Plasma Amino Acid Concentration in Obese Horses with/without Insulin Dysregulation and Laminitis
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Dynamic Testing
2.3. Determination of the Amino Acid Concentration
2.3.1. Sample Preparation for the Amino Acid Analysis
2.3.2. Amino Acid Analysis
2.4. Statistical Analysis
2.5. Ethical Statement
3. Results
3.1. Study Participants
3.2. Endocrine Testing
3.3. Amino Acid Concentrations
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Karikoski, N.P.; Horn, I.; McGowan, T.W.; McGowan, C.M. The prevalence of endocrinopathic laminitis among horses presented for laminitis at a first-opinion/referral equine hospital. Domest. Anim. Endocrinol. 2011, 41, 111–117. [Google Scholar] [CrossRef]
- Karikoski, N.P.; McGowan, C.M.; Singer, E.R.; Asplin, K.E.; Tulamo, R.M.; Patterson-Kane, J.C. Pathology of Natural Cases of Equine Endocrinopathic Laminitis Associated With Hyperinsulinemia. Vet. Pathol. 2015, 52, 945–956. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karikoski, N.P.; Patterson-Kane, J.C.; Singer, E.R.; McFarlane, D.; McGowan, C.M. Lamellar pathology in horses with pituitary pars intermedia dysfunction. Equine Vet. J. 2016, 48, 472–478. [Google Scholar] [CrossRef] [PubMed]
- Stokes, S.M.; Stefanovski, D.; Bertin, F.-R.; Medina-Torres, C.E.; Belknap, J.K.; van Eps, A.W. Plasma amino acid concentrations during experimental hyperinsulinemia in 2 laminitis models. J. Vet. Intern. Med. 2021, 35, 1589–1596. [Google Scholar] [CrossRef] [PubMed]
- Sandow, C.; Fugler, L.A.; Leise, B.; Riggs, L.; Monroe, W.T.; Totaro, N.; Belknap, J.; Eades, S. Ex vivo effects of insulin on the structural integrity of equine digital lamellae. Equine Vet. J. 2019, 51, 131–135. [Google Scholar] [CrossRef] [PubMed]
- de Laat, M.A.; Pollitt, C.C.; Kyaw-Tanner, M.T.; McGowan, C.M.; Sillence, M.N. A potential role for lamellar insulin-like growth factor-1 receptor in the pathogenesis of hyperinsulinaemic laminitis. Vet. J. 2013, 197, 302–306. [Google Scholar] [CrossRef] [Green Version]
- Lane, H.E.; Burns, T.A.; Hegedus, O.C.; Watts, M.R.; Weber, P.S.; Woltman, K.A.; Geor, R.J.; McCutcheon, L.J.; Eades, S.C.; Mathes, L.E.; et al. Lamellar events related to insulin-like growth factor-1 receptor signalling in two models relevant to endocrinopathic laminitis. Equine Vet. J. 2017, 49, 643–654. [Google Scholar] [CrossRef]
- Fukagawa, N.K.; Minaker, K.L.; Young, V.R.; Rowe, J.W. Insulin dose-dependent reductions in plasma amino acids in man. Am. J. Physiol. 1986, 250, E13–E17. [Google Scholar] [CrossRef]
- Urschel, K.L.; Escobar, J.; McCutcheon, L.J.; Geor, R.J. Insulin infusion stimulates whole-body protein synthesis and activates the upstream and downstream effectors of mechanistic target of rapamycin signaling in the gluteus medius muscle of mature horses. Domest. Anim. Endocrinol. 2014, 47, 92–100. [Google Scholar] [CrossRef]
- Hillier, T.A.; Fryburg, D.A.; Jahn, L.A.; Barrett, E.J. Extreme hyperinsulinemia unmasks insulin’s effect to stimulate protein synthesis in the human forearm. Am. J. Physiol. 1998, 274, E1067–E1074. [Google Scholar] [CrossRef]
