Carcass and Meat Characteristics of Cull Heifers from Different Genetic Groups Fed Diets with Different Sources of Nonprotein Nitrogen in Confinement
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals, Treatments and Experimental Design
2.2. Slaughter and Carcass Evaluations
2.3. Meat Composition
2.4. Meat Quality
2.4.1. pH and Color of Meat
2.4.2. Cooking Losses and Shear Force
2.4.3. Lipid Oxidation and Myofibrillar Fragmentation Index (MFI)
2.4.4. Cholesterol and Collagen Concentration
2.4.5. Fatty Acid Profile of Fat and Meat
2.5. Statistical Analysis
3. Results
3.1. Carcass Evaluation
3.2. Meat Composition
3.3. Meat Quality
4. Discussion
4.1. Carcass Evaluation
4.2. Meat Composition
4.3. Meat Quality
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gallo, L.; Sturaro, E.; Bittante, G. Body traits, carcass characteristics and price of cull cows as affected by farm type, breed, age and calving to culling interval. Animal 2017, 11, 696–704. [Google Scholar] [CrossRef] [PubMed]
- Augusto, W.F.; Bilego, U.O.; Missio, R.L.; Guimarães, T.P.; Miotto, F.R.C.; Rezende, P.L.P.; Neiva, J.N.M.; Restle, J. Animal performance, carcass traits and meat quality of F1 Angus-Nellore steers and heifers slaughtered in feedlot with a similar carcass finishing. Semin. Ciênc. Agrár. 2019, 40, 1681–1694. [Google Scholar] [CrossRef]
- Latta, K.I.; Ítavo, L.C.V.; Gomes, R.C.; Gomes, M.N.B.; Ferreira, J.R.; Neves, A.P.; Araujo, T.L.A.C.; Feijó, G.L.D.; Menezes, G.R.M. Carcass characteristics and meat quality of cull cows from different genetic groups. Livest. Sci. 2024, 282, 105439. [Google Scholar] [CrossRef]
- Mueller, L.F.; Balieiro, J.C.C.; Ferrinho, A.M.; Martins, T.D.S.; Corte, R.R.P.S.; Amorim, T.R.; Furlan, J.J.M.; Baldi, F.; Pereira, A.S.C. Gender status effect on carcass and meat quality traits of feedlot Angus × Nellore cattle. Anim. Sci. J. 2019, 90, 1078–1089. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, I.M.; Oliveira, K.A.; Cidrini, I.A.; Abreu, M.J.I.; Sousa, L.M.; Batista, L.H.C.; Homem, B.G.C.; Prados, L.F.; Siqueira, G.R.; Resende, F.D. Performance, Intake, Feed Efficiency, and Carcass Characteristics of Young Nellore Heifers under Different Days on Feed in the Feedlot. Animals 2023, 13, 2238. [Google Scholar] [CrossRef] [PubMed]
- Favero, R.; Menezes, G.R.O.; Torres, R.A.A.; Silva, L.O.C.; Bonin, M.N.; Feijó, G.L.D.; Altrak, G.; Niwa, M.V.G.; Kazama, R.; Mizubuti, I.Y.; et al. Crossbreeding applied to systems of beef cattle production to improve performance traits and carcass quality. Animal 2019, 13, 2679–2686. [Google Scholar] [CrossRef] [PubMed]
- Rezende, P.L.D.P.; Restle, J.; Bilego, U.O.; Fernandes, J.J.D.R.; Missio, R.L.; Guimarães, T.P. Carcass characteristics of feedlot-finished Nellore heifers slaughtered at different weights. Acta Sci. Anim. Sci. 2019, 41, e44826. [Google Scholar] [CrossRef]
- Gonzalez-Rivas, P.A.; Chauhan, S.S.; Ha, M.; Fegan, N.; Dunshea, F.R.; Warner, R.D. Effects of heat stress on animal physiology, metabolism, and meat quality: A review. Meat Sci. 2020, 162, 108025. [Google Scholar] [CrossRef]
