The Biodegradation Role of Saccharomyces cerevisiae against Harmful Effects of Mycotoxin Contaminated Diets on Broiler Performance, Immunity Status, and Carcass characteristics
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design and Management
2.2. Toxin Binder Structure
2.3. Mycotoxin Preparation Method
2.4. Diet Preparation and Feeding Regime
2.5. Health and Vaccination Programs
2.6. Performance and Mortality Rate
2.7. Carcass Measurements
2.8. Serum Immune Response
2.9. Statistical Analysis
3. Results
3.1. Performance and Mortality Rate
3.2. Carcass Traits
3.3. Immune Response against Infected Diseases
4. Discussion
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Alagawany, M.; Elnesr, S.S.; Farag, M.R.; Abd El-Hack, M.E.; Khafaga, A.F.; Taha, A.E.; Tiwari, R.; Yatoo, M.I.; Bhatt, B.; Marappan, G.; et al. Use of licorice (Glycyrrhiza glabra) herb as a feed additive in poultry: Current knowledge and prospects. Animals 2019, 9, 536. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Distefano, F.; Haan, N.C.D. Report of the FAO Training “Gender and Livestock Development in East Africa”. In Proceedings of the CGSpace, Nairobi, Kenya, 28–30 May 2018; Available online: https://cgspace.cgiar.org/bitstream/handle/10568/100516/Gender%20and%20livestock%20development%20in%20East%20Africa%20-%20Nairobi-Kenya%2028-29-30-May%202018.pdf?sequence=1 (accessed on 21 January 2020).
- Osuji, M. Assessment of Factors Affecting Poultry (Broiler) Production in Imo State, Nigeria. Asian J. Agric. Ext. Econ. Sociol. 2019, 35, 1–6. [Google Scholar] [CrossRef]
- Wang, N.; Wang, T. Immunization: Vaccine Adjuvant Delivery System and Strategies; IntechOpen: London, UK, 2018. [Google Scholar]
- Khafaga, A.F.; El-Hack, M.E.A.; Taha, A.E.; Elnesr, S.S.; Alagawany, M. The potential modulatory role of herbal additives against Cd toxicity in human, animal, and poultry: A review. Environ. Sci. Pollut. Res. 2019, 26, 4588–4604. [Google Scholar] [CrossRef] [PubMed]
- Kiilholma, J. Food-Safety Concerns in the Poultry Sector of Developing Countries. 2018. Available online: http://www.fao.org/ag/againfo/home/events/bangkok2007/docs/part2/2_8.pdf (accessed on 24 January 2020).
- Kumar, D.; Kalita, P. Reducing postharvest losses during storage of grain crops to strengthen food security in developing countries. Foods 2017, 6, 8. [Google Scholar] [CrossRef] [Green Version]
- Naiel, M.A.; Ismael, N.E.; Shehata, S.A. Ameliorative effect of diets supplemented with rosemary (Rosmarinus officinalis) on aflatoxin B1 toxicity in terms of the performance, liver histopathology, immunity and antioxidant activity of Nile Tilapia (Oreochromis niloticus). Aquacult 2019, 511, 734264. [Google Scholar] [CrossRef]
- Calvo, A.M.; Wilson, R.A.; Bok, J.W.; Keller, N.P. Relationship between secondary metabolism and fungal development. Microbiol. Mol. Biol. Rev. 2002, 66, 447–459. [Google Scholar] [CrossRef] [Green Version]
- Wu, Q.; Jezkova, A.; Yuan, Z.; Pavlikova, L.; Dohnal, V.; Kuca, K. Biological degradation of aflatoxins. Drug Metab. Rev. 2009, 41, 1–7. [Google Scholar] [CrossRef]
