Closed-Loop Auditory Stimulation (CLAS) During Sleep Augments Language and Discovery Learning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedure
2.3. Language Learning Task
2.4. Discovery Learning Tasks
2.4.1. DARWARS Task
2.4.2. PRETXT Task
2.5. Stimulation
2.6. EEG and Stimulus Algorithm Analysis
2.7. Behavioral Analytical Strategy
3. Results
3.1. Stimulation Algorithm Performance Metrics
3.2. EEG Results
3.3. Behavioral Performance Results
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Full LMM (Fixed Effects: Week, Trial [Nested], Treatment) | Reduced LMM (Fixed Effects: Treatment) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Variable of Interest | Adjustment Method | Initial Model | Adjusted Model | Adjustment Method | Initial Model | Adjusted Model | ||||
Residuals’ Skewness | Residuals’ Kurtosis | Residuals’ Skewness | Residuals’ Kurtosis | Residuals’ Skewness | Residuals’ Kurtosis | Residuals’ Skewness | Residuals’ Kurtosis | |||
Main variables | ||||||||||
Stimulation-ratio-2-to-all | None | 0.64 | 0.90 | NA | NA | None | 0.64 | 0.77 | NA | NA |
p2p | None | 0.73 | 0.31 | NA | NA | None | 0.76 | 0.42 | NA | NA |
SOSP | None | 0.51 | −0.47 | NA | NA | None | 0.50 | −0.37 | NA | NA |
p2p-1 | None | 0.70 | 0.12 | NA | NA | None | 0.73 | 0.23 | NA | NA |
SOSP-1 | None | 0.50 | −0.45 | NA | NA | None | 0.49 | −0.39 | NA | NA |
p2p-2 | None | 0.57 | 0.03 | NA | NA | None | 0.58 | 0.16 | NA | NA |
SOSP-2 | None | 0.51 | −0.39 | NA | NA | None | 0.52 | −0.13 | NA | NA |
SO-RMS-rel1 | None | 0.69 | 1.71 | NA | NA | None | 0.70 | 1.92 | NA | NA |
SPN-RMS-rel1 | None | −0.07 | 2.02 | NA | NA | None | −0.04 | 1.85 | NA | NA |
Sleep macrostructure | ||||||||||
RL | None | −0.17 | 2.19 | NA | NA | None | −0.27 | 2.91 | NA | NA |
TST | Note 3 | −1.72 | 3.80 | −0.87 | 0.83 | Note 3 | −1.95 | 4.69 | −0.99 | 1.13 |
SOL | Note 2 | 3.65 | 19.0 | −0.29 | −0.58 | Note 2 | 3.81 | 20.4 | −0.34 | −0.64 |
WASO | Note 2 | 2.42 | 7.36 | 0.87 | 0.19 | Note 2 | 2.59 | 7.99 | 0.92 | 0.16 |
W | Note 2 | 2.37 | 6.74 | 0.81 | 0.26 | Note 2 | 2.49 | 7.29 | 0.78 | 0.16 |
N1 | Note 2 | 1.10 | 0.60 | −0.14 | −0.09 | Note 2 | 1.22 | 0.86 | −0.09 | −0.02 |
N2 | Note 3 | −1.04 | 1.58 | −0.20 | 0.10 | Note 3 | −1.09 | 1.62 | −0.18 | −0.12 |
N3 | None | −0.03 | 0.08 | NA | NA | None | −0.14 | 0.24 | NA | NA |
REM | None | −0.32 | 0.02 | NA | NA | None | −0.32 | −0.13 | NA | NA |
Distribution of stimulation by sleep stage | ||||||||||
W-stim | Note 1 | 3.11 | 14.9 | 0.38 | −0.53 | Note 1 | 3.82 | 19.7 | 0.50 | −0.37 |
N1-stim | Note 4 | 6.45 | 53.2 | 3.04 | 10.9 | Note 4 | 6.77 | 56.8 | 3.16 | 11.1 |
N2-stim | Note 2 | 0.83 | −0.10 | −0.03 | −1.00 | Note 2 | 0.83 | −0.16 | −0.05 | −1.04 |
N3-stim | Note 1 | 1.75 | 2.42 | −0.04 | 0.60 | Note 1 | 1.74 | 2.37 | −0.17 | 0.87 |
REM-stim | Note 1 | 3.18 | 12.5 | 0.99 | −0.11 | Note 1 | 3.50 | 15.0 | 1.02 | −0.07 |
Stimulation algorithm performance metrics | ||||||||||
N-all-stims | Note 1 | 1.49 | 1.47 | 0.12 | −0.11 | Note 1 | 1.49 | 1.43 | 0.04 | 0.01 |
N-2nd-stims | Note 1 | 1.99 | 3.31 | 0.22 | 0.07 | Note 1 | 2.00 | 3.40 | 0.18 | −0.01 |
N-SOs | Note 1 | 1.64 | 1.97 | −0.03 | 1.05 | Note 1 | 1.63 | 1.96 | −0.13 | 1.27 |