- Timmerman, K.L.; Lee, J.L.; Dreyer, H.C.; Dhanani, S.; Glynn, E.L.; Fry, C.S.; Drummond, M.J.; Sheffield-Moore, M.; Rasmussen, B.B.; Volpi, E. Insulin stimulates human skeletal muscle protein synthesis via an indirect mechanism involving endothelial-dependent vasodilation and mammalian target of rapamycin complex 1 signaling. J. Clin. Endocrinol. Metab. 2010, 95, 3848–3857. [Google Scholar] [CrossRef] [PubMed]
- Tuvdendorj, D.; Børsheim, E.; Sharp, C.P.; Zhang, X.; Barone, C.M.; Chinkes, D.L.; Wolfe, R.R. Amino Acid Availability Regulates the Effect of Hyperinsulinemia on Skin Protein Metabolism in Pigs. J. Biol. Chem. 2015, 290, 17776–17783. [Google Scholar] [CrossRef] [Green Version]
- Loftus, J.P.; Center, S.A.; Lucy, J.M.; Stanton, J.A.; McDonough, S.P.; Peters-Kennedy, J.; Arceneaux, K.A.; Bechtold, M.A.; Bennett, C.L.; Bradbury, C.A.; et al. Characterization of aminoaciduria and hypoaminoacidemia in dogs with hepatocutaneous syndrome. Am. J. Vet. Res. 2017, 78, 735–744. [Google Scholar] [CrossRef] [PubMed]
- Outerbridge, C.A.; Marks, S.L.; Rogers, Q.R. Plasma amino acid concentrations in 36 dogs with histologically confirmed superficial necrolytic dermatitis. Vet. Dermatol. 2002, 13, 177–186. [Google Scholar] [CrossRef] [PubMed]
- Flores, K.; Chikowski, R.; Morrell, D.S. Acrodermatitis dysmetabolica in an infant with maple syrup urine disease. Clin. Exp. Dermatol. 2016, 41, 651–654. [Google Scholar] [CrossRef] [PubMed]
- March, P.A.; Hillier, A.; Weisbrode, S.E.; Mattoon, J.S.; Johnson, S.E.; DiBartola, S.P.; Brofman, P.J. Superficial necrolytic dermatitis in 11 dogs with a history of phenobarbital administration (1995–2002). J. Vet. Intern. Med. 2004, 18, 65–74. [Google Scholar] [CrossRef] [PubMed]
- Loos, C.M.M.; Dorsch, S.C.; Elzinga, S.E.; Brewster-Barnes, T.; Vanzant, E.S.; Adams, A.A.; Urschel, K.L. A high protein meal affects plasma insulin concentrations and amino acid metabolism in horses with equine metabolic syndrome. Vet. J. 2019, 251, 105341. [Google Scholar] [CrossRef]
- Kienzle, E.; Schramme, S.C. Beurteilung des ernährungszustandes mittels body condition scores und Gewichtsschätzung beim adulten warmblutpferd. Pferdeheilkunde 2004, 20, 517–524. [Google Scholar] [CrossRef] [Green Version]
- Henneke, D.; Potter, G.; Kreider, J. Body condition during pregnancy and lactation and reproductive efficiency of mares. Theriogenology 1984, 21, 897–909. [Google Scholar] [CrossRef]
- Thieme, K.; Ehrle, A.; Lischer, C. Morphometrische Messungen am Pferdehuf–eine Literaturübersicht. Pferdeheilkunde 2015, 31, 108–118. [Google Scholar] [CrossRef]
- Eiler, H.; Frank, N.; Andrews, F.M.; Oliver, J.W.; Fecteau, K.A. Physiologic assessment of blood glucose homeostasis via combined intravenous glucose and insulin testing in horses. Am. J. Vet. Res. 2005, 66, 1598–1604. [Google Scholar] [CrossRef] [PubMed]
- Olesen, J.E.; Børgesen, C.D.; Elsgaard, L.; Palosuo, T.; Rötter, R.; Skjelvåg, A.; Peltonen-Sainio, P.; Börjesson, T.; Trnka, M.; Ewert, F. Changes in time of sowing, flowering and maturity of cereals in Europe under climate change. Food Addit. Contam. Part A 2012, 29, 1527–1542. [Google Scholar] [CrossRef] [PubMed]