- Alshannaq, A.; Yu, J.-H. Occurrence, toxicity, and analysis of major mycotoxins in food. Int. J. Environ. Res. Public Health 2017, 14, 632. [Google Scholar] [CrossRef] [Green Version]
- Akinmusire, O.O.; El-Yuguda, A.-D.; Musa, J.A.; Oyedele, O.A.; Sulyok, M.; Somorin, Y.M.; Ezekiel, C.N.; Krska, R. Mycotoxins in poultry feed and feed ingredients in Nigeria. Mycotoxin Res. 2019, 35, 149–155. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.-K.; Cheng, Y.-H.; Tsai, W.-T.; Liao, R.-W.; Chang, C.-S.; Chien, W.-C.; Jhang, J.-C.; Yu, Y.-H. Prevalence of mycotoxins in feed and feed ingredients between 2015 and 2017 in Taiwan. Environ. Sci. Pollut. Res. 2019, 26, 1–9. [Google Scholar] [CrossRef]
- Bueno, D.J.; Oliver, G. Determination of Aflatoxins and Zearalenone in Different Culture Media, in Public Health Microbiol; Springer: San Miguel de Tucumán, Argentina, 2004; pp. 133–137. [Google Scholar]
- Murugesan, G.; Ledoux, D.; Naehrer, K.; Berthiller, F.; Applegate, T.; Grenier, B.; Phillips, T.; Schatzmayr, G. Prevalence and effects of mycotoxins on poultry health and performance, and recent development in mycotoxin counteracting strategies. Poult. Sci. 2015, 94, 1298–1315. [Google Scholar] [CrossRef] [PubMed]
- Hussain, Z.; Khan, M.Z.; Khan, A.; Javed, I.; Saleemi, M.K.; Mahmood, S.; Asi, M.R. Residues of aflatoxin B1 in broiler meat: Effect of age and dietary aflatoxin B1 levels. Food Chem. Toxicol. 2010, 48, 3304–3307. [Google Scholar] [CrossRef] [PubMed]
- Cole, R.; Taylor, D.; Cole, E.; Suksupath, S.; McDowell, G.; Bryden, W. Cyclopiazonic acid toxicity in the lactating ewe and laying hen [fungal toxin]. In Proceedings of the Nutrition Society of Australia (Australia), Canberra, Australia, 13 March 1988. [Google Scholar]
- Zhang, L.; Ma, Q.; Ma, S.; Zhang, J.; Jia, R.; Ji, C.; Zhao, L. Ameliorating effects of Bacillus subtilis ANSB060 on growth performance, antioxidant functions, and aflatoxin residues in ducks fed diets contaminated with aflatoxins. Toxins 2017, 9, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mishra, H.; Das, C. A review on biological control and metabolism of aflatoxin. J. Crit. Rev. Food Sci. Nutr. 2003, 43, 245–264. [Google Scholar] [CrossRef]
- Zhu, Y.; Hassan, Y.I.; Lepp, D.; Shao, S.; Zhou, T. Strategies and methodologies for developing microbial detoxification systems to mitigate mycotoxins. Toxins 2017, 9, 130. [Google Scholar] [CrossRef] [Green Version]
- Winnie-Pui-Pui Liew, Z.N.; Adilah, L.T.; Sabran, M.-R. The binding efficiency and interaction of Lactobacillus casei Shirota toward aflatoxin B1. Front. Microbiol. 2018, 9, 1503. [Google Scholar] [CrossRef] [Green Version]
- Kolosova, A.; Stroka, J. Evaluation of the effect of mycotoxin binders in animal feed on the analytical performance of standardised methods for the determination of mycotoxins in feed. Food Addit. Contam. Part A 2012, 29, 1959–1971. [Google Scholar] [CrossRef]
- Shetty, P.H.; Jespersen, L. Saccharomyces cerevisiae and lactic acid bacteria as potential mycotoxin decontaminating agents. Trends Food Sci. Technol. 2006, 17, 48–55. [Google Scholar] [CrossRef]