Precision | Note 3 | −1.87 | 4.35 | −1.29 | 2.00 | Note 3 | −1.96 | 4.61 | −1.33 | 2.11 |
Recall | Note 3 | −0.73 | 0.53 | −0.22 | −0.46 | Note 3 | −0.75 | 0.35 | −0.21 | −0.62 |
Early | Note 2 | 1.40 | 3.72 | 0.22 | 0.28 | Note 2 | 1.40 | 3.72 | 0.22 | 0.22 |
On-time | Note 3 | −1.10 | 2.10 | −0.72 | 0.91 | Note 3 | −1.16 | 2.26 | −0.77 | 0.99 |
Late | None | 0.028 | −0.67 | NA | NA | None | 0.05 | −0.66 | NA | NA |
Phase mean | None | −0.41 | −0.22 | NA | NA | None | −0.40 | −0.27 | NA | NA |
Phase std | Note 1 | 0.51 | −0.01 | 0.08 | −0.28 | None | 0.59 | 0.08 | NA | NA |
References
- Diekelmann, S.; Born, J. The Memory Function of Sleep. Nat. Rev. Neurosci. 2010, 11, 114–126. [Google Scholar] [CrossRef] [PubMed]
- Sirota, A.; Csicsvari, J.; Buhl, D.; Buzsáki, G. Communication between Neocortex and Hippocampus during Sleep in Rodents. Proc. Natl. Acad. Sci. USA 2003, 100, 2065–2069. [Google Scholar] [CrossRef]
- Wilson, M.A.; McNaughton, B.L. Reactivation of Hippocampal Ensemble Memories During Sleep. Science 1994, 265, 676–679. [Google Scholar] [CrossRef]
- Wagner, U.; Gais, S.; Haider, H.; Verleger, R.; Born, J. Sleep Inspires Insight. Nature 2004, 427, 352–355. [Google Scholar] [CrossRef]
- Lewis, P.A.; Durrant, S.J. Overlapping Memory Replay during Sleep Builds Cognitive Schemata. Trends Cogn. Sci. 2011, 15, 343–351. [Google Scholar] [CrossRef]
- Walker, M.P.; van der Helm, E. Overnight Therapy? The Role of Sleep in Emotional Brain Processing. Psychol. Bull. 2009, 135, 731–748. [Google Scholar] [CrossRef]
- Born, J.; Wilhelm, I. System Consolidation of Memory during Sleep. Psychol. Res. 2012, 76, 192–203. [Google Scholar] [CrossRef]
- Ketz, N.; Jones, A.P.; Bryant, N.B.; Clark, V.P.; Pilly, P.K. Closed-Loop Slow-Wave tACS Improves Sleep-Dependent Long-Term Memory Generalization by Modulating Endogenous Oscillations. J. Neurosci. Off. J. Soc. Neurosci. 2018, 38, 7314–7326. [Google Scholar] [CrossRef]
- Jones, A.P.; Choe, J.; Bryant, N.B.; Robinson, C.S.H.; Ketz, N.A.; Skorheim, S.W.; Combs, A.; Lamphere, M.L.; Robert, B.; Gill, H.A.; et al. Dose-Dependent Effects of Closed-Loop tACS Delivered During Slow-Wave Oscillations on Memory Consolidation. Front. Neurosci. 2018, 12, 867. [Google Scholar] [CrossRef]
- Robinson, C.S.H.; Bryant, N.B.; Maxwell, J.W.; Jones, A.P.; Robert, B.; Lamphere, M.; Combs, A.; Al Azzawi, H.M.; Gibson, B.C.; Sanguinetti, J.L.; et al. The Benefits of Closed-Loop Transcranial Alternating Current Stimulation on Subjective Sleep Quality. Brain Sci. 2018, 8, 204. [Google Scholar] [CrossRef]
- Ngo, H.-V.V.; Martinetz, T.; Born, J.; Mölle, M. Auditory Closed-Loop Stimulation of the Sleep Slow Oscillation Enhances Memory. Neuron 2013, 78, 545–553. [Google Scholar] [CrossRef] [PubMed]
- Esfahani, M.J.; Farboud, S.; Ngo, H.-V.V.; Schneider, J.; Weber, F.D.; Talamini, L.M.; Dresler, M. Closed-Loop Auditory Stimulation of Sleep Slow Oscillations: Basic Principles and Best Practices. Neurosci. Biobehav. Rev. 2023, 153, 105379. [Google Scholar] [CrossRef]
- Rammstedt, B.; John, O.P. Measuring Personality in One Minute or Less: A 10-Item Short Version of the Big Five Inventory in English and German. J. Res. Personal. 2007, 41, 203–212. [Google Scholar] [CrossRef]
