Differential Dynamics of the Ruminal Microbiome of Jersey Cows in a Heat Stress Environment
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Diet
2.2. Measurement of Temperature–Humidity Index (THI) and Heat Stress
2.3. Rumen Content Sampling
2.4. DNA Extraction and Purification
2.5. 16S rRNA Gene Sequencing and Analysis
2.6. Whole-Genome Shotgun Sequencing and Analysis
2.7. Statistical Analyses
3. Results
3.1. Heat Stress Response Differences between Holstein and Jersey Cows in Hot Weather Condition
3.2. Changes in the Ruminal Microbial Diversity of Holstein and Jersey Cows in the Heat Stress Environment
3.3. Taxonomic Classification of the Ruminal Bacteria
3.4. Microbial Function Characteristics of Ruminal Metagenomics
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Masson-Delmotte, V.; Zhai, P.; Pörtner, H.-O.; Roberts, D.; Skea, J.; Shukla, P.R.; Pirani, A.; Moufouma-Okia, W.; Péan, C.; Pidcock, R. Global Warming of 1.5 C; An IPCC Special Report on the impacts of global warming; IPCC: Geneva, Switzerland, 2018; Volume 1. [Google Scholar]
- Joo, Y.-S.; Jung, H.-J.; Kim, B.-J. Cluster analysis with Korean weather data: Application of model-based Bayesian clustering method. J. Korean Data Inf. Sci. Soc. 2009, 20, 57–64. [Google Scholar]
- West, J.W. Effects of heat-stress on production in dairy cattle. J. Dairy Sci. 2003, 86, 2131–2144. [Google Scholar] [CrossRef]
- Curtis, S.E. Environmental Management in Animal Agriculture; Iowa State University Press: Ames, IA, USA, 1983. [Google Scholar]
- Armstrong, D. Heat stress interaction with shade and cooling. J. Dairy Sci. 1994, 77, 2044–2050. [Google Scholar] [CrossRef]
- West, J.; Mullinix, B.; Bernard, J. Effects of hot, humid weather on milk temperature, dry matter intake, and milk yield of lactating dairy cows. J. Dairy Sci. 2003, 86, 232–242. [Google Scholar] [CrossRef] [Green Version]
- Beede, D.; Collier, R. Potential nutritional strategies for intensively managed cattle during thermal stress. J. Anim. Sci. 1986, 62, 543–554. [Google Scholar] [CrossRef]
- Bohmanova, J.; Misztal, I.; Cole, J. Temperature-humidity indices as indicators of milk production losses due to heat stress. J. Dairy Sci. 2007, 90, 1947–1956. [Google Scholar] [CrossRef]
- Hammami, H.; Bormann, J.; M’Hamdi, N.; Montaldo, H.H.; Gengler, N. Evaluation of heat stress effects on production traits and somatic cell score of Holsteins in a temperate environment. J. Dairy Sci. 2013, 96, 1844–1855. [Google Scholar] [CrossRef] [Green Version]
- Elvinger, F.; Hansen, P.; Natzke, R. Modulation of function of bovine polymorphonuclear leukocytes and lymphocytes by high temperature in vitro and in vivo. Am. J. Vet. Res. 1991, 52, 1692–1698. [Google Scholar]
- Lacetera, N.; Bernabucci, U.; Scalia, D.; Ronchi, B.; Kuzminsky, G.; Nardone, A. Lymphocyte functions in dairy cows in hot environment. Int. J. Biometeorol. 2005, 50, 105–110. [Google Scholar] [CrossRef]
- St-Pierre, N.; Cobanov, B.; Schnitkey, G. Economic losses from heat stress by US livestock industries. J. Dairy Sci. 2003, 86, E52–E77. [Google Scholar] [CrossRef] [Green Version]
- KOSIS. Population of Cows by Breed. Available online: http://kosis.kr/statHtml/statHtml.do?orgId=101&tblId=DT_1NGB503&conn_path=I2. (accessed on 2 October 2019).
