Gene Expression Analysis before and after the Pelvic Flexure in the Epithelium of the Equine Hindgut
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal Subjects and Sample Collection
2.2. RNA Isolation and Quality Control
2.3. Library Prep and Sequencing
2.4. Bioinformatic Analysis
3. Results
3.1. Sequencing Results
3.2. Mapping Results
3.3. Gene Expression
3.4. Differential Gene Expression
3.5. Functional Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moore, J.N.; Melton, T.; Carter, W.C.; Wright, A.L.; Smith, M.L. A new look at equine gastrointestinal anatomy, function, and selected intestinal displacements. AAEP Proc. 2001, 47, 53–60. [Google Scholar]
- Frape, D. Equine Nutrition, and Feeding, 4th ed.; Wiley-Blackwell: New York, NY, USA, 2010; pp. 1–20. [Google Scholar]
- Vermorel, M.; Martin-Rosset, W. Concepts, scientific bases, structure and validation of the French horse net energy system (UFC). Livest. Prod. Sci. 1997, 47, 261–275. [Google Scholar] [CrossRef]
- Julliand, V.; Grimm, P. The impact of diet on the hindgut microbiome. JEVS 2017, 52, 23–28. [Google Scholar] [CrossRef]
- Bland, S.D. Equine colic: A review of the equine hindgut and colic. Vet. Sci. Dev. 2016, 6, 1. [Google Scholar] [CrossRef]
- Destrez, A.; Grimm, P.; Julliand, V. Dietary-induced modulation of the hindgut microbiota is related to behavioral responses during stressful events in horses. Physiol. Behav. 2019, 202, 94–100. [Google Scholar] [CrossRef]
- Lindenberg, F.; Krych, L.; Fielden, J.; Kot, W.; Frokiaer, H.; van Galen, G.; Nielsen, D.S.; Hansen, A.K. Expression of immune regulatory genes correlates with the abundance of specific Clostridiales and Verrucomicrobia species in the equine ileum and cecum. Sci. Rep. 2019, 9, 1267. [Google Scholar] [CrossRef] [PubMed]
- Tavenner, M.K.; McDonnell, S.M.; Biddle, A. Development of the equine hindgut microbiome in semi-feral and domestic conventionally managed foals. Anim. Microbiome 2020, 2, 43. [Google Scholar] [CrossRef]
- Park, T.; Cheong, H.; Yoon, J.; Kim, A.; Yun, Y.; Unno, T. Comparison of the fecal microbiota of horses with intestinal disease and their healthy counterparts. Vet. Sci. 2021, 8, 113. [Google Scholar] [CrossRef]
- Billman, G.E. Homeostasis: The Underappreciated and Far Too Often Ignored Central Organizing Principle of Physiology. Front. Physiol. 2020, 11, 200. [Google Scholar] [CrossRef]
- Sandler, U.; Tsitolovsky, L. The S-Lagrangian and a theory of homeostasis in living systems. Phys. A Stat. Mech. Its Appl. 2017, 471, 540–553. [Google Scholar] [CrossRef]
- Cooper, S.J. From Claude Bernard to Walter Cannon. Emergence of the concept of homeostasis. Appetite 2008, 51, 419–427. [Google Scholar] [CrossRef] [PubMed]
- Brestoff, J.R.; Artis, D. Commensal bacteria at the interface of host metabolism and the immune system. Nat. Immunol. 2013, 14, 676–684. [Google Scholar] [CrossRef] [PubMed]
- de Fombelle, A.; Varloud, M.; Goachet, A.G.; Jacotot, E.; Philippeau, C.; Drogoul, C.; Julliand, V. Characterization of the microbial and biochemical profile of the different segments of the digestive tract in horses given two distinct diets. Anim. Sci. 2003, 77, 293–304. [Google Scholar] [CrossRef]
- Al Jassim, R.A.M.; Andrews, F.M. The bacterial community of the horse gastrointestinal tract and its relation to fermentative acidosis, laminitis, colic, and stomach ulcers. Vet. Clin. N. Am. Equine Pract. 2009, 25, 199–215. [Google Scholar] [CrossRef] [PubMed]
- Ericsson, A.C.; Johnson, P.J.; Lopes, M.A.; Perry, S.C.; Lanter, H.R. A microbiological map of the healthy equine gastrointestinal tract. PLoS ONE 2016, 11, e0166523. [Google Scholar] [CrossRef] [PubMed]