- Routschek, A.; Schmidt, J.; Kreienkamp, F. Impact of climate change on soil erosion—A high-resolution projection on catchment scale until 2100 in Saxony/Germany. Catena 2014, 121, 99–109. [Google Scholar] [CrossRef]
- Tiley, H.A.; Geor, R.J.; McCutcheon, L.J. Effects of dexamethasone on glucose dynamics and insulin sensitivity in healthy horses. Am. J. Vet. Res. 2007, 68, 753–759. [Google Scholar] [CrossRef] [PubMed]
- Haffner, J.; Eiler, H.; Hoffman, R.; Fecteau, K.; Oliver, J. Effect of a single dose of dexamethasone on glucose homeostasis in healthy horses by using the combined intravenous glucose and insulin test. J. Anim. Sci. 2009, 87, 131–135. [Google Scholar] [CrossRef] [PubMed]
- Firshman, A.M.; Valberg, S.J.; Karges, T.L.; Benedict, L.E.; Annandale, E.J.; Seaquist, E.R. Serum creatine kinase response to exercise during dexamethasone-induced insulin resistance in Quarter Horses with polysaccharide storage myopathy. Am. J. Vet. Res. 2005, 66, 1718–1723. [Google Scholar] [CrossRef] [PubMed]
- Cartmill, J.; Thompson, D., Jr.; Storer, W.; Crowley, J.; Huff, N.; Waller, C. Effect of dexamethasone, feeding time, and insulin infusion on leptin concentrations in stallions. J. Anim. Sci. 2005, 83, 1875–1881. [Google Scholar] [CrossRef]
- Bailey, S.R.; Menzies-Gow, N.J.; Harris, P.A.; Habershon-Butcher, J.L.; Crawford, C.; Berhane, Y.; Boston, R.C.; Elliott, J. Effect of dietary fructans and dexamethasone administration on the insulin response of ponies predisposed to laminitis. J. Am. Vet. Med. Assoc. 2007, 231, 1365–1373. [Google Scholar] [CrossRef]
- Tiley, H.A.; Geor, R.J.; McCutcheon, L.J. Effects of dexamethasone administration on insulin resistance and components of insulin signaling and glucose metabolism in equine skeletal muscle. Am. J. Vet. Res. 2008, 69, 51–58. [Google Scholar] [CrossRef]
- Stoeckle, S.D.; Timmermann, D.; Merle, R.; Gehlen, H. Plasma Amino Acids in Horses Suffering from Pituitary Pars Intermedia Dysfunction. Animals 2022, 12, 3315. [Google Scholar] [CrossRef]
- De Vries, J.L. Mechanism of Intestinal and Skeletal Muscle Glucose and Amino Acid Uptake in Pituitary Pars Intermedia Dysfunction; Michigan State University: East Lansing, MI, USA, 2015. [Google Scholar]
- Horn, F. Biochemie des Menschen, 8th ed.; Georg Thieme Verlag: Stuttgard, Germany, 2020. [Google Scholar]
- Wu, G.; Fang, Y.Z.; Yang, S.; Lupton, J.R.; Turner, N.D. Glutathione metabolism and its implications for health. J. Nutr. 2004, 134, 489–492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dever, J.T.; Elfarra, A.A. The biochemical and toxicological significance of hypermethionemia: New insights and clinical relevance. Expert Opin. Drug Metab. Toxicol. 2010, 6, 1333–1346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clark, A.K.; Rakes, A.H. Effect of Methionine Hydroxy Analog Supplementation on Dairy Cattle Hoof Growth and Composition 1, 2. J. Dairy Sci. 1982, 65, 1493–1502. [Google Scholar] [CrossRef] [PubMed]
- Livesey, C.; Laven, R. Effects of housing and intake of methionine on the growth and wear of hoof horn and the conformation of the hooves of first-lactation Holstein heifers. Vet. Rec. 2007, 160, 470–476. [Google Scholar] [CrossRef] [PubMed]