- Greenwood, P.L. Review: An overview of beef production from pasture and feedlot globally, as demand for beef and the need for sustainable practices increase. Animal 2021, 15, 100295. [Google Scholar] [CrossRef]
- Moraes, G.J.; Ítavo, L.C.V.; Ítavo, C.C.B.; Dias, A.M.; Niwa, M.V.G.; Leal, E.S.; Kozerski, N.D.; Costa, M.C.M.; Mata, D.G.; Inada, A.C. Extruded urea could reduce true protein source in beef cattle diets. J. Anim. Physiol. Anim. Nutr. 2019, 103, 1283–1294. [Google Scholar] [CrossRef]
- Ítavo, L.C.V.; Ítavo, C.C.B.F.; Gomes, M.N.B.; Longhini, V.Z.; Difante, G.S.; Dias, A.M.; Leal, E.S.; Silva, M.G.P.; Silva, A.H.; Silva, L.B.P.; et al. Effects of extruded urea levels on the productive performance and carcass and meat characteristics of Nellore cattle. Trop. Anim. Health Prod. 2023, 55, 247. [Google Scholar] [CrossRef] [PubMed]
- Ítavo, L.C.V.; Ítavo, C.C.B.F.; Dias, A.M.; Franco, G.L.; Pereira, L.C.; Leal, E.S.; Araújo, H.S.; Souza, A.R.D.L. Combinações de fontes de nitrogênio não proteico em suplementos para novilhos Nelore em pastejo. Rev. Bras. Saúde Prod. Anim. 2016, 17, 448–460. [Google Scholar] [CrossRef]
- Valadares Filho, S.C.; Costa e Silva, L.F.; Gionbelli, M.P.; Rotta, P.P.; Marcondes, M.I.; Chizzotti, M.L.; Prados, L.F. Exigências Nutricionais de Zebuínos Puros e Cruzados, 3rd ed.; UFV, DZO: Viçosa, Brazil, 2016; pp. 1–347. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of the Association of Analytical Chemists International, 17th ed.; AOAC International: Arlington, VA, USA, 2000. [Google Scholar]
- Mertens, D.R. Gravimetric determination of amylase-treated neutral detergent fiber in feeds with refluxing in beakers or crucibles: Collaborative study. J. AOAC Int. 2002, 85, 1217–1240. [Google Scholar] [PubMed]
- Ítavo, L.C.V.; Ítavo, C.C.B.F.; Valle, C.B.; Dias, A.M.; Difante, G.S.; Morais, M.G.; Soares, C.M.; Pereira, C.S.; Oliveira, R.L. Brachiaria grasses in vitro digestibility with bovine and ovine ruminal liquid as inoculum. Rev. Mex. Cienc. Pecu. 2021, 12, 1045–1060. [Google Scholar] [CrossRef]
- Hall, M.B. Neutral Detergent-Soluble Carbohydrates. Nutritional Relevance and Analysis; University of Florida: Gainesville, FL, USA, 2000; p. 76. [Google Scholar]
- Bligh, E.G.; Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef] [PubMed]
- Visentainer, J.V. Aspectos analíticos da resposta do detector de ionização em chama para ésteres de ácidos graxos em biodiesel e alimentos. Quim. Nova 2012, 35, 274–279. [Google Scholar] [CrossRef]
- Brasil, 2017. Regulamento de Inspeção Industrial e Sanitária de Produtos de Origem Animal–RIISPOA (Decreto nº 9013, de 29 de março de 2017). Diário Oficial [da] República Federativa do Brasil. Available online: https://www.gov.br/agricultura/pt-br/assuntos/inspecao/produtos-animal/arquivos-publicacoes-dipoa/perguntas-e-respostas-decreto-9-013-de-2017-regulamento-de-inspecao-industrial-e-sanitaria-de-produtos-de-origem-animal (accessed on 16 May 2024).