- Su, S.; Zhao, Y.; Liu, Z.; Liu, G.; Du, M.; Wu, J.; Bai, D.; Li, B.; Bou, G.; Zhang, X.; et al. Characterization and comparison of the bacterial microbiota in different gastrointestinal tract compartments of Mongolian horses. Microbiologyopen 2020, 9, 1085–1101. [Google Scholar] [CrossRef] [PubMed]
- Reed, K.J.; Kunz, I.G.Z.; Scare, J.A.; Nielsen, M.K.; Turk, P.J.; Coleman, R.J.; Coleman, S.J. The pelvic flexure separates distinct microbial communities in the equine hindgut. Sci. Rep. 2021, 11, 4332. [Google Scholar] [CrossRef] [PubMed]
- Lopes, M.A.; Pfeiffer, C.J. Functional morphology of the equine pelvic flexure and its role in disease. A review. Histol. Histopathol. 2000, 15, 983–991. [Google Scholar] [CrossRef] [PubMed]
- Hintz, H.F. Digestive physiology of the horse. J. S. Afr. Vet. Assoc. 1975, 46, 13–17. [Google Scholar]
- Santos, A.S.; Rodrigues, M.A.M.; Bessa, R.J.B.; Ferreira, L.M.; Martin-Rosset, W. Understanding the equine cecum-colon ecosystem: Current knowledge and future perspectives. Animal 2011, 5, 48–56. [Google Scholar] [CrossRef]
- Hintz, H.H.; Schryver, H.F.; Stevens, C.E. Digestion and absorption in the hindgut of nonruminant herbivores. J. Anim. Sci. 1978, 46, 1803–1807. [Google Scholar] [CrossRef]
- Clauss, M.; Codron, D.; Hummel, J. Equid nutritional physiology and behavior: An evolutionary perspective. J. Equine Vet. Sci. 2023, 124, 104265. [Google Scholar] [CrossRef] [PubMed]
- Henneke, D.R.; Potter, G.D.; Kreider, J.L.; Yeates, B.F. Relationship between condition score, physical measurements and body fat percentage in mares. Equine Vet. J. 1983, 15, 371–372. [Google Scholar] [CrossRef] [PubMed]
- Chomczynski, P.; Mackey, K. Short technical reports. Modification of the TRI reagent procedure for isolation of RNA from polysaccharide- and proteoglycan-rich sources. BioTechniques 1995, 19, 942–945. [Google Scholar]
- Rio, D.C.; Ares Jr, M.; Hannon, G.J.; Nilsen, T.W. Purification of RNA using TRIzol (TRI reagent). In Cold Spring Harbor Protocols; CSHL Press: Cold Spring Harbor, NY, USA, 2010. [Google Scholar] [CrossRef]
- Galaxy Community. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2022 update. Nucleic Acids Res. 2022, 50, W345–W351. [Google Scholar] [CrossRef]
- Babraham Bioinformatics: FastQC: A Quality Control Tool for High throughput Sequence Data. Available online: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed on 1 July 2024).
- Ewels, P.; Magnusson, M.; Lundin, S.; Kaller, M. MultiQC: Summarize analysis results for multiple tools and samples in a single report. Bioinformatics 2016, 32, 3047–3048. [Google Scholar] [CrossRef] [PubMed]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Paggi, J.M.; Park, C.; Bennet, C.; Salzberg, S.L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 2019, 37, 907–915. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, F.; Allen, J.E.; Allen, J.; Alvarez-Jarreta, J.; Amode, M.R.; Armean, I.M.; Austine-Orimoloye, O.; Azov, A.G.; Barnes, I.; Bennett, R.; et al. Ensembl 2022. Nucleic Acids Res. 2022, 50, D988–D995. [Google Scholar] [CrossRef]
- Liao, Y.; Smyth, G.K.; Shi, W. featureCounts: An efficient general purpose program for assigning sequence reads to genomic feature. Bioinformatics 2014, 30, 923–930. [Google Scholar] [CrossRef]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [PubMed]
- Kendall, M.G. A new measure of rank correlation. Biometrika 1938, 30, 81–93. [Google Scholar] [CrossRef]
- Brossart, D.F.; Laird, V.C.; Armstrong, T.W. Interpreting Kendall’s Tau and Tau-U for Single-Case Experimental Designs. Cogent Psychol. 2018, 5, 1518687. [Google Scholar] [CrossRef]
- calcTau: Implements Tissue Specificity Algorithm. Available online: https://rdrr.io/github/roonysgalbi/tispec/man/calcTau.html (accessed on 1 July 2024).