- Nguyen, T.T.; Bowman, P.J.; Haile-Mariam, M.; Pryce, J.E.; Hayes, B.J. Genomic selection for tolerance to heat stress in Australian dairy cattle. J. Dairy Sci. 2016, 99, 2849–2862. [Google Scholar] [CrossRef] [Green Version]
- Melka, M.G.; Schenkel, F.S. Analysis of genetic diversity in Brown Swiss, Jersey and Holstein populations using genome-wide single nucleotide polymorphism markers. BMC Res. Notes 2012, 5, 161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Capper, J.L.; Cady, R.A. A comparison of the environmental impact of Jersey compared with Holstein milk for cheese production. J. Dairy Sci. 2012, 95, 165–176. [Google Scholar] [CrossRef] [PubMed]
- Johnson, H.D. Environmental Physiology and Shelter Engineering with Special Reference to Domestic Animals. LXVI, Temperature-Humidity Effects Including Influence of Acclimation in Feed and Water Consumption of Holstein Cattle; University of Missouri: Columbia, MO, USA, 1963. [Google Scholar]
- Ravagnolo, O.; Misztal, I. Genetic component of heat stress in dairy cattle, parameter estimation. J. Dairy Sci. 2000, 83, 2126–2130. [Google Scholar] [CrossRef]
- Renaudeau, D.; Collin, A.; Yahav, S.; De Basilio, V.; Gourdine, J.-L.; Collier, R. Adaptation to hot climate and strategies to alleviate heat stress in livestock production. Anim. Int. J. Anim. Biosci. 2012, 6, 707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gauly, M.; Bollwein, H.; Breves, G.; Brugemann, K.; Danicke, S.; Das, G.; Demeler, J.; Hansen, H.; Isselstein, J.; Konig, S. Future consequences and challenges for dairy cow production systems arising from climate change in Central Europe-A review. Anim. Int. J. Anim. Biosci. 2013. [Google Scholar] [CrossRef] [Green Version]
- Collier, R.J.; Eley, R.; Sharma, A.; Pereira, R.; Buffington, D. Shade management in subtropical environment for milk yield and composition in Holstein and Jersey cows. J. Dairy Sci. 1981, 64, 844–849. [Google Scholar] [CrossRef]
- Smith, D.; Smith, T.; Rude, B.; Ward, S. Comparison of the effects of heat stress on milk and component yields and somatic cell score in Holstein and Jersey cows. J. Dairy Sci. 2013, 96, 3028–3033. [Google Scholar] [CrossRef]
- Seath, D.; Miller, G. Heat tolerance comparisons between Jersey and Holstein cows. J. Anim. Sci. 1947, 6, 24–34. [Google Scholar] [CrossRef]
- Bianca, W. Reviews of the progress of dairy science. J. Dairy Res. 1965, 32, 291–345. [Google Scholar] [CrossRef]
- Harris, D.; Shrode, R.; Rupel, I.; Leighton, R. A Study of Solar Radiation as Related to Physiological and Production Responses of Lactating Holstein and Jersey Cows1. J. Dairy Sci. 1960, 43, 1255–1262. [Google Scholar] [CrossRef]
- Chen, S.; Wang, J.; Peng, D.; Li, G.; Chen, J.; Gu, X. Exposure to heat-stress environment affects the physiology, circulation levels of cytokines, and microbiome in dairy cows. Sci. Rep. 2018, 8, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heinrichs, A.J.; Lesmeister, K.E. Rumen development in the dairy calf. In Calf and Heifer Rearing; Nottingham University Press: Nottingham, UK, 2005; pp. 53–65. [Google Scholar]
- McCann, J.C.; Wickersham, T.A.; Loor, J.J. High-throughput methods redefine the rumen microbiome and its relationship with nutrition and metabolism. Bioinform. Biol. Insights 2014, 8. [Google Scholar] [CrossRef] [PubMed]