- Gomes, M.D.N.B.; Feijó, G.L.D.; Duarte, M.T.; Silva, L.G.P.; Surita, L.M.A.; Pereira, M.W.F. Manual de Avaliação de Carcaças Bovinas, 1st ed.; UFMS: Campo Grande, MS, Brazil, 2021; p. 62. [Google Scholar]
- AMSA—American Meat Science Association. Research Guidelines for Cookery, Sensory Evaluation, and Instrumental Tenderness Measurements of Meat, 2nd ed.; American Meat Science Association: Champaign, IL, USA, 2015; p. 105. [Google Scholar]
- Vyncke, W. Direct determination of the TBA value in trichloroacetic acid extract of 690 fish as a measure of oxidative rancidity. Fette Seifen Anstrichm. 1970, 72, 1084–1087. [Google Scholar] [CrossRef]
- Culler, R.D.; Smith, G.C.; Cross, H.R. Relationship of myofibril fragmentation index to certain chemical, physical and sensory characteristics of bovine longissimus muscle. J. Food Sci. 1978, 43, 1177–1180. [Google Scholar] [CrossRef]
- Saldanha, T.; Mazalli, M.R.; Bragagnolo, N. Avaliação comparativa entre dois métodos para determinação do colesterol em carnes e leite. J. Food Sci. Technol. 2004, 24, 109–113. [Google Scholar] [CrossRef]
- Hill, F. The solubility of intramuscular collagen in meat from animals of various ages. J. Food Sci. 1966, 31, 379–383. [Google Scholar] [CrossRef]
- Cross, H.R.; Carpenter, Z.L.; Smith, G.C. Effects of intramuscular collagen and elastin on bovine muscle tenderness. J. Food Sci. 1973, 38, 998–1003. [Google Scholar] [CrossRef]
- Hara, A.; Radin, N.S. Lipid extraction of tissues with a low-toxicity solvent. Anal. Biochem. 1978, 90, 420–426. [Google Scholar] [CrossRef]
- Maia, E.L.; Rodriguez-Amaya, D.B. Avaliação de um método simples e econômico para a metilação de ácidos graxos com lipídios de diversas espécies de peixes. Rev. Inst. Adolfo Lutz 1993, 53, 27–35. [Google Scholar] [CrossRef]
- SAS OnDemand for Academics; SAS Institute Inc.: Cary, NC, USA, 2024.
- Lage, J.F.; Paulino, P.V.R.; Valadares Filho, S.C.; Souza, E.J.O.; Duarte, M.S.; Benedeti, P.D.B.; Souza, N.K.P.; Cox, R.B. Influence of genetic type and level of concentrate in the finishing diet on carcass and meat quality traits in beef heifers. Meat Sci. 2012, 90, 770–774. [Google Scholar] [CrossRef]
- Mendonça, F.S.; MacNeil, M.D.; Nalerio, E.; Cardoso, L.L.; Giongo, C.; Cardoso, F.F. Breed direct, maternal and heterosis effects due to Angus, Caracu, Hereford and Nellore on carcass and meat quality traits of cull cows. Livest. Sci. 2021, 243, 104374. [Google Scholar] [CrossRef]
- Costa, E.C.D.; Restle, J.; Vaz, F.N.; Alves Filho, D.C.; Bernardes, R.A.L.C.; Kuss, F. Características da carcaça de novilhos Red Angus superprecoces abatidos com diferentes pesos. R. Bras. Zootec. 2002, 31, 119–128. [Google Scholar] [CrossRef]