- Sherman, B.T.; Hao, M.; Qiu, J.; Jiao, X.; Baseler, M.W.; Lane, H.C.; Imamichi, T.; Chang, W. DAVID: A web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res. 2022, 50, W216–W221. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.W.; Sherman, B.T.; Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 2009, 4, 44–57. [Google Scholar] [CrossRef] [PubMed]
- Tuteja, G.; Kaestner, K.H. SnapShot: Forkhead transcription factors I. Cell 2007, 130, 1160. [Google Scholar] [CrossRef] [PubMed]
- van der Sluis, M.; Vincent, A.; Bouma, J.; Korteland-Van Male, A.; van Goudoever, J.B.; Renes, I.B.; Van Seuningen, I. Forkhead box transcription factors Foxa1 and Foxa2 are important regulators of Muc2 mucin expression in intestinal epithelial cells. Biochem. Biophys. Res. Commun. 2008, 369, 1108–1113. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Luo, J.; Li, J.; Kim, G.; Chen, E.S.; Xiao, S.; Snapper, S.B.; Bao, B.; An, D.; Blumberg, R.S.; et al. Foxo1 controls gut homeostasis and commensalism by regulating mucus secretion. J. Exp. Med. 2021, 218, e20210324. [Google Scholar] [CrossRef] [PubMed]
- Sanmartin-Salinas, P.; Guijarro, L.G. Overexpression of IRS-4 Correlates with Procaspase 3 Levels in Tumoural Tissue of Patients with Colorectal Cancer. J. Oncol. 2018, 2018, 3812581. [Google Scholar] [CrossRef]
- Chatterjee, I.; Getselter, D.; Ghanayem, N.; Harari, R.; Davis, L.; Bel, S.; Elliot, E. CHD8 regulates gut epithelial cell function and affects autism-related behaviors through the gut-brain axis. Transl. Psychiatry 2023, 13, 305. [Google Scholar] [CrossRef]
- Kopin, A.S.; Lee, Y.M.; McBride, E.W.; Beinborn, M. Expression cloning and characterization of the canine parietal cell gastrin receptor. Proc. Natl. Acad. Sci. USA 1992, 89, 3605–3609. [Google Scholar] [CrossRef]
- Mjones, P.; Nordrum, I.S.; Sordal, O.; Sagatun, L.; Fossmark, R.; Sandvik, A.; Waldum, H.L. Expression of the Cholecystokinin-B receptor in neoplastic gastric cells. Horm. Cancer 2018, 9, 40–54. [Google Scholar] [CrossRef]
- Cai, X.; Lytton, J. Molecular cloning of a sixth member of the K+ -dependent Na+/Ca2+ exchanger gene family, NCKX6. J. Biochem. 2004, 279, 5867–5876. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.I.; Kim, I.H. Difructose dianhydride improves intestinal calcium absorption, wound healing, and barrier function. Sci. Rep. 2018, 8, 7813. [Google Scholar] [CrossRef]
- Thelen, K.; Dressman, J.B. Cytochrome P450-mediated metabolism in the human gut wall. J. Pharm. Pharmacol. 2010, 61, 541–558. [Google Scholar] [CrossRef] [PubMed]
- Xie, F.; Ding, X.; Zhang, Q.Y. An update on the role of intestinal cytochrome P450 enzymes in drug disposition. Acta Pharm. Sin. B. 2016, 6, 374–383. [Google Scholar] [CrossRef]
- Journova, L.; Liskova, B.; Lnenickova, K.; Zemanova, N.; Anzenbacher, P.; Hermanova, P.; Hudcoivc, T.; Kozakova, H.; Anzenbacherova, E. Presence of absence of microbiome modulates the response of mice organism to administered drug nabumetone. Physiol. Res. 2020, 69 (Suppl. S4), S583–S594. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Wen, Q.; Qin, Y.; Zia, Q.; Shen, C.; Song, S. Gut microbiota and host cytochrome P450 characteristics in the pseudo germ-free model: Co-contributors to a diverse metabolic landscape. Gut Pathog. 2023, 15, 15. [Google Scholar] [CrossRef]