- Golder, H.; Denman, S.; McSweeney, C.; Wales, W.; Auldist, M.; Wright, M.; Marett, L.; Greenwood, J.; Hannah, M.; Celi, P. Effects of partial mixed rations and supplement amounts on milk production and composition, ruminal fermentation, bacterial communities, and ruminal acidosis. J. Dairy Sci. 2014, 97, 5763–5785. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jami, E.; Israel, A.; Kotser, A.; Mizrahi, I. Exploring the bovine rumen bacterial community from birth to adulthood. ISME J. 2013, 7, 1069–1079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prendiville, R.; Lewis, E.; Pierce, K.; Buckley, F. Comparative grazing behavior of lactating Holstein-Friesian, Jersey, and Jersey× Holstein-Friesian dairy cows and its association with intake capacity and production efficiency. J. Dairy Sci. 2010, 93, 764–774. [Google Scholar] [CrossRef] [Green Version]
- Weimer, P.; Stevenson, D.; Mantovani, H.; Man, S. Host specificity of the ruminal bacterial community in the dairy cow following near-total exchange of ruminal contents. J. Dairy Sci. 2010, 93, 5902–5912. [Google Scholar] [CrossRef]
- Wallace, R.J.; Sasson, G.; Garnsworthy, P.C.; Tapio, I.; Gregson, E.; Bani, P.; Huhtanen, P.; Bayat, A.R.; Strozzi, F.; Biscarini, F. A heritable subset of the core rumen microbiome dictates dairy cow productivity and emissions. Sci. Adv. 2019, 5. [Google Scholar] [CrossRef] [Green Version]
- Bate, S.T.; Clark, R.A. The Design and Statistical Analysis of Animal Experiments; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Council, N.R. A Guide to Environmental Research on Animals; National Academies: Washington, DC, USA, 1971. [Google Scholar]
- Skarlupka, J.H.; Kamenetsky, M.E.; Jewell, K.A.; Suen, G. The ruminal bacterial community in lactating dairy cows has limited variation on a day-to-day basis. J. Anim. Sci. Biotechnol. 2019, 10, 66. [Google Scholar] [CrossRef]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [Green Version]
- Magoč, T.; Salzberg, S.L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 2011, 27, 2957–2963. [Google Scholar] [CrossRef]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef] [Green Version]
- Simpson, E.H. Measurement of diversity. Nature 1949, 163, 688. [Google Scholar] [CrossRef]
- Peng, Y.; Leung, H.C.; Yiu, S.-M.; Chin, F.Y. IDBA-UD: A de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics 2012, 28, 1420–1428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hyatt, D.; Chen, G.-L.; LoCascio, P.F.; Land, M.L.; Larimer, F.W.; Hauser, L.J. Prodigal: Prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 2010, 11, 119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huerta-Cepas, J.; Szklarczyk, D.; Forslund, K.; Cook, H.; Heller, D.; Walter, M.C.; Rattei, T.; Mende, D.R.; Sunagawa, S.; Kuhn, M. eggNOG 4.5: A hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Res. 2016, 44, D286–D293. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.; Song, L.; Breitwieser, F.P.; Salzberg, S.L. Centrifuge: Rapid and sensitive classification of metagenomic sequences. Genome Res. 2016, 26, 1721–1729. [Google Scholar] [CrossRef] [Green Version]
- Segata, N.; Izard, J.; Waldron, L.; Gevers, D.; Miropolsky, L.; Garrett, W.S.; Huttenhower, C. Metagenomic biomarker discovery and explanation. Genome Biol. 2011, 12, R60. [Google Scholar] [CrossRef] [Green Version]