- Jouany, J.P. Methods for preventing, decontaminating and minimizing the toxicity of mycotoxins in feeds. Anim. Feed Sci. Technol. 2007, 137, 342–362. [Google Scholar] [CrossRef]
- Fruhauf, S.; Schwartz, H.; Ottner, F.; Krska, R.; Vekiru, E. Yeast cell based feed additives: Studies on aflatoxin B1 and zearalenone. Food Addit. Contam. Part A 2012, 29, 217–231. [Google Scholar] [CrossRef] [Green Version]
- Joannis-Cassan, C.; Tozlovanu, M.; Hadjeba-Medjdoub, K.; Ballet, N.; Pfohl-Leszkowicz, A. Binding of zearalenone, aflatoxin B1, and ochratoxin A by yeast-based products: A method for quantification of adsorption performance. J. Food Prot. 2011, 74, 1175–1185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huwig, A.; Freimund, S.; Käppeli, O.; Dutler, H. Mycotoxin detoxication of animal feed by different adsorbents. Toxicol. Lett. 2001, 122, 179–188. [Google Scholar] [CrossRef]
- Jouany, J.; Yiannikouris, A.; Bertin, G. The chemical bonds between mycotoxins and cell wall components of Saccharomyces cerevisiae have been identified. Arch. Zootech. 2005, 8, 26–50. [Google Scholar]
- Kelly, C.P.; Pothoulakis, C.; LaMont, J.T. Clostridium difficile colitis. N. Engl. J. Med. 1994, 330, 257–262. [Google Scholar] [CrossRef]
- Farooqui, M.; Khalique, A.; Rashid, M.; Mehmood, S.; Malik, M. Aluminosilicates and yeast-based mycotoxin binders: Their ameliorated effects on growth, immunity and serum chemistry in broilers fed aflatoxin and ochratoxin. S. Afr. J. Anim. Sci. 2019, 49, 619–627. [Google Scholar] [CrossRef]
- Aviagen. Parent Stock Management Handbook: Ross; Aviagen: Midlothian, UK, 2013. [Google Scholar]
- AOAC International. Horwitz, W LATIMER JUNIOR, GW. Official Methods of Analysis of the Association of Analytical Chemists International; The AOAC International: Gaythersburg, MD, USA, 2005. [Google Scholar]
- NRC. Nutrient Requirements of Poultry 9th Edn. National Academy Press, Washington, DC. of Alletchs 10th Annual Symposium; Nottingham University Press: Nottingham, UK, 1994.
- Sakomura, N.K.; Rostagno, H.S. Métodos de Pesquisa em Nutrição de Monogástricos; Funep Jaboticabal: Sao Paulo, Brazil, 2007. [Google Scholar]
- Abd El-Hack, M.E.; Mahrose, K.M.; Attia, F.A.; Swelum, A.A.; Taha, A.E.; Shewita, R.S.; Hussein, E.-S.O.; Alowaimer, A.N. Laying performance, physical, and internal egg quality criteria of hens fed distillers dried grains with solubles and exogenous enzyme mixture. Animals 2019, 9, 150. [Google Scholar]
- Norusis, M. SPSS 16.0 Advanced Statistical Procedures Companion; Prentice Hall Press: One Lake Street Upper Saddle River, NJ, USA, 2008. [Google Scholar]
- El-Naby, F.S.A.; Naiel, M.A.; Al-Sagheer, A.A.; Negm, S.S. Dietary chitosan nanoparticles enhance the growth, production performance, and immunity in Oreochromis niloticus. Aquacult 2019, 501, 82–89. [Google Scholar] [CrossRef]
- Raju, M.; Devegowda, G. Influence of esterified-glucomannan on performance and organ morphology, serum biochemistry and haematology in broilers exposed to individual and combined mycotoxicosis (aflatoxin, ochratoxin and T-2 toxin). Br. Poult. Sci. 2000, 41, 640–650. [Google Scholar] [CrossRef]