- Cassidy, A.J.; van Steensel, M.A.M.; Steijlen, P.M.; van Geel, M.; van der Velden, J.; Morley, S.M.; Terrinoni, A.; Melino, G.; Candi, E.; Irwin McLean, W.H. A homozygous missense mutation in TGM5 abolishes epidermal transglutaminase 5 activity and causes acral peeling skin syndrome. A J. Hum. Genet. 2005, 77, 909–917. [Google Scholar] [CrossRef]
- Pigors, M.; Kiritsi, D.; Cobzaru, C.; Schwieger-Briel, A.; Suarez, J.; Faletra, F.; Aho, H.; Makela, L.; Kern, J.S.; Bruckner-Tuderman, L.; et al. TGM5 mutations impact epidermal differentiation in acral peeling skin syndrome. J. Investig. Dermatol. 2012, 132, 2422–2429. [Google Scholar] [CrossRef]
- Thomas, M.L.; Xu, X.; Norfleet, A.M.; Watson, C.S. The presence of functional estrogen receptors in intestinal epithelial cells. Endocrinology 1993, 132, 426–430. [Google Scholar] [CrossRef] [PubMed]
- Looijer-van Langen, M.; Hotte, N.; Dieleman, L.A.; Albert, E.; Mulder, C.; Madsen, K.L. Estrogen receptor-β signaling modulates epithelial barrier function. Am. J. Physiol.-Gastrointest. Liver Physiol. 2011, 300, 4. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Guo, Y.; He, J.; Zhang, F.; Sun, X.; Yang, S.; Dong, H. Estrogen and estrogen receptors in the modulation of gastrointestinal epithelial secretion. Oncotarget 2017, 8, 97683–97692. [Google Scholar] [CrossRef] [PubMed]
- Cima, I.; Corazza, N.; Dick, B.; Fuhrer, A.; Herren, S.; Jakob, S.; Ayuni, E.; Mueller, C.; Brunner, T. Intestinal epithelial cells synthesize glucocorticoids and regulate T cell activation. J. Exp. Med. 2004, 200, 1635–1646. [Google Scholar] [CrossRef] [PubMed]
- Tian, N.; Hu, L.; Lu, Y.; Tong, L.; Feng, M.; Liu, Q.; Li, Y.; Zhu, Y.; Wu, L.; Ji, Y.; et al. TKT maintains intestinal ATP production and inhibits apoptosis-induced colitis. Cell Death Dis. 2021, 12, 10. [Google Scholar] [CrossRef] [PubMed]
- Gil, O.D.; Zaanazzi, G.; Struyk, A.F.; Salzer, J.L. Neurotrimin mediates bifunctional effects on neurite outgrowth via homophilic and heterophilic interactions. J. Neurosci. 1998, 18, 9312–9325. [Google Scholar] [CrossRef] [PubMed]
- Krizsan-Agbas, D.; Pedchenko, T.; Smoth, P.G. Neurotimin is an estrogen-regulated determinant of peripheral sympathetic innervation. J. Neurosci. Res. 2008, 86, 3086–3095. [Google Scholar] [CrossRef]
- Hockley, J.R.F.; Taylor, T.S.; Callejo, G.; Wilbrey, A.L.; Gutteridge, A.; Bach, K.; Winchester, W.J.; Bulmer, D.C.; McMurray, G.; St John Smith, E. Single-cell RNAseq reveals seven classes of colonic sensory neuron. Neurogastroenterology 2019, 68, 633–644. [Google Scholar] [CrossRef] [PubMed]
- Sano, R.; Nakajima, T.; Takahashi, Y.; Kubo, R.; Kobayashi, M.; Takahashi, K.; Takeshita, H.; Ogasawara, K.; Kominato, Y. Epithelial Expression of Human ABO Blood Group Genes Is Dependent upon a Downstream Regulatory Element Functioning through an Epithelial Cell-specific Transcription Factor, Elf5. J. Biol. Chem. 2016, 291, 22594–22606. [Google Scholar] [CrossRef]