- Shipley, W.C.; Gruber, C.J.H.P.; Martin, T.A.; Klein, A.M. Shipley-2. In PsycTESTS Dataset; Western Psychological Services: Los Angeles, CA, USA, 2009. [Google Scholar]
- Horne, J.; Ostberg, O. A Self-Assessment Questionnaire to Determine Morningness-Eveningness in Human Circadian Rhythms. Int. J. Chronobiol. 1976, 4, 97–110. [Google Scholar] [PubMed]
- Krupp, L.B.; LaRocca, N.G.; Muir-Nash, J.; Steinberg, A.D. Fatigue Severity Scale. In PsycTESTS Dataset; Western Psychological Services: Los Angeles, CA, USA, 1989. [Google Scholar]
- Johns, M.W. A New Method for Measuring Daytime Sleepiness: The Epworth Sleepiness Scale. Sleep 1991, 14, 540–545. [Google Scholar] [CrossRef] [PubMed]
- Soldatos, C.R.; Dikeos, D.G.; Paparrigopoulos, T.J. Athens Insomnia Scale: Validation of an Instrument Based on ICD-10 Criteria. J. Psychosom. Res. 2000, 48, 555–560. [Google Scholar] [CrossRef]
- Buysse, D.J.; Reynolds, C.F.; Monk, T.H.; Berman, S.R.; Kupfer, D.J. The Pittsburgh Sleep Quality Index: A New Instrument for Psychiatric Practice and Research. Psychiatry Res. 1989, 28, 193–213. [Google Scholar] [CrossRef]
- Hoddes, E.; Dement, W.C.; Zarcone, V. Stanford Sleepiness Scale. In PsycTESTS Dataset; Western Psychological Services: Los Angeles, CA, USA, 1972. [Google Scholar]
- Åkerstedt, T.; Hume, K.; Minors, D.; Waterhouse, J. The Subjective Meaning of Good Sleep, An Intraindividual Approach Using the Karolinska Sleep Diary. Percept. Mot. Skills 1994, 79, 287–296. [Google Scholar] [CrossRef]
- Johnson, K. An Introduction to Foreign Language Learning and Teaching; Routledge: London, UK, 2017. [Google Scholar] [CrossRef]
- Pavlik, P.I.; Anderson, J.R. Practice and Forgetting Effects on Vocabulary Memory: An Activation-Based Model of the Spacing Effect. Cogn. Sci. 2005, 29, 559–586. [Google Scholar] [CrossRef]
- Clark, V.P.; Coffman, B.A.; Mayer, A.R.; Weisend, M.P.; Lane, T.D.R.; Calhoun, V.D.; Raybourn, E.M.; Garcia, C.M.; Wassermann, E.M. TDCS Guided Using fMRI Significantly Accelerates Learning to Identify Concealed Objects. NeuroImage 2012, 59, 117–128. [Google Scholar] [CrossRef]
- Gibson, B.C.; Mullins, T.S.; Heinrich, M.D.; Witkiewitz, K.; Yu, A.B.; Hansberger, J.T.; Clark, V.P. Transcranial Direct Current Stimulation Facilitates Category Learning. Brain Stimul. 2020, 13, 393–400. [Google Scholar] [CrossRef] [PubMed]
- Falcone, B.; Coffman, B.A.; Clark, V.P.; Parasuraman, R. Transcranial Direct Current Stimulation Augments Perceptual Sensitivity and 24-Hour Retention in a Complex Threat Detection Task. PLoS ONE 2012, 7, e34993. [Google Scholar] [CrossRef] [PubMed]
- Coffman, B.A.; Trumbo, M.C.; Clark, V.P. Enhancement of Object Detection with Transcranial Direct Current Stimulation Is Associated with Increased Attention. BMC Neurosci. 2012, 13, 108. [Google Scholar] [CrossRef] [PubMed]
- Coffman, B.A.; Trumbo, M.C.; Flores, R.A.; Garcia, C.M.; van der Merwe, A.J.; Wassermann, E.M.; Weisend, M.P.; Clark, V.P. Impact of tDCS on Performance and Learning of Target Detection: Interaction with Stimulus Characteristics and Experimental Design. Neuropsychologia 2012, 50, 1594–1602. [Google Scholar] [CrossRef]
- Office of Naval Research. Arlington Va Darwars Architecture: A BBN Technologies Document; Defense Technical Information Center: Fort Belvoir, VA, USA, 2005.