- Reddy, B.V.; Sivakumar, A.S.; Jeong, D.W.; Woo, Y.B.; Park, S.J.; Lee, S.Y.; Byun, J.Y.; Kim, C.H.; Cho, S.H.; Hwang, I. Beef quality traits of heifer in comparison with steer, bull and cow at various feeding environments. Anim. Sci. J. 2015, 86, 1–16. [Google Scholar] [CrossRef]
- Rotta, P.P.; Prado, R.M.; Prado, I.N.; Valero, M.V.; Visentainer, J.V.; Silva, R.R. The effects of genetic groups, nutrition, finishing systems and gender of Brazilian cattle on carcass characteristics and beef composition and appearance: A review. Asian-Australas. J. Anim. Sci. 2009, 22, 1718–1734. [Google Scholar] [CrossRef]
- Ramos, P.M.; Scheffler, T.L.; Beline, M.; Bodmer, J.; Gerrard, D.E.; Silva, S.L. Challenges and opportunities of using Bos indicus cattle to meet consumers’ demand for quality beef. Meat Sci. 2023, 207, 109375. [Google Scholar] [CrossRef]
- Surita, L.M.A.; Gomes, M.N.B.; Dauria, B.D.; Gomes, R.C.; Pereira, M.W.F.; Morais, M.G.; Duarte, M.T.; Ítavo, L.C.V.; Ferraz, A.L.J. Meat quality of cattle subjected to period of aging process: A cross-heifer study. Semin. Ciênc. Agrár. 2021, 42, 1175–1188. [Google Scholar] [CrossRef]
- Purslow, P.P. Contribution of collagen and connective tissue to cooked meat toughness; some paradigms reviewed. Meat Sci. 2018, 144, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Blanco, M.; Jurie, C.; Micol, D.; Agabriel, J.; Picard, B.; Garcia-Launay, F. Impact of animal and management factors on collagen characteristics in beef: A meta-analysis approach. Animal 2013, 7, 1208–1218. [Google Scholar] [CrossRef] [PubMed]
- Gómez, J.F.M.; Antonelo, D.S.; Beline, M.; Pavan, B.; Bambil, D.B.; Fantinato-Neto, P.; Saran-Neto, A.; Leme, P.R.; Goulart, R.S.; Gerrard, D.E.; et al. Feeding strategies impact animal growth and beef color and tenderness. Meat Sci. 2022, 183, 108599. [Google Scholar] [CrossRef] [PubMed]
- Ponnambalam, E.N.; Hopkins, D.L.; Bruce, H.; Li, D.; Baldi, G.; Bekhit, A.E.D. Causes and contributing factors to “dark cutting” meat: Current trends and future directions: A review. Compr. Rev. Food Sci. Food Saf. 2017, 16, 400–430. [Google Scholar] [CrossRef] [PubMed]
- Wicks, J.; Beline, M.; Gomez, J.F.M.; Luzardo, S.; Silva, S.L.; Gerrard, D. Muscle Energy Metabolism, Growth, and Meat Quality in Beef Cattle. Agriculture 2019, 9, 195. [Google Scholar] [CrossRef]
- Macedo, L.M.A.; Prado, I.M.; Prado, J.M.; Rotta, P.P.; Prado, R.M.; Souza, N.E.; Prado, I.N. Chemical composition and fatty acids profile of five carcass cuts of crossbred heifers finished in feedlot. Semin. Ciênc. Agrár. 2008, 29, 597–607. [Google Scholar] [CrossRef]
- Wood, J.D.; Richardson, R.I.; Nute, G.R.; Fisher, A.V.; Campo, M.M.; Kasapidou, E.; Sheard, P.R.; Enser, M. Effects of fatty acids on meat quality: A review. Meat Sci. 2004, 66, 21–32. [Google Scholar] [CrossRef] [PubMed]