- D’mello, J.; Placinta, C.; Macdonald, A. Fusarium mycotoxins: A review of global implications for animal health, welfare and productivity. Anim. Feed. Sci. Technol. 1999, 80, 183–205. [Google Scholar] [CrossRef] [Green Version]
- Yarru, L.; Settivari, R.; Gowda, N.; Antoniou, E.; Ledoux, D.; Rottinghaus, G. Effects of turmeric (Curcuma longa) on the expression of hepatic genes associated with biotransformation, antioxidant, and immune systems in broiler chicks fed aflatoxin. Poult. Sci. 2009, 88, 2620–2627. [Google Scholar] [CrossRef]
- Sridhar, M.; Suganthi, R.; Thammiaha, V. Effect of dietary resveratrol in ameliorating aflatoxin B1-induced changes in broiler birds. J. Anim. Physiol. Anim. Nutr. 2015, 99, 1094–1104. [Google Scholar] [CrossRef]
- Valdivia, A.; Martinez, A.; Damian, F.; Quezada, T.; Ortiz, R.; Martinez, C.; Llamas, J.; Rodriguez, L.; Yamamoto, M.; Jaramillo, F. Efficacy of N-acetylcysteine to reduce the effects of aflatoxin B1 intoxication in broiler chickens. Poult. Sci. 2001, 80, 727–734. [Google Scholar] [CrossRef]
- Yildiz, A.; Parlat, S.; Yildirim, I. Effect of dietary addition of live yeast (Saccharomyces cerevisiae) on some performance parameters of adult Japanese quail (Coturnix coturnix japonica) induced by aflatoxicosis. Revue Méd. Vét. 2004, 155, 38–41. [Google Scholar]
- Santin, E.; Paulillo, A.; Krabbe, E.; Alessi, A.; Polveiro, W.; Maiorka, A. Low level of aflatoxin in broiler at experimental conditions. Use of cell wall yeast as adsorbent of aflatoxin. Arch. Vet. Sci. 2003, 8, 51–55. [Google Scholar]
- Santin, E.; Paulillo, A.; Nakagui, L.; Alessi, A.; Maiorka, A. Evaluation of yeast cell wall on the performance of broiles fed diets with or without mycotoxins. Braz. J. Poult. Sci. 2006, 8, 221–225. [Google Scholar] [CrossRef] [Green Version]
- Koc, F.; Samli, H.; Okur, A.; Ozduven, M.; Akyurek, H.; Senkoylu, N. Effects of Saccharomyces cerevisiae and/or mannanoligosaccharide on performance, blood parameters and intestinal microbiota of broiler chicks. Bulg. J. Agric. Sci. 2010, 16, 643–650. [Google Scholar]
- Dersjant-Li, Y.; Verstegen, M.W.; Gerrits, W.J. The impact of low concentrations of aflatoxin, deoxynivalenol or fumonisin in diets on growing pigs and poultry. Nutr. Res. Rev. 2003, 16, 223–239. [Google Scholar] [CrossRef]
- Zhang, J.; Lü, F.; Shao, L.; He, P. The use of biochar-amended composting to improve the humification and degradation of sewage sludge. Bioresour. Technol. 2014, 168, 252–258. [Google Scholar] [CrossRef]
- Bueno, D.J.; Casale, C.H.; Pizzolitto, R.P.; Salvano, M.A.; Oliver, G. Physical Adsorption of Aflatoxin B1 by Lactic Acid Bacteria and Saccharomyces cerevisiae: A Theoretical Model. J. Food Prot. 2007, 70, 2148–2154. [Google Scholar] [CrossRef]
- Huff, W.; Doerr, J. Synergism between aflatoxin and ochratoxin A in broiler chickens. Poult. Sci. 1981, 60, 550–555. [Google Scholar] [CrossRef]