- Randhawa, S.S.; Dua, K.; Singh, R.; Dhaliwal, P.; Sharma, A. Effect of supplementation of zinc methionine on claw characteristics in crossbred dairy cattle. Indian J. Anim. Sci. 2012, 82, 304. [Google Scholar]
- Benevenga, N.; Steele, R. Adverse effects of excessive consumption of amino acids. Annu. Rev. Nutr. 1984, 4, 157–181. [Google Scholar] [CrossRef]
- Garlick, P.J. Toxicity of methionine in humans. J. Nutr. 2006, 136, 1722S–1725S. [Google Scholar] [CrossRef] [Green Version]
- Baker, D.H. Comparative species utilization and toxicity of sulfur amino acids. J. Nutr. 2006, 136, 1670S–1675S. [Google Scholar] [CrossRef] [Green Version]
- Dilger, R.N.; Toue, S.; Kimura, T.; Sakai, R.; Baker, D.H. Excess dietary L-cysteine, but not L-cystine, is lethal for chicks but not for rats or pigs. J. Nutr. 2007, 137, 331–338. [Google Scholar] [CrossRef] [Green Version]
- Winsco, K.N. Influence of Methionine on Growth and Nitrogen Balance in Weanling Quarter Horses. Master Thesis, Texas A & M University, College Station, TX, USA, 2011. [Google Scholar]
- Kenéz, Á.; Warnken, T.; Feige, K.; Huber, K. Lower plasma trans-4-hydroxyproline and methionine sulfoxide levels are associated with insulin dysregulation in horses. BMC Vet. Res. 2018, 14, 146. [Google Scholar] [CrossRef] [Green Version]
- O’Brien, J.A.; Berger, A.J. Cotransmission of GABA and Glycine to Brain Stem Motoneurons. J. Neurophysiol. 1999, 82, 1638–1641. [Google Scholar] [CrossRef] [PubMed]
- Han, D.-O.; Kim, H.-Y.; Lee, H.-J.; Shim, I.-S.; Hahm, D.-H. Wound healing activity of gamma-aminobutyric acid (GABA) in rats. J. Microbiol. Biotechnol. 2007, 17, 1661–1669. [Google Scholar] [PubMed]
- Uehara, E.; Hokazono, H.; Sasaki, T.; Yoshioka, H.; Matsuo, N. Effects of GABA on the expression of type I collagen gene in normal human dermal fibroblasts. Biosci. Biotechnol. Biochem. 2017, 81, 376–379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Curis, E.; Nicolis, I.; Moinard, C.; Osowska, S.; Zerrouk, N.; Bénazeth, S.; Cynober, L. Almost all about citrulline in mammals. Amino Acids 2005, 29, 177–205. [Google Scholar] [CrossRef] [PubMed]
- Moinard, C.; Cynober, L. Citrulline: A new player in the control of nitrogen homeostasis. J. Nutr. 2007, 137, 1621S–1625S. [Google Scholar] [CrossRef] [Green Version]
- Crenn, P.; Messing, B.; Cynober, L. Citrulline as a biomarker of intestinal failure due to enterocyte mass reduction. Clin. Nutr. 2008, 27, 328–339. [Google Scholar] [CrossRef]
- Crenn, P.; Cynober, L. Effect of intestinal resections on arginine metabolism: Practical implications for nutrition support. Curr. Opin. Clin. Nutr. Metab. Care 2010, 13, 65–69. [Google Scholar] [CrossRef]
- Lau, T.; Owen, W.; Yu, Y.M.; Noviski, N.; Lyons, J.; Zurakowski, D.; Tsay, R.; Ajami, A.; Young, V.R.; Castillo, L. Arginine, citrulline, and nitric oxide metabolism in end-stage renal disease patients. J. Clin. Investig. 2000, 105, 1217–1225. [Google Scholar] [CrossRef] [Green Version]
- Dias, R.G.; Negrão, C.E.; Krieger, M.H. Nitric oxide and the cardiovascular system: Cell activation, vascular reactivity and genetic variant. Arq. Bras. De Cardiol. 2011, 96, 68–75. [Google Scholar]