- Prado, I.N.; Prado, R.M.; Rotta, P.P.; Visentainer, J.V.; Moletta, J.L.; Perotto, D. Carcass characteristics and chemical composition of the Longissimus muscle of crossbred bulls (Bos taurus indicus vs. Bos taurus taurus) finished in feedlot. J. Anim. Feed Sci. 2008, 17, 295–306. [Google Scholar] [CrossRef]
- Santana, E.O.; Silva, R.R.; Simionato, J.I.; Trindade Júnior, G.; Lins, T.O.D.A.; Costa, G.D.; Mesquita, B.M.A.; Alba, H.D.R.; Carvalho, G.G.P. Sex effect on the fatty acid profile and chemical composition of meat from beef cattle fed a whole shelled corn diet. Arch. Anim. Breed. 2023, 66, 51–60. [Google Scholar] [CrossRef]
- Valeriano, H.H.C.; Ítavo, L.C.V.; Ítavo, C.C.B.F.; Gomes, M.N.B.; Dias, A.M.; Difante, G.S.; Longhini, V.Z.; Gurgel, A.L.C.; Arcanjo, A.H.M.; Silva, M.G.P.; et al. Productive and economic performance of feedlot young Nellore bulls fed whole oilseeds. R. Bras. Zootec. 2023, 52, e20220160. [Google Scholar] [CrossRef]
- Ítavo, L.C.V.; Ítavo, C.C.B.F.; Dias, A.M.; Gomes, M.N.B.; Silva, A.G.; Leal, E.S.; Pereira, M.W.F.; Pereira, C.S.; Santos, G.T. Lipid rich diet from sunflower seeds can alter the proportion of fatty acids on hybrid Beefalo × Nellore cattle. Trop. Anim. Health Prod. 2021, 53, 162. [Google Scholar] [CrossRef]
- Sobczuk-Szul, M.; Mochol, M.; Nogalski, Z.; Pogorzelska-Przybyłek, P. Fatty acid profile as affected by fat depot and the sex category of Polish Holstein-Friesian × Limousin fattening cattle fed silage ad libitum. Anim. Sci. J. 2021, 92, e13516. [Google Scholar] [CrossRef]
Item | DM 1 | OM 2 | CP 3 | EE 4 | NDF 5 | ADF 6 | Ash 7 |
---|---|---|---|---|---|---|---|
Silage 8 | 293.70 | 964.70 | 67.18 | 13.74 | 755.25 | 657.76 | 35.30 |
Ground corn | 872.76 | 988.83 | 72.72 | 22.23 | 137.48 | 35.16 | 11.17 |
DDGS 9 | 913.25 | 965.01 | 415.87 | 65.47 | 622.56 | 314.06 | 34.99 |
Protected urea | 994.96 | 999.80 | 2560.00 | 58.45 | - | - | 0.20 |
Livestock urea | 975.09 | 999.59 | 2809.10 | - | - | - | 0.40 |
Protected fat | 963.86 | 783.77 | - | 810.85 | - | - | 216.23 |
Extruded urea | 950.39 | 995.81 | 2281.28 | 26.11 | 24.73 | 7.13 | 4.19 |
Mineral mix | 984.95 | 118.63 | - | - | - | - | 881.37 |
Item | Diet | |
---|---|---|
LPU 1 | EU 2 | |
Silage 3 | 326.2 | 348.8 |
DDGS 4 | 71.2 | 95.5 |
Ground corn | 557.9 | 519.2 |
Protected fat | 10.0 | - |
Livestock urea | 4.9 | - |
Protected urea | 8.8 | - |
Extruded urea | - | 15.6 |
Mineral mix 5 | 21.1 | 20.9 |
Chemical composition (g/kg DM) | ||
Dry matter | 691.91 | 678.41 |
Organic matter | 954.63 | 956.04 |
Crude protein | 151.55 | 162.20 |
Ethereal extract | 26.64 | 20.77 |
Neutral detergent fiber | 251.88 | 275.70 |
Acid detergent fiber | 145.34 | 163.36 |
Ash | 659.90 | 596.10 |
Nonfibrous carbohydrates | 691.91 | 678.41 |
In vitro dry matter digestibility | 954.63 | 956.04 |
