± 4.4 | −10.6 ± 4.8 | <0.001 | −8.2 ± 3.6 | −11.1 ± 2.7 | 0.052 | 0.327 |
Reservoir strain rate (s−1) | 0.47 ± 0.21 | 0.65 ± 0.24 | 0.001 | 0.51 ± 0.24 | 0.64 ± 0.20 | 0.065 | 0.509 |
Conduit strain rate (s−1) | −0.52 [−0.79–−0.28] | −0.63 [−0.90–−0.35] | 0.184 | −0.46 [−0.63–−0.29] | −0.55 [−0.70–−0.41] | 0.023 | 0.966 |
Contraction strain rate (s−1) | −0.58 [−1.10–0.33] | −1.22 [−1.51–−0.71] | 0.016 | −0.89 [−1.25–−0.66] | −1.07 [−1.28–−1.03] | 0.285 | 0.096 |
Left ventricular strain parameters | |||||||
LV end-diastolic diameter (mm) | 72.4 ± 7.9 | 66.6 ± 8.3 | <0.001 | 70.0 ± 9.0 | 67.5 ± 6.9 | 0.225 | 0.167 |
LV ejection fraction (%) | 28.1 ± 7.1 | 38.9 ± 10.2 | <0.001 | 31.0 ± 5.0 | 37.2 ± 6.0 | 0.002 | 0.083 |
Global longitudinal strain (%) | −6.3 ± 2.1 | −8.9 ± 3.3 | 0.003 | −7.9 ± 3.0 | −9.0 ± 2.1 | 0.092 | 0.146 |
Peak longitudinal strain (%) | −5.1 ± 1.6 | −9.7 ± 3.1 | <0.001 | −6.2 ± 2.4 | −8.8 ± 2.1 | <0.001 | 0.007 |
Longitudinal systolic strain rate (s−1) | −0.31 ± 0.09 | −0.50 ± 0.16 | <0.001 | −0.34 ± 0.14 | −0.44 ± 0.12 | 0.003 | 0.054 |
Longitudinal early diastolic strain rate (s−1) | 0.24 [0.17–0.39] | 0.48 [0.29–0.62] | 0.001 | 0.32 [0.18–0.42] | 0.46 [0.27–0.65] | 0.029 | 0.248 |
Longitudinal late diastolic strain rate (s−1) | −0.28 ± 0.16 | −0.45 ± 0.23 | 0.031 | 0.34 ± 0.18 | 0.43 ± 0.16 | 0.029 | 0.371 |
Peak radial strain (%) | 6.0 [4.3–9.8] | 10.4 [6.7–15.6] | 0.010 | 5.7 [4.8–7.9] | 12.2 [10.0–13.9] | 0.001 | 0.076 |
Radial systolic strain rate (s−1) | 0.63 ± 0.23 | 0.95 ± 0.32 | 0.001 | 0.71 ± 0.31 | 0.83 ± 0.26 | 0.274 | 0.154 |
Radial early diastolic strain rate (s−1) | −0.44 ± 0.42 | −0.90 ± 0.91 | 0.014 | −0.67 ± 0.53 | −1.03 ± 0.36 | 0.031 | 0.679 |
Radial late diastolic strain rate (s−1) | −0.50 [−0.97–−0.34] | −0.67 [−1.29–−0.51] | 0.347 | −0.66 [−0.84–−0.41] | −0.74 [−1.16–−0.45] | 0.090 | 0.601 |
Peak circumferential strain (%) | −7.4 ± 2.5 | −9.5 ± 2.7 | 0.036 | −8.0 ± 2.0 | −10.5 ± 2.2 | 0.008 | 0.779 |
Circumferential systolic strain rate (s−1) | −0.64 [−0.92–−0.51] | −0.87 [−1.08–−0.74] | 0.021 | −0.85 [−1.12–−0.71] | −0.87 [−1.13–−0.69] | 0.530 | 0.135 |
Circumferential early diastolic strain rate (s−1) | 0.88 ± 0.23 | 0.93 ± 0.22 | 0.396 | 0.87 ± 0.26 | 0.98 ± 0.21 | 0.081 | 0.598 |
Circumferential late diastolic strain rate (s−1) | 0.45 [0.28–0.83] | 0.65 [0.50–0.99] | 0.170 | 0.51 [0.38–0.63] | 0.58 [0.45–0.79] | 0.099 | 0.609 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brás, P.G.; Gonçalves, A.V.; Branco, L.M.; Moreira, R.I.; Pereira-da-Silva, T.; Galrinho, A.; Timóteo, A.T.; Rio, P.; Leal, A.; Gameiro, F.; et al. Sacubitril/Valsartan Improves Left Atrial and Ventricular Strain and Strain Rate in Patients with Heart Failure with Reduced Ejection Fraction. Life 2023, 13, 995. https://doi.org/10.3390/life13040995
Brás PG, Gonçalves AV, Branco LM, Moreira RI, Pereira-da-Silva T, Galrinho A, Timóteo AT, Rio P, Leal A, Gameiro F, et al. Sacubitril/Valsartan Improves Left Atrial and Ventricular Strain and Strain Rate in Patients with Heart Failure with Reduced Ejection Fraction. Life. 2023; 13(4):995. https://doi.org/10.3390/life13040995
Chicago/Turabian StyleBrás, Pedro Garcia, António Valentim Gonçalves, Luísa Moura Branco, Rita Ilhão Moreira, Tiago Pereira-da-Silva, Ana Galrinho, Ana Teresa Timóteo, Pedro Rio, Ana Leal, Fernanda Gameiro, and et al. 2023. "Sacubitril/Valsartan Improves Left Atrial and Ventricular Strain and Strain Rate in Patients with Heart Failure with Reduced Ejection Fraction" Life 13, no. 4: 995. https://doi.org/10.3390/life13040995
APA StyleBrás, P. G., Gonçalves, A. V., Branco, L. M., Moreira, R. I., Pereira-da-Silva, T., Galrinho, A., Timóteo, A. T., Rio, P., Leal, A., Gameiro, F., Soares, R. M., & Ferreira, R. C. (2023). Sacubitril/Valsartan Improves Left Atrial and Ventricular Strain and Strain Rate in Patients with Heart Failure with Reduced Ejection Fraction. Life, 13(4), 995. https://doi.org/10.3390/life13040995