- Lee-Chiong, T. 2007 American Academy of Sleep Medicine Sleep Scoring Guidelines. In Sleep Medicine: Essentials and Review; Oxford Academic: New York, NY, USA, 2008; pp. 499–506. [Google Scholar] [CrossRef]
- Supratak, A.; Dong, H.; Wu, C.; Guo, Y. DeepSleepNet: A Model for Automatic Sleep Stage Scoring Based on Raw Single-Channel EEG. IEEE Trans. Neural Syst. Rehabil. Eng. 2017, 25, 1998–2008. [Google Scholar] [CrossRef]
- O’Reilly, C.; Gosselin, N.; Carrier, J.; Nielsen, T. Montreal Archive of Sleep Studies: An Open-access Resource for Instrument Benchmarking and Exploratory Research. J. Sleep Res. 2014, 23, 628–635. [Google Scholar] [CrossRef]
- Basner, R. Faculty Opinions Recommendation of a Multisite Randomized Trial of Portable Sleep Studies and Positive Airway Pressure Autotitration versus Laboratory-Based Polysomnography for the Diagnosis and Treatment of Obstructive Sleep Apnea: The HomePAP Study. Fac. Opin. Post-Publ. Peer Rev. Biomed. Lit. 2012, 35, 757–767. [Google Scholar]
- Swanson, C.M.; Blatchford, P.J.; Orwoll, E.S.; Cauley, J.A.; LeBlanc, E.S.; Fink, H.A.; Wright, K.P., Jr.; Wierman, M.E.; Kohrt, W.M.; Stone, K.L.; et al. Association between Objective Sleep Duration and Bone Mineral Density in Older Postmenopausal Women from the Study of Osteoporotic Fractures (SOF). Osteoporos. Int. J. Establ. Result Coop. Eur. Found. Osteoporos. Natl. Osteoporos. Found. USA 2019, 30, 2087–2098. [Google Scholar] [CrossRef]
- Blackwell, T.; Ancoli-Israel, S.; Redline, S.; Stone, K.L. Osteoporotic Fractures in Men (MrOS) Study Group Factors That May Influence the Classification of Sleep-Wake by Wrist Actigraphy: The MrOS Sleep Study. J. Clin. Sleep Med. JCSM Off. Publ. Am. Acad. Sleep Med. 2011, 7, 357–367. [Google Scholar] [CrossRef]
- Sanei, S.; Chambers, J. EEG Signal Processing; John Wiley & Sons: Chichester, UK, 2007; ISBN 978-0-470-51193-0. [Google Scholar]
- McConnell, B.V.; Kronberg, E.; Teale, P.D.; Sillau, S.H.; Fishback, G.M.; Kaplan, R.I.; Fought, A.J.; Dhanasekaran, A.R.; Berman, B.D.; Ramos, A.R.; et al. The Aging Slow Wave: A Shifting Amalgam of Distinct Slow Wave and Spindle Coupling Subtypes Define Slow Wave Sleep across the Human Lifespan. Sleep 2021, 44, zsab125. [Google Scholar] [CrossRef]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B Stat. Methodol. 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Lakens, D. Calculating and Reporting Effect Sizes to Facilitate Cumulative Science: A Practical Primer for t-Tests and ANOVAs. Front. Psychol. 2013, 4, 863. [Google Scholar] [CrossRef]