Metabolizable energy (Mcal/kg DM) | 2.72 | 2.69 |
Item | Diet | |
---|---|---|
LPU 1 | EU 2 | |
C6:0 | 0.44 | 0.38 |
C12:0 | 0.31 | 0.29 |
C13:0 | 9.20 | 10.58 |
C14:0 | 1.17 | - |
C16:0 | 72.22 | 73.94 |
C17:0 | 0.54 | 0.56 |
C18:0 | 22.43 | 13.88 |
C18:1n9c | 126.92 | 149.37 |
C18:2n6c | 141.41 | 175.69 |
C18:3n6 | 2.29 | 2.53 |
C18:3n3 | 9.80 | 12.15 |
C20:1n9 | 0.96 | 1.04 |
SFAs 3 (%) | 27.42 | 22.62 |
MUFAs 4 (%) | 32.98 | 34.15 |
PUFAs 5 (%) | 39.59 | 43.23 |
∑ n-6 | 143.70 | 178.23 |
∑ n-3 | 9.80 | 12.15 |
PUFAs/SFAs | 1.44 | 1.91 |
n-6/n-3 | 14.66 | 14.67 |
Item | A × N 1 | C × N 2 | SEM 3 | P > F | ||||
---|---|---|---|---|---|---|---|---|
LPU 4 | EU 5 | LPU | EU | GG 6 | Diet | GG × Diet | ||
Body weight initial (kg) | 373.54 | 372.99 | 374.23 | 372.66 | 2.83 | 0.95 | 0.72 | 0.86 |
Body weight final (kg) | 508.02 | 494.81 | 487.52 | 478.99 | 3.96 | <0.01 | <0.01 | 0.54 |
Average daily gain (kg/day) | 1.30 | 1.27 | 1.16 | 1.14 | 0.35 | <0.01 | 0.49 | 0.91 |
Dry matter intake (kg/day) | 10.26 | 10.39 | 9.99 | 9.85 | 0.10 | <0.01 | 0.94 | 0.16 |
Feed conversion 7 | 7.32 d | 8.04 c | 8.30 b | 8.73 a | 0.07 | <0.01 | <0.01 | 0.04 |
Hot carcass weight (kg) | 302.0 | 309.45 | 275.50 | 284.10 | 5.91 | <0.01 | 0.18 | 0.92 |
Carcass yield (%) | 55.65 | 55.17 | 55.40 | 55.30 | 0.44 | 0.89 | 0.52 | 0.67 |
pH carcass | 5.60 | 5.65 | 5.62 | 5.59 | 0.04 | 0.59 | 0.87 | 0.40 |
Rib eye area (cm2) | 84.05 | 77.69 | 76.39 | 74.50 | 2.32 | 0.02 | 0.08 | 0.33 |
Subcutaneous fat thickness (mm) | 8.77 | 8.61 | 6.64 | 6.06 | 0.67 | <0.01 | 0.56 | 0.74 |
Fat distribution (score) 8 | 2.05 | 2.50 | 1.65 | 1.80 | 0.19 | <0.01 | 0.11 | 0.42 |
Conformation (score) 9 | 11.30 | 7.10 | 8.00 | 8.10 | 1.29 | 0.17 | 0.11 | 0.09 |
Physiological maturity (months) | 26.00 | 25.60 | 25.60 | 25.80 | 1.28 | 0.94 | 0.94 | 0.87 |
Item | A × N 1 | C × N 2 | SEM 3 | P > F | ||||
---|---|---|---|---|---|---|---|---|
LPU 4 | EU 5 | LPU | EU | GG 6 | Diet | GG × Diet | ||
Moisture (%) | 72.19 | 71.96 | 72.66 | 72.38 | 0.26 | 0.09 | 0.34 | 0.93 |
Crude protein (%) | 25.65 | 26.28 | 26.48 | 25.84 | 0.33 | 0.58 | 0.99 | 0.07 |
Ethereal extract (%) | 3.51 a | 2.90 ba | 2.21 b | 2.73 ba | 0.30 | <0.01 | 0.86 | 0.04 |
Ash (%) | 1.05 | 1.07 | 1.07 | 1.09 | 1.09 | 0.44 | 0.32 | 0.87 |
Cholesterol (mg/100 g meat) | 57.04 | 63.30 | 61.37 | 62.24 | 2.67 | 0.56 | 0.20 | 0.33 |
Myofibrillar fragmentation index | 92.30 | 96.41 | 97.31 | 97.95 | 2.57 | 0.21 | 0.36 | 0.50 |
Lipid oxidation | 2.44 | 2.95 | 2.77 | 2.69 | 0.43 | 0.93 | 0.63 | 0.51 |
pH meat | 5.62 | 5.68 | 5.65 | 5.60 | 0.03 | 0.36 | 0.99 | 0.08 |
Total collagen (g/100 g meat) | 0.16 | 0.16 | 0.15 | 0.15 | <0.01 | 0.21 | 0.98 | 0.79 |
Soluble collagen (%) | 93.81 | 94.06 | 94.65 | 94.42 | 0.47 | 0.19 | 0.99 | 0.61 |