- Heegaard, P.M.; Godson, D.L.; Toussaint, M.J.; Tjørnehøj, K.; Larsen, L.E.; Viuff, B.; Rønsholt, L. The acute phase response of haptoglobin and serum amyloid A (SAA) in cattle undergoing experimental infection with bovine respiratory syncytial virus. Vet. Immunol. Immunopathol. 2000, 77, 151–159. [Google Scholar] [CrossRef]
- Kanehisa, M.; Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000, 28, 27–30. [Google Scholar] [CrossRef]
- Kanehisa, M.; Sato, Y.; Kawashima, M.; Furumichi, M.; Tanabe, M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 2016, 44, D457–D462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanehisa, M.; Furumichi, M.; Tanabe, M.; Sato, Y.; Morishima, K. KEGG: New perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 2017, 45, D353–D361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- The UniProt Consortium. UniProt: The universal protein knowledgebase. Nucleic Acids Res. 2018, 46, 2699. [Google Scholar] [CrossRef] [Green Version]
- McDowell, R.E. Improvement of Livestock Production in Warm Climates; W.H. Freeman and Co.: New York, NY, USA, 1972. [Google Scholar]
- Habeeb, A.; Gad, A.; Atta, A. Temperature-humidity indices as indicators to heat stress of climatic conditions with relation to production and reproduction of farm animals. Int. J. Biotechnol. Recent Adv. 2018, 1, 35–50. [Google Scholar] [CrossRef] [Green Version]
- Watson, R.R.; Collier, R.J.; Preedy, V.R. Nutrients in Dairy and Their Implications for Health and Disease; Academic Press: Cambridge, MA, USA, 2017. [Google Scholar]
- Radostits, O.M.; Gay, C.C.; Hinchcliff, K.W.; Constable, P.D. Veterinary Medicine E-Book: A Textbook of the Diseases of Cattle, Horses, Sheep, Pigs and Goats; Elsevier Health Sciences: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Wenz, J.R.; Moore, D.A.; Kasimanickam, R. Factors associated with the rectal temperature of Holstein dairy cows during the first 10 days in milk. J. Dairy Sci. 2011, 94, 1864–1872. [Google Scholar] [CrossRef] [Green Version]
- Igono, M.; Steevens, B.; Shanklin, M.; Johnson, H. Spray cooling effects on milk production, milk, and rectal temperatures of cows during a moderate temperate summer season. J. Dairy Sci. 1985, 68, 979–985. [Google Scholar] [CrossRef]
- Kabuga, J. The influence of thermal conditions on rectal temperature, respiration rate and pulse rate of lactating Holstein-Friesian cows in the humid tropics. Int. J. Biometeorol. 1992, 36, 146–150. [Google Scholar] [CrossRef]
- Debnath, T.; Bera, S.; Deb, S.; Pal, P.; Debbarma, N.; Haldar, A. Application of radio frequency based digital thermometer for real-time monitoring of dairy cattle rectal temperature. Vet. W. 2017, 10, 1052. [Google Scholar] [CrossRef] [Green Version]
- Spellerberg, I.F.; Fedor, P.J. A tribute to Claude Shannon (1916–2001) and a plea for more rigorous use of species richness, species diversity and the ‘Shannon–Wiener’Index. Glob. Ecol. Biogeogr. 2003, 12, 177–179. [Google Scholar] [CrossRef] [Green Version]
- Fernando, S.C.; Purvis, H.; Najar, F.; Sukharnikov, L.; Krehbiel, C.; Nagaraja, T.; Roe, B.; DeSilva, U. Rumen microbial population dynamics during adaptation to a high-grain diet. Appl. Environ. Microbiol. 2010, 76, 7482–7490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomas, M.; Webb, M.; Ghimire, S.; Blair, A.; Olson, K.; Fenske, G.J.; Fonder, A.T.; Christopher-Hennings, J.; Brake, D.; Scaria, J. Metagenomic characterization of the effect of feed additives on the gut microbiome and antibiotic resistome of feedlot cattle. Sci. Rep. 2017, 7, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.; Penner, G.B.; Li, M.; Oba, M. Changes in bacterial diversity associated with epithelial tissue in the beef cow rumen during the transition to a high-grain diet. Appl. Environ. Microbiol. 