- Leminen, M.M.; Virkkala, J.; Saure, E.; Paajanen, T.; Zee, P.C.; Santostasi, G.; Hublin, C.; Müller, K.; Porkka-Heiskanen, T.; Huotilainen, M.; et al. Enhanced Memory Consolidation Via Automatic Sound Stimulation During Non-REM Sleep. Sleep 2017, 40, zsx003. [Google Scholar] [CrossRef]
- Henin, S.; Borges, H.; Shankar, A.; Sarac, C.; Melloni, L.; Friedman, D.; Flinker, A.; Parra, L.C.; Buzsaki, G.; Devinsky, O.; et al. Closed-Loop Acoustic Stimulation Enhances Sleep Oscillations But Not Memory Performance. eNeuro 2019, 6, ENEURO.0306-19.2019. [Google Scholar] [CrossRef] [PubMed]
- Ong, J.L.; Patanaik, A.; Chee, N.I.Y.N.; Lee, X.K.; Poh, J.-H.; Chee, M.W.L. Auditory Stimulation of Sleep Slow Oscillations Modulates Subsequent Memory Encoding through Altered Hippocampal Function. Sleep 2018, 41, zsy031. [Google Scholar] [CrossRef] [PubMed]
- Tononi, G.; Cirelli, C. Sleep Function and Synaptic Homeostasis. Sleep Med. Rev. 2006, 10, 49–62. [Google Scholar] [CrossRef]
- Vyazovskiy, V.V.; Cirelli, C.; Pfister-Genskow, M.; Faraguna, U.; Tononi, G. Molecular and Electrophysiological Evidence for Net Synaptic Potentiation in Wake and Depression in Sleep. Nat. Neurosci. 2008, 11, 200–208. [Google Scholar] [CrossRef]
Variable of Interest | Treatment | Unadjusted p-Value of Treatment | Effect Size Metric | ||
---|---|---|---|---|---|
Control 5 | Verum 5 | Fixed Effects: Week, Trial (Nested), Treatment | Fixed Effects: Treatment | ||
Main EEG Variables | |||||
Stimulation-ratio-2-to-all, M ± SD | 0.131 ± 0.049 | 0.224 ± 0.055 | <0.001 * | <0.001 * | 1.700 6 |
p2p, M ± SD | 199 ± 18.4 | 206 ± 19.9 | <0.001 * | <0.001 * | 0.360 6 |
SOSP, M ± SD | 3.91 ± 0.936 | 4.11 ± 0.926 | 0.003 * | 0.005 * | 0.215 6 |
p2p-1, M ± SD | 199 ± 18.0 | 203 ± 19.4 | 0.023 * | 0.021 * | 0.211 6 |
SOSP-1, MD (IQR) | 3.67 (1.72) | 3.89 (1.59) | 0.035 * | 0.047 * | 0.113 7 |
p2p-2, M ± SD | 199 ± 21.1 | 214 ± 22.8 | <0.001 * | <0.001 * | 0.676 6 |
SOSP-2, MD (IQR) | 3.22 (1.62) | 3.73 (1.58) | <0.001 * | <0.001 * | 0.361 7 |
SO-RMS-rel1, MD (IQR) | 0.819 (0.059) | 0.978 (0.090) | <0.001 * | <0.001 * | 0.828 7 |
SPN-RMS-rel1, M ± SD | 1.12 ± 0.034 | 1.20 ± 0.053 | <0.001 * | <0.001 * | 1.650 6 |
Sleep Macrostructure | |||||
RL, M ± SD | 8.19 ± 0.619 | 8.45 ± 0.700 | 0.186 | 0.152 | 0.391 6 |
TST, M ± SD | 6.79 ± 0.808 | 6.76 ± 1.08 | 0.719 3 | 0.708 3 | 0.031 6 |
SOL, MD (IQR) | 0.333 (0.502) | 0.182 (0.514) | 0.647 2 | 0.504 2 | 0.021 7 |
WASO, MD (IQR) | 0.562 (1.10) | 0.812 (1.19) | 0.409 2 | 0.332 2 | 0.079 7 |
W, MD (IQR) | 0.878 (1.67) | 1.10 (1.25) | 0.523 2 | 0.418 2 | 0.109 7 |
N1, MD (IQR) | 0.209 (0.206) | 0.213 (0.188) | 0.219 2 | 0.150 2 | 0.077 7 |
N2, M ± SD | 3.20 ± 0.496 | 3.29 ± 0.694 | 0.178 3 | 0.183 3 | 0.143 6 |
N3, MD (IQR) | 1.58 (0.700) | 1.69 (0.616) | 0.117 | 0.129 | 0.079 7 |