Insoluble collagen (%) | 6.18 | 5.94 | 5.35 | 5.58 | 0.47 | 0.19 | 0.99 | 0.60 |
Meat color | ||||||||
L* | 37.17 | 35.62 | 35.02 | 36.45 | 0.78 | 0.40 | 0.94 | 0.06 |
a* | 20.42 | 18.90 | 20.30 | 19.63 | 0.68 | 0.66 | 0.12 | 0.54 |
b* | 11.15 | 9.89 | 10.89 | 10.62 | 0.42 | 0.58 | 0.08 | 0.25 |
Shear force (kg) | 7.03 | 6.92 | 7.82 | 7.58 | 0.22 | <0.01 | 0.44 | 0.76 |
Cooking losses (%) | 19.78 | 18.79 | 18.57 | 19.81 | 0.99 | 0.92 | 0.89 | 0.24 |
Item | A × N 1 | C × N 2 | SEM 3 | P > F | ||||
---|---|---|---|---|---|---|---|---|
LPU 4 | EU 5 | LPU | EU | GG 6 | Diet | GG × Diet | ||
C10:0 | 0.36 | 0.38 | 0.40 | 0.43 | 0.03 | 0.03 | 0.43 | 0.67 |
C12:0 | 0.47 | 0.46 | 0.50 | 0.53 | 0.04 | 0.17 | 0.76 | 0.61 |
C14:0 | 22.28 b | 25.12 a | 20.87 b | 23.74 a | 1.3 | 0.31 | 0.04 | 0.99 |
C14:1 | 4.14 | 4.94 | 4.16 | 4.61 | 0.49 | 0.76 | 0.21 | 0.72 |
C15:0 | 1.81 | 2.13 | 2.16 | 1.90 | 0.19 | 0.73 | 0.88 | 0.13 |
C16:0 | 187.18 b | 220.75 a | 183.22 b | 183.9 2b | 7.50 | <0.01 | 0.03 | 0.03 |
C16:1 | 18.12 b | 26.25 a | 22.81 ba | 24.12 ba | 1.69 | 0.46 | <0.01 | 0.04 |
C17:0 | 5.01 b | 6.07 a | 5.32 ba | 5.22 b | 0.23 | 0.24 | 0.04 | 0.01 |
C18:0 | 101.71 b | 120.95 a | 101.73 b | 100.03 b | 4.00 | 0.01 | 0.03 | 0.01 |
C18:1n9c | 277.18 b | 342.63 a | 293.48 b | 290.57 b | 13.11 | 0.18 | 0.02 | 0.01 |
C18:2n6c | 15.72 b | 21.70 a | 20.19 ba | 17.60 ba | 1.27 | 0.89 | 0.19 | <0.01 |
C20:0 | 0.18 b | 0.25 a | 0.23 ba | 0.21 ba | 0.02 | 0.89 | 0.11 | <0.01 |
C18:3n6 | 0.58 b | 0.67 a | 0.61 ba | 0.58 b | 0.02 | 0.07 | 0.07 | <0.01 |
C18:3n3 | 1.31 | 1.22 | 1.38 | 1.20 | 0.12 | 0.83 | 0.28 | 0.77 |
C22:0 | 1.62 b | 2.49 a | 2.23 ba | 1.82 b | 0.12 | 0.86 | 0.21 | <0.01 |
C20:4n6 | 5.17 b | 6.98 a | 7.19 a | 6.26 b | 0.58 | 0.26 | 0.44 | 0.02 |
SFAs 7 (%) | 50.18 a | 48.63 ba | 47.56 b | 48.34 ba | 0.53 | <0.01 | 0.47 | 0.03 |
MUFAs 8 (%) | 46.42 | 47.80 | 48.24 | 47.80 | 0.57 | 0.12 | 0.41 | 0.12 |
PUFAs 9 (%) | 3.74 | 3.95 | 4.35 | 3.99 | 0.28 | 0.21 | 0.78 | 0.29 |
∑ n-6 | 22.61 b | 29.29 a | 27.87 a | 25.02 ba | 1.71 | 0.77 | 0.25 | <0.01 |
∑ n-3 | 1.32 | 1.22 | 1.38 | 1.21 | 0.12 | 0.83 | 0.28 | 0.77 |
PUFAs/SFAs | 0.07 | 0.08 | 0.09 | 0.08 | <0.01 | 0.08 | 0.51 | 0.10 |
n-6/n-3 | 19.07 b | 25.61 a | 20.87 b | 20.40 b | 1.34 | 0.19 | 0.02 | <0.01 |
Item | A × N 1 | C × N 2 | SEM 3 | P > F | ||||
---|---|---|---|---|---|---|---|---|
LPU 4 | EU 5 | LPU | EU | GG 6 | Diet | GG × Diet | ||
C10:0 | 0.34 b | 0.28 b | 0.36 ba | 0.40 a | 0.03 | <0.01 | 0.67 | 0.04 |
C12:0 | 0.49 b | 0.39 b | 0.51 ba | 0.57 a | 0.04 | <0.01 | 0.56 | 0.05 |
C14:0 | 24.80 b | 21.85 b | 22.76 b | 28.48 a | 1.34 | 0.09 | 0.30 | <0.01 |
C14:1 | 5.38 | 5.15 | 5.29 | 8.24 | 0.84 | 0.02 | 0.30 | 0.19 |
C15:0 | 2.67 | 2.45 | 2.48 | 2.79 | 0.20 | 0.72 | 0.81 | 0.20 |