- Singh, S.; Singh, R.; Mandal, A. Associated efficiency of Saccharomyces cerevisiae and vitamin E in ameliorating adverse effects of ochratoxin on carcass traits and organ weights in broiler chickens. Indian J. Poult. Sci. 2017, 52, 22–27. [Google Scholar] [CrossRef]
- Kidd, M.; Araujo, L.; Araujo, C.; McDaniel, C.; McIntyre, D. A study assessing hen and progeny performance through dam diet fortification with a Saccharomyces cerevisiae fermentation product. J. Appl. Poult. Res. 2013, 22, 872–877. [Google Scholar] [CrossRef]
- Aristides, L.; Venancio, E.; Alfieri, A.; Otonel, R.; Frank, W.; Oba, A. Carcass characteristics and meat quality of broilers fed with different levels of Saccharomyces cerevisiae fermentation product. Poult. Sci. 2018, 97, 3337–3342. [Google Scholar] [CrossRef]
- Girish, C.; Devegowda, G. Efficacy of Glucomannan-containing Yeast Product (Mycosorb) and Hydrated Sodium Calcium Aluminosilicate in Preventing the Individual and Combined Toxicity of Aflatoxin and T-2 Toxin in Commercial Broilers. Asian-Australas. J. Anim. Sci. 2006, 19, 877–883. [Google Scholar] [CrossRef]
- Raju, M.; Devegowda, G. Esterified-glucomannan in broiler chicken diets-contaminated with aflatoxin, ochratoxin and T-2 toxin: Evaluation of its binding ability (in vitro) and efficacy as immunomodulator. Asian-Australas. J. Anim. Sci. 2002, 15, 1051–1056. [Google Scholar] [CrossRef]
- Piotrowska, M.; Masek, A. Saccharomyces cerevisiae cell wall components as tools for ochratoxin A decontamination. Toxins 2015, 7, 1151–1162. [Google Scholar] [CrossRef] [Green Version]
- Dvorska, J.; Surai, P. Effects of T-2 toxin, zeolite and Mycosorb on antioxidant systems of growing quail. Asian-Australas. J. Anim. Sci. 2001, 14, 1752–1757. [Google Scholar] [CrossRef]
Ingredients | Starter Diet (%) | Finisher Diet (%) |
---|---|---|
Maize | 52.3 | 54.5 |
Corn Gluten Meal 30% | 2.5 | 0 |
Corn Gluten Meal 60% | 2.5 | 1.6 |
Canola Meal | 15 | 14 |
Poultry by Product Meal 1 | 4 | 6 |
Soybean Meal (Hi-Pro) | 19 | 17.8 |
Poultry Oil 2 | 2 | 3.8 |
Limestone | 1 | 0.9 |
Salt | 0.1 | 0.1 |
Di-calcium Phosphate | 0.4 | 0.25 |
Sodium Bi Carbonate | 0.18 | 0.2 |
Lysine Sulphate 70% | 0.43 | 0.32 |
DL-Methionine 99% | 0.19 | 0.19 |
L-Threonine | 0.08 | 0.02 |
Premix 3 | 0.32 | 0.32 |
Total | 100 | 100 |
Chemical composition | ||
Crude Protein | 23% | 22% |
Metabolizable Energy | 2900 Kcal/Kg | 3050 Kcal/Kg |
Dig. Lysine 4 | 1.27% | 1.19% |
Day | Vaccine | Type | Route |
---|---|---|---|
1st | IBD (Infectious bursal disease) | Live virus vaccine | Injection Subcutaneous on neck |
IB (Infectious bronchitis—serotype Massachusetts (Strain Ma5) | Live virus vaccine | Eye Drop | |
ND (Newcastle disease) virus strain Clone 30 | Live virus vaccine | Eye Drop | |
9th | ND (Strain Ulster 2C (ND) | Killed virus vaccine | Injection Subcutaneous on neck |
H9 (H9N2 Middle East Avian influenza) | |||
20th | ND | Live attenuated virus vaccine | Drinking water |
Parameters (g) | Treatments | p-Value | |||||
---|---|---|---|---|---|---|---|
A | B | C | D | SEM | Linear | Quadratic | |