REM, M ± SD | 1.57 ± 0.497 | 1.55 ± 0.451 | 0.929 | 0.951 | 0.042 6 |
Distribution of Stimulation by Sleep Stage | |||||
W-stim, MD (IQR) | 9.5 (13.2) | 10.35 (40.5) | 0.621 1 | 0.464 1 | 0.051 7 |
N1-stim, MD (IQR) | 0.167 (0.333) | 0 (0.667) | 0.571 4 | 0.425 4 | 0.040 7 |
N2-stim, MD (IQR) | 126 (191) | 117 (254) | 0.684 2 | 0.589 2 | 0.028 7 |
N3-stim, MD (IQR) | 544 (246) | 544 (397) | 0.217 1 | 0.252 1 | 0.036 7 |
REM-stim, MD (IQR) | 1 (5.58) | 0.833 (11.9) | 0.418 1 | 0.515 1 | 0.080 7 |
Stimulation Algorithm Performance Metrics | |||||
N-all-stims, MD (IQR) | 731 (440) | 687 (647) | 0.432 1 | 0.525 1 | 0.041 7 |
N-2nd-stims, MD (IQR) | 88.2 (75.6) | 134 (149) | <0.001 * 1 | <0.001 * 1 | 0.327 7 |
N-SOs, MD (IQR) | 1065 (431) | 1132 (792) | 0.735 1 | 0.756 1 | 0.002 7 |
Precision, MD (IQR) | 0.774 (0.129) | 0.772 (0.103) | 0.768 3 | 0.909 3 | 0.041 7 |
Recall, M ± SD | 0.459 ± 0.089 | 0.443 ± 0.089 | 0.112 3 | 0.152 3 | 0.180 6 |
Early, M ± SD | 0.144 ± 0.059 | 0.154 ± 0.068 | 0.200 2 | 0.269 2 | 0.148 6 |
On-time, M ± SD | 0.752 ± 0.058 | 0.756 ± 0.067 | 0.775 3 | 0.490 3 | 0.060 6 |
Late, M ± SD | 0.104 ± 0.037 | 0.090 ± 0.038 | 0.002 * | 0.002 * | 0.372 6 |
Phase mean, M ± SD | 72.2 ±5.79 | 70.2 ± 6.23 | <0.001 * | <0.001 * | 0.328 6 |
Phase std, M ± SD | 31.6 ± 5.10 | 30.0 ± 5.25 | 0.022 * 1 | 0.043 * | 0.309 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Clark, V.P.; Valverde, H.P.; Briggs, M.S.; Mullins, T.; Ortiz, J.; Pirrung, C.J.H.; O’Keeffe, O.S.; Hwang, M.; Crowley, S.; Šarlija, M.; et al. Closed-Loop Auditory Stimulation (CLAS) During Sleep Augments Language and Discovery Learning. Brain Sci. 2024, 14, 1138. https://doi.org/10.3390/brainsci14111138
Clark VP, Valverde HP, Briggs MS, Mullins T, Ortiz J, Pirrung CJH, O’Keeffe OS, Hwang M, Crowley S, Šarlija M, et al. Closed-Loop Auditory Stimulation (CLAS) During Sleep Augments Language and Discovery Learning. Brain Sciences. 2024; 14(11):1138. https://doi.org/10.3390/brainsci14111138
Chicago/Turabian StyleClark, Vincent P., Hector P. Valverde, Mason S. Briggs, Teagan Mullins, Jacqueline Ortiz, Christopher J. H. Pirrung, Olivia S. O’Keeffe, Madeline Hwang, Sidney Crowley, Marko Šarlija, and et al. 2024. "Closed-Loop Auditory Stimulation (CLAS) During Sleep Augments Language and Discovery Learning" Brain Sciences 14, no. 11: 1138. https://doi.org/10.3390/brainsci14111138
APA StyleClark, V. P., Valverde, H. P., Briggs, M. S., Mullins, T., Ortiz, J., Pirrung, C. J. H., O’Keeffe, O. S., Hwang, M., Crowley, S., Šarlija, M., & Matsangas, P. (2024). Closed-Loop Auditory Stimulation (CLAS) During Sleep Augments Language and Discovery Learning. Brain Sciences, 14(11), 1138. https://doi.org/10.3390/brainsci14111138