- Makivuokko, H.; Lahtinen, S.J.; Wacklin, P.; Tuovinen, E.; Tenkanen, H.; Nikkila, J.; Bjorklund, M.; Aranko, K.; Ouwehand, A.C.; Matto, J. Association between the ABO blood group and the human intestinal microbiota composition. BMC Microbiol. 2012, 12, 94. [Google Scholar] [CrossRef]
- Wang, Z.; Potter, C.S.; Sundberg, J.P.; Hogenesch, H. SHARPIN is a key regulator of immune and inflammatory responses. J. Cell. Mol. Med. 2012, 16, 2271–2279. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, F.; Deribe, Y.L.; Skanland, S.S.; Stieglitz, B.; Grabbe, C.; Franz-Wachtel, M.; van Wijk, S.J.; Goswami, P.; Nagy, V.; Terzic, J.; et al. SHARPIN forms a linear ubiquitin ligase complex regulating NF-kB activity and apoptosis. Nature 2011, 471, 637–641. [Google Scholar] [CrossRef] [PubMed]
- Tokunaga, F.; Iwai, K. Lubac, a novel ubiquitin ligase for linear ubiquitination, is crucial for inflammation and immune responses. Microbes Infect. 2012, 14, 563–572. [Google Scholar] [CrossRef] [PubMed]
- Yu, B.; Wang, F.; Wang, Y. Advances in the structural and physiological functions of SHARPIN. Front. Immunol. 2022, 13, 858505. [Google Scholar] [CrossRef] [PubMed]
- Gurung, P.; Sharma, B.; Kanneganti, T.D. Distinct role of IL-1b in instigating disease in Sharpincpdm mice. Sci. Rep. 2016, 6, 36634. [Google Scholar] [CrossRef] [PubMed]
- Mu, C.; Yang, Y.; Luo, Z.; Guan, L.; Zhu, W. The colonic microbiome and epithelial transcriptome are altered in rats fed a high-protein diet compared with a normal-protein diet. J. Nutr. 2016, 146, 474–483. [Google Scholar] [CrossRef]
- Choy, M.C.; Visvanathan, K.; De Cruz, P. An Overview of the Innate and Adaptive Immune System in Inflammatory Bowel Disease. Inflamm. Bowel Dis. 2017, 23, 2–13. [Google Scholar] [CrossRef] [PubMed]
- Merck Manual, Veterinary Manual: Inflammatory Bowel Disease in Horses. Available online: https://www.merckvetmanual.com/digestive-system/miscellaneous-intestinal-diseases-in-horses/inflammatory-bowel-disease-in-horses (accessed on 1 July 2024).
- Kalck, K.A. Inflammatory bowel disease in horses. Vet. Clin. N. Am. Equine Pract. 2009, 25, 303–315. [Google Scholar] [CrossRef] [PubMed]
- Vitale, V. Inflammatory bowel diseases in horses: What do we know? Equine Vet. Educ. 2021, 34, 493–500. [Google Scholar] [CrossRef]
- Olofsson, K.M. Immunopathological Aspects of Equine Inflammatory Bowel Disease. Ph.D. Thesis, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden, 2016. [Google Scholar]
- Al Bander, Z.; Dekker Nitert, M.; Mousa, A.; Naderpoor, N. The gut microbiota and inflammation: And overview. Int. J. Environ. Res. Public Health 2020, 17, 7618. [Google Scholar] [CrossRef]
- Verdam, F.J.; Fuentes, S.; de Jonge, C.; Zoetendal, E.G.; Erbil, R.; Greve, J.W.; Buurman, W.A.; de Vos, W.M.; Rensen, S.S. Human intestinal microbiota composition is associated with local and systemic inflammation in obesity. Obes. Biol. Integr. Physiol. 2013, 21, E607–E615. [Google Scholar] [CrossRef]