BWG (g) | 1776 d | 1814 c | 1944 b | 2004 a | 9.985 | 0.00 | 0.274 |
FI (g) | 3094 c | 3087 c | 3110 b | 3130 a | 2.931 | 0.00 | 0.00 |
FCR (%) | 1.74 a | 1.70 b | 1.60 c | 1.56 d | 0.009 | 0.00 | 0.90 |
Mortality rate (%) | 4.0 | 4.0 | 4.0 | 0.0 | 2.12 | 0.224 | 0.36 |
Parameters (g) | Treatments | p-Value | |||||
---|---|---|---|---|---|---|---|
A | B | C | D | SEM | Linear | Quadratic | |
Live Body weight | 1776 d | 1814 c | 1944 b | 2004 a | 2.985 | 0.00 | 0.274 |
Carcass weight | 1028 d | 1083 c | 1196 b | 1241 a | 1.856 | 0.000 | 0.507 |
Dressing percentage | 56.61 d | 58.24 c | 59.50 b | 62.69 a | 0.199 | 0.000 | 0.001 |
breast muscle | 331.47 d | 386.53 c | 484.33 b | 513.20 a | 5.512 | 0.000 | 0.030 |
Relative heart weight | 0.63 b | 0.64 a,b | 0.61 a | 0.59 a,b | 0.171 | 0.034 | 0.224 |
Relative liver weight | 6.21 a | 5.18 b | 3.53 c | 3.04 d | 2.512 | 0.000 | 0.062 |
Relative gizzard weight | 2.10 | 2.08 | 1.92 | 1.89 | 0.401 | 0.476 | 1.058 |
Relative proventriculus weight | 0.64 | 0.64 | 0.60 | 0.58 | 0.201 | 0.217 | 0.657 |
Relative kidney weight | 0.62 | 0.61 | 0.57 | 0.53 | 0.345 | 0.521 | 0.451 |
Relative intestine weight | 0.71 a | 0.64 b | 0.55 c | 0.04 d | 1.335 | 0.000 | 0.012 |
Relative drumsticks weight | 19.29 d | 23.35 c | 26.07 b | 27.40 a | 7.514 | 0.000 | 0.021 |
Parameters | Treatments | p-Value | |||||
---|---|---|---|---|---|---|---|
A | B | C | D | SEM | Linear | Quadratic | |
ND | 56 d | 79 c | 102 b | 122 a | 1.581 | 0.00 | 0.397 |
IBD | 59 d | 72 c | 81 b | 89 a | 1.936 | 0.00 | 0.266 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arif, M.; Iram, A.; Bhutta, M.A.K.; Naiel, M.A.E.; Abd El-Hack, M.E.; Othman, S.I.; Allam, A.A.; Amer, M.S.; Taha, A.E. The Biodegradation Role of Saccharomyces cerevisiae against Harmful Effects of Mycotoxin Contaminated Diets on Broiler Performance, Immunity Status, and Carcass characteristics. Animals 2020, 10, 238. https://doi.org/10.3390/ani10020238
Arif M, Iram A, Bhutta MAK, Naiel MAE, Abd El-Hack ME, Othman SI, Allam AA, Amer MS, Taha AE. The Biodegradation Role of Saccharomyces cerevisiae against Harmful Effects of Mycotoxin Contaminated Diets on Broiler Performance, Immunity Status, and Carcass characteristics. Animals. 2020; 10(2):238. https://doi.org/10.3390/ani10020238
Chicago/Turabian StyleArif, Muhammad, Atia Iram, Muhammad A. K. Bhutta, Mohammed A. E. Naiel, Mohamed E. Abd El-Hack, Sarah I. Othman, Ahmed A. Allam, Mahmoud S. Amer, and Ayman E. Taha. 2020. "The Biodegradation Role of Saccharomyces cerevisiae against Harmful Effects of Mycotoxin Contaminated Diets on Broiler Performance, Immunity Status, and Carcass characteristics" Animals 10, no. 2: 238. https://doi.org/10.3390/ani10020238
APA StyleArif, M., Iram, A., Bhutta, M. A. K., Naiel, M. A. E., Abd El-Hack, M. E., Othman, S. I., Allam, A. A., Amer, M. S., & Taha, A. E. (2020). The Biodegradation Role of Saccharomyces cerevisiae against Harmful Effects of Mycotoxin Contaminated Diets on Broiler Performance, Immunity Status, and Carcass characteristics. Animals, 10(2), 238. https://doi.org/10.3390/ani10020238