- Tousoulis, D.; Kampoli, A.-M.; Tentolouris Nikolaos Papageorgiou, C.; Stefanadis, C. The role of nitric oxide on endothelial function. Curr. Vasc. Pharmacol. 2012, 10, 4–18. [Google Scholar] [CrossRef]
- Ardigo, D.; Stüehlinger, M.; Franzini, L.; Valtuena, S.; Piatti, P.; Pachinger, O.; Reaven, G.; Zavaroni, I. ADMA is independently related to flow-mediated vasodilation in subjects at low cardiovascular risk. Eur. J. Clin. Investig. 2007, 37, 263–269. [Google Scholar] [CrossRef] [PubMed]
- Wu, G. Intestinal mucosal amino acid catabolism. J. Nutr. 1998, 128, 1249–1252. [Google Scholar] [CrossRef] [PubMed]
- Romero, M.J.; Platt, D.H.; Caldwell, R.B.; Caldwell, R.W. Therapeutic use of citrulline in cardiovascular disease. Cardiovasc. Drug Rev. 2006, 24, 275–290. [Google Scholar] [CrossRef]
- Kim, J.-a.; Montagnani, M.; Koh, K.K.; Quon, M.J. Reciprocal relationships between insulin resistance and endothelial dysfunction: Molecular and pathophysiological mechanisms. Circulation 2006, 113, 1888–1904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jackson, A.L. Plasma Citrulline Levels in Horses at Risk of Acute Laminitis. Undergraduate Research Scholar Thesis, Texas A & M University, College Station, TX, USA, 2013. [Google Scholar]
Obese | Insulin Dysregulated | Insulin Dysregulated and Laminitic | |
---|---|---|---|
Age (years) | 9.80 ± 2.95 | 14.14 ± 5.11 | 16.63 ± 2.32 |
Weight (kg) | 294.0 ± 167.6 | 353.6 ± 137.1 | 365.0 ± 190.2 |
Body condition score | 8.0 ± 0.0 | 8.3 ± 0.5 | 7.6 ± 1.1 |
Previous diagnosis of PPID | 0 | 0 | 1 |
Treatment with pergolide | 0 | 0 | 1 |
Obese | Insulin Dysregulated | Insulin Dysregulated and Laminitic | |
---|---|---|---|
ACTH (<30 pg/mL) | 19 (12.5–196) | 21.9 (10.1–80.8) | 16.7 (9.8–963) |
Insulin at 0 min (<20 µU/mL) | 2.5 +/− 0.93 µU/mL; | 7.08 +/− 3.75 µU/mL | 15.24 +/− 9.38 µU/mL |
Insulin at 45 min (<100 µU/mL) | 18.31 +/− 9.93 µU/mL | 51.83 +/− 22.49 µU/ml | 144.73 +/− 84.6 µU/mL |
Amino Acid | Obese | ID | IDL | p (ANOVA) | |
---|---|---|---|---|---|
1-Methyl-Histidine | Mean | 23.986 | 19.414 | 17.147 | 0.335 |
Standard deviation | 10.613 | 8.663 | 5.062 | ||
Available Samples | 27 | 27 | 27 | ||
Alanine | Mean | 206.175 | 226.394 | 223.001 | 0.789 |
Standard deviation | 69.407 | 46.584 | 64.663 | ||
Available Samples | 27 | 27 | 27 | ||
Arginine | Mean | 73.388 | 65.889 | 69.635 | 0.772 |
Standard deviation | 18.05 | 17.323 | 20.641 | ||
Available Samples | 27 | 27 | 27 | ||
Asparagine | Mean | 19,858 | 18,167 | 20,147 | 0.726 |
Standard deviation | 7.009 | 4.08 | 8.183 | ||
Available Samples | 27 | 27 | 27 | ||
Citrulline | Mean | 73.001 | 53.724 | 49.194 | 0.038 |
Standard deviation | 12.661 | 16.95 | 15.486 | ||
Available Samples | 27 | 27 | 27 | ||
GABA (Gamma-aminobutyric acid) | Mean | 28.234 | 28.169 | 16.697 | <0.001 |
Standard deviation | 3.885 | 6.739 | 1.679 | ||
Available Samples | 27 | 27 | 27 | ||
Glutamine | Mean | 263.382 | 254.664 | 237.805 | 0.728 |
Standard deviation | 61.853 | 50.585 | 74.643 | ||
Available Samples | 27 | 27 | 27 | ||
Glutamic acid | Mean | 16.292 | 18.53 | 25.391 | 0.116 |
Standard deviation | 2481 | 6956 | 12,126 | ||
Available Samples | 27 | 27 | 27 | ||
Glycine | Mean | 43.641 | 393.742 | 369.839 | 0.669 |
Standard deviation | 84.764 | 152.069 | 10.065 | ||