C16:0 | 180.79 a | 172.46 ba | 158.25 b | 190.82 a | 5.85 | 0.72 | 0.04 | <0.01 |
C16:1 | 23.18 | 22.35 | 24.34 | 30.23 | 2.03 | 0.03 | 0.22 | 0.10 |
C17:0 | 5.69b a | 5.63 ba | 5.15b | 6.23 a | 0.24 | 0.92 | 0.04 | 0.02 |
C18:0 | 97.37 | 93.12 | 82.22 | 96.22 | 4.31 | 0.36 | 0.51 | 0.10 |
C18:1n9c | 288.06 b | 283.44 b | 272.28 b | 333.69 a | 12.05 | 0.12 | 0.02 | <0.01 |
C18:2n6c | 5.69 | 6.55 | 5.78 | 7.23 | 0.43 | 0.38 | <0.01 | 0.50 |
C18:3n6 | 0.74 a | 0.67 b | 0.66 b | 0.77 a | 0.04 | 0.96 | 0.47 | 0.03 |
C18:3n3 | 0.71a | 0.58 b | 0.62 b | 0.73 a | 0.05 | 0.53 | 0.82 | 0.02 |
SFAs 7 (%) | 49.62 | 48.64 | 47.06 | 46.50 | 0.64 | <0.01 | 0.22 | 0.75 |
MUFAs 8 (%) | 49.92 | 51.16 | 52.47 | 52.28 | 0.88 | <0.01 | 0.82 | 0.64 |
PUFAs 9 (%) | 1.14 | 1.28 | 1.22 | 1.24 | 0.06 | 0.76 | 0.20 | 0.34 |
∑ n-6 | 6.44 | 7.24 | 6.44 | 8.01 | 0.46 | 0.40 | 0.01 | 0.41 |
∑ n-3 | 0.72 ba | 0.58 b | 0.62b a | 0.74 a | 0.05 | 0.53 | 0.82 | 0.02 |
PUFAs/SFAs | 0.02 | 0.02 | 0.02 | 0.02 | <0.01 | 0.38 | 0.20 | 0.30 |
n-6/n-3 | 10.2 6 | 13.62 | 11.41 | 11.40 | 0.99 | 0.59 | 0.09 | 0.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paranhos da Silva, M.G.; Ítavo, L.C.V.; Ítavo, C.C.B.F.; Bonin Gomes, M.d.N.; Arcanjo, A.H.M.; Moura, J.R.d.F.; Lopes, B.F.d.C.L.; Nonato, L.M.; Gomes, R.d.C. Carcass and Meat Characteristics of Cull Heifers from Different Genetic Groups Fed Diets with Different Sources of Nonprotein Nitrogen in Confinement. Animals 2024, 14, 2304. https://doi.org/10.3390/ani14162304
Paranhos da Silva MG, Ítavo LCV, Ítavo CCBF, Bonin Gomes MdN, Arcanjo AHM, Moura JRdF, Lopes BFdCL, Nonato LM, Gomes RdC. Carcass and Meat Characteristics of Cull Heifers from Different Genetic Groups Fed Diets with Different Sources of Nonprotein Nitrogen in Confinement. Animals. 2024; 14(16):2304. https://doi.org/10.3390/ani14162304
Chicago/Turabian StyleParanhos da Silva, Manoel Gustavo, Luís Carlos Vinhas Ítavo, Camila Celeste Brandão Ferreira Ítavo, Marina de Nadai Bonin Gomes, Angelo Herbet Moreira Arcanjo, Jessika Rodrigues de Figueiredo Moura, Brenda Farias da Costa Leite Lopes, Lucimara Modesto Nonato, and Rodrigo da Costa Gomes. 2024. "Carcass and Meat Characteristics of Cull Heifers from Different Genetic Groups Fed Diets with Different Sources of Nonprotein Nitrogen in Confinement" Animals 14, no. 16: 2304. https://doi.org/10.3390/ani14162304
APA StyleParanhos da Silva, M. G., Ítavo, L. C. V., Ítavo, C. C. B. F., Bonin Gomes, M. d. N., Arcanjo, A. H. M., Moura, J. R. d. F., Lopes, B. F. d. C. L., Nonato, L. M., & Gomes, R. d. C. (2024). Carcass and Meat Characteristics of Cull Heifers from Different Genetic Groups Fed Diets with Different Sources of Nonprotein Nitrogen in Confinement. Animals, 14(16), 2304. https://doi.org/10.3390/ani14162304