- Karl, J.P.; Margolis, L.M.; Madslien, E.H.; Murphy, N.E.; Castellani, J.W.; Gundersen, Y.; Hoke, A.V.; Levangie, M.W.; Kumar, R.; Chakraborty, N.; et al. Changes in intestinal microbiota composition and metabolism coincide with increased intestinal permeability in young adults under prolonged physiological stress. Am. J. Physiol. Gastrointest Liver Physiol. 2017, 312, G559–G571. [Google Scholar] [CrossRef] [PubMed]
- Linge, H.M.; Collin, M.; Nordenfelt, P.; Morgelin, M.; Malmsten, M.; Egesten, A. The human CXC chemokine granulocyte chemotactic protein 2 (GCP-2)/CXCL6 possesses membrane-disrupting properties and is antibacterial. Antimicrob. Agents Chemother. 2008, 52, 259–607. [Google Scholar] [CrossRef]
- Lloyd-Price, J.; Arze, C.; Ananthakrishan, A.N.; Schirmer, M.; Avila-Pacheco, J.; Poon, T.W.; Andrews, E.; Ajami, N.J.; Bonham, K.S.; Brislawn, C.J.; et al. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. Nature 2019, 569, 655–662. [Google Scholar] [CrossRef]
- Vitiello, G.A.; Miller, G. Targeting the interleukin-17 immune axis for cancer immunotherapy. J. Exp. Med. 2020, 217, e20190456. [Google Scholar] [CrossRef] [PubMed]
- Collins, J.W.; Keeney, K.M.; Crepin, V.F.; Rathinam, V.A.K.; Fitzgerald, K.A.; Finlay, B.B.; Frankel, G. Citrobacter rodentium: Infection, inflammation, and the microbiota. Nat. Rev. Microbiol. 2014, 12, 612–623. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.D.; Chen, C.; Cheung, L.; Dawson, H.D. Raw potato starch alters the microbiome, colon and cecal gene expression, and resistance to Citrobacter rodentium infection in mice fed a Western diet. Front. Nutr. 2023, 10, 1057318. [Google Scholar] [CrossRef]
- NIH National Library of Medicine, National Center for Biotechnology Information: PRG3 Proteoglycan 3, Pro-Eosinophil Major Basic Protein 2 [Homo Sapiens (Human)]. Available online: https://www.ncbi.nlm.nih.gov/gene/10394 (accessed on 1 July 2024).
- Janeway, C.A., Jr.; Travers, P.; Walport, M.; Shlomchik, M.J. The major histocompatibility complex and its functions. In Immunobiology: The Immune System in Health and Disease, 5th ed.; Garland Science: New York, NY, USA, 2001. [Google Scholar]
- Sadeghi, R.; Moradi-Shahrbabak, M.; Miraei Ashtiani, S.R.; Miller, D.C.; Antczak, D.F. MHC haplotype diversity in Persian Arabian horses determined using polymorphic microsatellites. Immunogenetics 2017, 70, 305–315. [Google Scholar] [CrossRef]
- Plasil, M.; Oppelt, J.; Klumplerova, M.; Bubenikova, J.; Vychodilova, L.; Janova, E.; Stejskalova, K.; Futas, J.; Knoll, A.; Leblond, A.; et al. Newly identified variability of the antigen binding site coding sequences of the equine major histocompatibility complex class I and class II genes. HLA 2023, 102, 489–500. [Google Scholar] [CrossRef]
- Khan, M.A.W.; Stephens, W.Z.; Mohammed, A.D.; Round, J.L.; Kubinak, J.L. Does MHC heterozygosity influence microbiota form and function? PLoS ONE 2019, 14, e0215946. [Google Scholar] [CrossRef]
- Bakhti, M.; Bastidas-Ponce, A.; Tritschler, S.; Czarnecki, O.; Tarquis-Medina, M.; Nedvedova, E.; Kaki, J.; Willmann, S.J.; Scheibner, K.; Cota, P.; et al. Synaptotagmin-13 orchestrates pancreatic endocrine cell egression and islet morphogenesis. Nat. Commun. 2022, 13, 4540. [Google Scholar] [CrossRef] [PubMed]