Available Samples | 27 | 27 | 27 | ||
Histidine | Mean | 73.297 | 76.231 | 71.124 | 0.314 |
Standard deviation | 10.55 | 7.2 | 5.819 | ||
Available Samples | 27 | 27 | 27 | ||
Lysine | Mean | 70.1 | 68.014 | 80.389 | 0.363 |
Standard deviation | 17.088 | 21.831 | 15.858 | ||
Available Samples | 27 | 27 | 27 | ||
Methionine | Mean | 28.691 | 25.617 | 20.143 | 0.019 |
Standard deviation | 5.913 | 4.862 | 3.09 | ||
Available Samples | 27 | 27 | 25 | ||
Ornithine | Mean | 48.718 | 49.153 | 48.782 | 0.997 |
Standard deviation | 10.915 | 15.553 | 11.795 | ||
Available Samples | 27 | 27 | 27 | ||
Phenylalanine | Mean | 52.286 | 53.543 | 56.846 | 0.491 |
Standard deviation | 12.96 | 6.437 | 3.833 | ||
Available Samples | 27 | 27 | 27 | ||
Proline | Mean | 61.044 | 57.062 | 61.151 | 0.834 |
Standard deviation | 20.69 | 10.817 | 23.946 | ||
Available Samples | 27 | 27 | 27 | ||
Serine | Mean | 181.459 | 214.725 | 229.933 | 0.420 |
Standard deviation | 45.655 | 66.886 | 66.504 | ||
Available Samples | 27 | 27 | 27 | ||
Taurine | Mean | 39576 | 36.345 | 33.037 | 0.674 |
Standard deviation | 5.812 | 15.998 | 9.218 | ||
Available Samples | 27 | 27 | 27 | ||
Tryptophan | Mean | 64.037 | 64.699 | 72.756 | 0.308 |
Standard deviation | 11.293 | 12.67 | 12.661 | ||
Available Samples | 27 | 27 | 27 | ||
Valine | Mean | 160.249 | 163.951 | 190.369 | 0.274 |
Standard deviation | 24.689 | 39.447 | 46.052 | ||
Available Samples | 27 | 27 | 27 |
Amino Acid | Obese | ID | IDL | p (Kruskal Wallis Test) | |
---|---|---|---|---|---|
Isoleucine | Median | 44.325 | 59.348 | 65.526 | 0.084 |
Maximum | 66.544 | 100.782 | 84.085 | ||
Minimum | 41.413 | 35.487 | 57.173 | ||
Available Samples | 27 | 27 | 26 | ||
Leucine | Median | 77.476 | 98.757 | 120.116 | 0.078 |
Maximum | 128.293 | 123.473 | 143,189 | ||
Minimum | 71.808 | 69.43 | 60.7 | ||
Available Samples | 27 | 27 | 27 | ||
Threonine | Median | 117.291 | 81.244 | 67.396 | 0.59 |
Maximum | 149.826 | 170.211 | 212.1 | ||
Minimum | 50.631 | 58.425 | 39.823 | ||
Available Samples | 27 | 27 | 27 | ||
Tyrosine | Median | 70.656 | 62.53 | 58.03 | 0.806 |
Maximum | 76.974 | 74.186 | 84.769 | ||
Minimum | 35.127 | 43.782 | 50.1 | ||
Available Samples | 27 | 27 | 27 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stoeckle, S.D.; Timmermann, D.; Merle, R.; Gehlen, H. Plasma Amino Acid Concentration in Obese Horses with/without Insulin Dysregulation and Laminitis. Animals 2022, 12, 3580. https://doi.org/10.3390/ani12243580
Stoeckle SD, Timmermann D, Merle R, Gehlen H. Plasma Amino Acid Concentration in Obese Horses with/without Insulin Dysregulation and Laminitis. Animals. 2022; 12(24):3580. https://doi.org/10.3390/ani12243580
Chicago/Turabian StyleStoeckle, Sabita Diana, Detlef Timmermann, Roswitha Merle, and Heidrun Gehlen. 2022. "Plasma Amino Acid Concentration in Obese Horses with/without Insulin Dysregulation and Laminitis" Animals 12, no. 24: 3580. https://doi.org/10.3390/ani12243580
APA StyleStoeckle, S. D., Timmermann, D., Merle, R., & Gehlen, H. (2022). Plasma Amino Acid Concentration in Obese Horses with/without Insulin Dysregulation and Laminitis. Animals, 12(24), 3580. https://doi.org/10.3390/ani12243580