2011, 77, 5770–5781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mao, S.; Zhang, R.; Wang, D.; Zhu, W. Impact of subacute ruminal acidosis (SARA) adaptation on rumen microbiota in dairy cattle using pyrosequencing. Anaerobe 2013, 24, 12–19. [Google Scholar] [CrossRef]
- Liu, J.-h.; Bian, G.-r.; Zhu, W.-y.; Mao, S.-y. High-grain feeding causes strong shifts in ruminal epithelial bacterial community and expression of Toll-like receptor genes in goats. Front. Microbiol. 2015, 6, 167. [Google Scholar] [CrossRef] [Green Version]
- Shapiro, J.A. Thinking about bacterial populations as multicellular organisms. Annu. Rev. Microbiol. 1998, 52, 81–104. [Google Scholar] [CrossRef] [Green Version]
- Hungate, R. The anaerobic mesophilic cellulolytic bacteria. Bacteriol. Rev. 1950, 14, 1. [Google Scholar] [CrossRef] [Green Version]
- Puniya, A.K.; Singh, R.; Kamra, D.N. Rumen Microbiology: From Evolution to Revolution; Springer India: New Delhi, India, 2015. [Google Scholar]
- Russell, J.B. Heat production by ruminal bacteria in continuous culture and its relationship to maintenance energy. J. Bacteriol. 1986, 168, 694–701. [Google Scholar] [CrossRef] [Green Version]
- Pirt, S. The maintenance energy of bacteria in growing cultures. Proc. Royal Soc. Lond. Ser. B Biol. Sci. 1965, 163, 224–231. [Google Scholar]
- Russell, J.B.; Cook, G.M. Energetics of bacterial growth: Balance of anabolic and catabolic reactions. Microbiol. Mol. Biol. Rev. 1995, 59, 48–62. [Google Scholar] [CrossRef] [Green Version]
- Webster, A. Energy partitioning, tissue growth and appetite control. Proc. Nutr. Soc. 1993, 52, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Macfarlane, S.; Macfarlane, G.T. Regulation of short-chain fatty acid production. Proc. Nutr. Soc. 2003, 62, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Annison, E. Volatile fatty acid metabolism and energy supply. In Physiology of Digestion and Metabolism in the Ruminant; Oriel Press: Newcastle-upon-Tyne, UK, 1970; pp. 422–436. [Google Scholar]
- Ransom-Jones, E.; Jones, D.L.; McCarthy, A.J.; McDonald, J.E. The Fibrobacteres: An important phylum of cellulose-degrading bacteria. Microb. Ecol. 2012, 63, 267–281. [Google Scholar] [CrossRef] [PubMed]
- Ventura, M.; Canchaya, C.; Tauch, A.; Chandra, G.; Fitzgerald, G.F.; Chater, K.F.; van Sinderen, D. Genomics of Actinobacteria: Tracing the evolutionary history of an ancient phylum. Microbiol. Mol. Biol. Rev. 2007, 71, 495–548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vos, P.; Garrity, G.; Jones, D.; Krieg, N.R.; Ludwig, W.; Rainey, F.A.; Schleifer, K.-H.; Whitman, W.B. Bergey’s Manual of Systematic Bacteriology, The Firmicutes; Springer Science & Business Media: Berlin, Germany, 2011; Volume 3. [Google Scholar]
- Deusch, S.; Camarinha-Silva, A.; Conrad, J.; Beifuss, U.; Rodehutscord, M.; Seifert, J. A structural and functional elucidation of the rumen microbiome influenced by various diets and microenvironments. Front. Microbiol. 2017, 8, 1605. [Google Scholar] [CrossRef] [Green Version]