- Ofori, J.K.; Karagiannopoulos, A.; Barghouth, M.; Nagao, M.; Andersson, M.E.; Salunkhe, V.A.; Zhang, E.; Wendt, A.; Eliasson, L. The highly expressed calcium-insensitive synaptotagmin-11 and synaptotagmin-13 modulate insulin secretion. Acta Physiol. 2022, 236, e13857. [Google Scholar] [CrossRef] [PubMed]
- Hu, P.J. Microbiome: Insulin signaling shapes gut community composition. Curr. Biol. 2021, 31, 12. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.S.; Hossain, K.S.; Das, S.; Kundu, S.; Adegoke, E.O.; Rahman, M.A.; Hannan, M.A.; Uddin, M.J.; Pang, M.G. Role of Insulin in Health and Disease: An Update. Int. J. Mol. Sci. 2021, 22, 6403. [Google Scholar] [CrossRef] [PubMed]
Right Ventral Colon | Left Ventral Colon | Pelvic Flexure | Left Dorsal Colon | Right Dorsal Colon |
---|---|---|---|---|
Gene Symbol | Gene Symbol | Gene Symbol | Gene Symbol | Gene Symbol |
ADGRA1 | FOXB1 | SNORA19 | LRRTM3 | OR6B13 |
CFAP46 | eca-mir545 | NYX | SNORD108 | PNLIP |
CUZD1 | IRS4 | GPR119 | CYP1A2 | ANKRD1 |
CDHR1 | eca-mir138-1 | TKTL1 | SLC24A1 | SLC35F3 |
TMEM266 | CDH8 | TLE7 | TGM5 | SNORA74 |
DUT | eca-mir9074 | DTHD1 | DHRS2 | GJD2 |
ACTC1 | CSN1S1 | eca-mir9077 | ARSF | KLHL34 |
OR4F13 | GABRG1 | KLHDC7A | RS1 | IL1RAPL1 |
MYH7 | GJB4 | SRARP | NCBP2L | PLAC1 |
TAF7L | HCRTR1 | LRRD1 | SNORA69 | ENAM |
RAB9B | ELOA | TAS2R3 | TERB1 | TMPRSS11A |
C3H16orf86 | PRSS55 | OR2A75 | MIR140 | ADRA2C |
AGBL4 | eca-mir703 | ASB10 | C3H4orf17 | CDCP2 |
ZMYND12 | PON1 | OAZ1 | AMBN | eca-mir9061 |
POU3F1 | DLX6 | TRIM29 | DMBX1 | CITED4 |
OPRD1 | CPA4 | NTM | SCARNA1 | TFAP2E |
RPL11 | PLK5 | eca-mir1271b | XKR4 | NR0B2 |
NPM2 | GRIA4 | PTPN5 | SLC26A5 | SLC30A2 |
GNRH1 | OR7D20 | SRRM4 | CPA1 | FAM131C |
NPY2R | CCKBR | SNORA49 | STRA8 | CFAP74 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moss, C.D.; Wilson, A.L.; Reed, K.J.; Jennings, K.J.; Kunz, I.G.Z.; Landolt, G.A.; Metcalf, J.; Engle, T.E.; Coleman, S.J. Gene Expression Analysis before and after the Pelvic Flexure in the Epithelium of the Equine Hindgut. Animals 2024, 14, 2303. https://doi.org/10.3390/ani14162303
Moss CD, Wilson AL, Reed KJ, Jennings KJ, Kunz IGZ, Landolt GA, Metcalf J, Engle TE, Coleman SJ. Gene Expression Analysis before and after the Pelvic Flexure in the Epithelium of the Equine Hindgut. Animals. 2024; 14(16):2303. https://doi.org/10.3390/ani14162303
Chicago/Turabian StyleMoss, Cameron D., Amber L. Wilson, Kailee J. Reed, Kaysie J. Jennings, Isabelle G. Z. Kunz, Gabriele A. Landolt, Jessica Metcalf, Terry E. Engle, and Stephen J. Coleman. 2024. "Gene Expression Analysis before and after the Pelvic Flexure in the Epithelium of the Equine Hindgut" Animals 14, no. 16: 2303. https://doi.org/10.3390/ani14162303
APA StyleMoss, C. D., Wilson, A. L., Reed, K. J., Jennings, K. J., Kunz, I. G. Z., Landolt, G. A., Metcalf, J., Engle, T. E., & Coleman, S. J. (2024). Gene Expression Analysis before and after the Pelvic Flexure in the Epithelium of the Equine Hindgut. Animals, 14(16), 2303. https://doi.org/10.3390/ani14162303