- Bernabucci, U.; Lacetera, N.; Basiricò, L.; Ronchi, B.; Morera, P.; Serene, E.; Nardone, A. Hot season and BCS affect leptin secretion of periparturient dairy cows. J. Anim. Sci. 2006, 84, 348–349. [Google Scholar]
- Hansen, P.J. Effects of heat stress on mammalian reproduction. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 3341–3350. [Google Scholar] [CrossRef]
- Hungate, R.E. The Rumen and Its Microbes; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Feder, M.E.; Hofmann, G.E. Heat-shock proteins, molecular chaperones, and the stress response: Evolutionary and ecological physiology. Annu. Rev. Physiol. 1999, 61, 243–282. [Google Scholar] [CrossRef] [Green Version]
- Sørensen, J.G.; Kristensen, T.N.; Loeschcke, V. The evolutionary and ecological role of heat shock proteins. Ecol. Lett. 2003, 6, 1025–1037. [Google Scholar] [CrossRef]
- Rosic, N.N.; Pernice, M.; Dove, S.; Dunn, S.; Hoegh-Guldberg, O. Gene expression profiles of cytosolic heat shock proteins Hsp70 and Hsp90 from symbiotic dinoflagellates in response to thermal stress: Possible implications for coral bleaching. Cell Stress Chaperones 2011, 16, 69–80. [Google Scholar] [CrossRef] [Green Version]
- Richier, S.; Furla, P.; Plantivaux, A.; Merle, P.-L.; Allemand, D. Symbiosis-induced adaptation to oxidative stress. J. Exp. Biol. 2005, 208, 277–285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Item | Amount |
---|---|
Ingredients composition, % of DM | |
Concentrate | 15.3 |
Soybean meal | 2.40 |
Corn silage | 47.2 |
Alfalfa hay | 7.10 |
Tall fescue | 9.40 |
Timothy | 5.90 |
Energy booster 1 | 7.10 |
Cash Gold 1 | 5.00 |
Lyzin-Plus 2 | 0.20 |
Limestone | 0.20 |
Zin Care 1 | 0.10 |
Supex-F 1 | 0.50 |
Trace minerals 3 | 0.05 |
Vitamins premix 4 | 0.05 |
Chemical composition | |
Dry matter (DM), % | 53.2 |
Crude protein, % of DM | 10.0 |
Neutral detergent fiber, % of DM | 28.2 |
Acid detergent fiber, % of DM | 16.9 |
Calcium, % of DM | 0.40 |
Phosphorus, % of DM | 0.15 |
Item | Normal Environment | Heat Stress Environment | SEM 1 | p-Value | ||||
---|---|---|---|---|---|---|---|---|
Holstein | Jersey | Holstein | Jersey | Breed | Time | Breed × Time | ||
Shannon | 7.48 | 7.76 | 7.83 | 7.95 | 0.410 | 0.16 | 0.06 | 0.54 |
Simpson | 0.974 | 0.985 | 0.982 | 0.985 | 0.018 | 0.34 | 0.32 | 0.42 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, D.-H.; Kim, M.-H.; Kim, S.-B.; Son, J.-K.; Lee, J.-H.; Joo, S.-S.; Gu, B.-H.; Park, T.; Park, B.-Y.; Kim, E.-T. Differential Dynamics of the Ruminal Microbiome of Jersey Cows in a Heat Stress Environment. Animals 2020, 10, 1127. https://doi.org/10.3390/ani10071127
Kim D-H, Kim M-H, Kim S-B, Son J-K, Lee J-H, Joo S-S, Gu B-H, Park T, Park B-Y, Kim E-T. Differential Dynamics of the Ruminal Microbiome of Jersey Cows in a Heat Stress Environment. Animals. 2020; 10(7):1127. https://doi.org/10.3390/ani10071127
Chicago/Turabian StyleKim, Dong-Hyeon, Myung-Hoo Kim, Sang-Bum Kim, Jun-Kyu Son, Ji-Hwan Lee, Sang-Seok Joo, Bon-Hee Gu, Tansol Park, Beom-Young Park, and Eun-Tae Kim. 2020. "Differential Dynamics of the Ruminal Microbiome of Jersey Cows in a Heat Stress Environment" Animals 10, no. 7: 1127. https://doi.org/10.3390/ani10071127
APA StyleKim, D. -H., Kim, M. -H., Kim, S. -B., Son, J. -K., Lee, J. -H., Joo, S. -S., Gu, B. -H., Park, T., Park, B. -Y., & Kim, E. -T. (2020). Differential Dynamics of the Ruminal Microbiome of Jersey Cows in a Heat Stress Environment. Animals, 10(7), 1127. https://doi.org/10.3390/ani10071127