Synthesis of Tubular Hydroxyapatite and Its Application in Polycaprolactone Scaffold Materials
Abstract
:1. Introduction
2. Experimental
2.1. The Preparation of HAp Nanorods
2.2. The Preparation of KH550-HAp/PCL Composites
2.3. Characterization
2.4. Mechanical Properties
2.5. Porosity Test
2.6. Drug In Vitro Drug-Release Studies
2.7. In Vitro Degradation Tests
2.8. Kinetic Model of Drug Release
2.9. Cytotoxicity Test
2.10. Statistical Analysis
3. Results and Discussion
3.1. Synthesis of HAp Nanorods
3.2. Infrared Spectroscopy (FT-IR) Analysis of Modified Tubular HAp
3.3. SEM Analysis of Modified Tubular HAp
3.4. Analysis of the Specific Surface Area (BET) of Modified Tubular HAp
3.5. X-ray Photoelectron Spectroscopy (XPS) Analysis of Modified Tubular HAp
3.6. Mechanical Properties
3.7. Porosity
3.8. Detection of Cytotoxicity Using the CCK8 Method
3.9. Surface Morphology of Sample Impact Section Analysis
3.10. Drug-Release Capability
3.11. In Vitro Degradation Analysis of Scaffold Materials
3.12. Drug-Release Kinetics of Modified HAp
3.13. Cytotoxicity Test
3.14. Future Direction of KH550-HAp/PCL
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Turner, C.H. Bone strength: Current concepts. Ann. N. Y. Acad. Sci. 2006, 1068, 429–446. [Google Scholar] [CrossRef]
- Northcutt, L.A.; Questell, A.M.; Rhoades, J.; Rafat, M. Development of an alginate-Matrigel hydrogel system to evaluate cancer cell behavior in the stiffness range of the bone marrow. Front. Biomater. Sci. 2023, 2, 1140641. [Google Scholar] [CrossRef] [PubMed]
- Antoniac, I.V.; Antoniac, A.; Vasile, E.; Tecu, C.; Fosca, M.; Yankova, V.G.; Rau, J.V. In vitro characterization of novel nanostructured collagen-hydroxyapatite composite scaffolds doped with magnesium with improved biodegradation rate for hard tissue regeneration. Bioact. Mater. 2021, 6, 3383–3395. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, L.; Qu, Z.; Wang, D.; Huang, W.; Kong, L.; Yang, L. Tanshinone ameliorates glucocorticoid-induced bone loss via activation of AKT1 signaling pathway. Front. Cell Dev. Biol. 2022, 10, 878433. [Google Scholar] [CrossRef] [PubMed]
- Sancilio, S.; Gallorini, M.; Di Nisio, C.; Marsich, E.; Di Pietro, R.; Schweikl, H.; Cataldi, A. Alginate/Hydroxyapatite-Based Nanocomposite Scaffolds for Bone Tissue Engineering Improve Dental Pulp Biomineralization and Differentiation. Stem Cells Int. 2018, 2018, 9643721. [Google Scholar] [CrossRef]
- Agarwal, R.; García, A.J. Biomaterial strategies for engineering implants for enhanced osseointegration and bone repair. Adv. Drug Deliv. Rev. 2015, 94, 53–62. [Google Scholar] [CrossRef]
- Alvarado, J.; Maldonado, R.; Marxuach, J.; Otero, R. Biomechanics of hip and knee prostheses. In Applications of Engineering Mechanics in Medicine; GED–University of Puerto Rico Mayaguez: Mayaguez, Puerto, 2003; pp. 1–20. [Google Scholar]
- Eltom, A.; Zhong, G.; Muhammad, A. Scaffold techniques and designs in tissue engineering functions and purposes: A review. Adv. Mater. Sci. Eng. 2019, 2019, 3429527. [Google Scholar] [CrossRef]
- Li, J.Y.; Wang, T.T.; Li, C.; Wang, Z.F.; Li, S.; Ma, L.; Zheng, L.L. Semaphorin 3A-hypoxia inducible factor 1 subunit alpha co-overexpression enhances the osteogenic differentiation of induced pluripotent stem cells-derived mesenchymal stem cells in vitro. Chin. Med. J. 2020, 133, 301–309. [Google Scholar] [CrossRef]
- Ananth, K.P.; Sun, J.; Bai, J. An innovative approach to manganese-substituted hydroxyapatite coating on zinc oxide–coated 316L SS for implant application. Int. J. Mol. Sci. 2018, 19, 2340. [Google Scholar] [CrossRef]
- Batool, S.A.; Liaquat, U.; Channa, I.A.; Gilani, S.J.; Makhdoom, M.A.; Yasir, M.; Ashfaq, J.; Jumah, M.N.b.; Rehman, M.A.u. Development and Characterization of Zein/Ag-Sr Doped Mesoporous Bioactive Glass Nanoparticles Coatings for Biomedical Applications. Bioengineering 2022, 9, 367. [Google Scholar] [CrossRef]
- Kamrani, S.; Fleck, C. Biodegradable magnesium alloys as temporary orthopaedic implants: A review. Biometals 2019, 32, 185–193. [Google Scholar] [CrossRef] [PubMed]
- Langer, R.; Vacanti, J.P. Tissue engineering. Science 1993, 260, 920–926. [Google Scholar] [CrossRef] [PubMed]
- Jang, J.-W.; Min, K.-E.; Kim, C.; Wern, C.; Yi, S. PCL and DMSO2 Composites for Bio-Scaffold Materials. Materials 2023, 16, 2481. [Google Scholar] [CrossRef]
- Baek, J.W.; Kim, K.S.; Park, H.; Kim, B.S. Marine plankton exoskeletone-derived hydroxyapatite/polycaprolactone composite 3D scaffold for bone tissue engineering. Biomater. Sci. 2022, 10, 7055–7066. [Google Scholar] [CrossRef] [PubMed]
- Arif, Z.U.; Khalid, M.Y.; Noroozi, R.; Sadeghianmaryan, A.; Jalalvand, M.; Hossain, M. Recent advances in 3D-printed polylactide and polycaprolactone-based biomaterials for tissue engineering applications. Int. J. Biol. Macromol. 2022, 218, 930–968. [Google Scholar] [CrossRef] [PubMed]
- Fortelny, I.; Ujcic, A.; Fambri, L.; Slouf, M. Phase structure, compatibility, and toughness of PLA/PCL blends: A review. Front. Mater. 2019, 6, 206. [Google Scholar] [CrossRef]
- Siddiqui, N.; Asawa, S.; Birru, B.; Baadhe, R.; Rao, S. PCL-based composite scaffold matrices for tissue engineering applications. Mol. Biotechnol. 2018, 60, 506–532. [Google Scholar] [CrossRef]
- Kai, W.; Hirota, Y.; Hua, L.; Inoue, Y. Thermal and mechanical properties of a poly (ϵ-caprolactone)/graphite oxide composite. J. Appl. Polym. Sci. 2008, 107, 1395–1400. [Google Scholar] [CrossRef]
- Pietrangelo, A.; Torbenson, M. Disorders of Iron Overload. In MacSween’s Pathology of the Liver; Elsevier Inc.: Amsterdam, The Netherlands, 2017; pp. 275–307. [Google Scholar] [CrossRef]
- Ge, M.; Ge, K.; Gao, F.; Yan, W.; Liu, H.; Xue, L.; Jin, Y.; Ma, H.; Zhang, J. Biomimetic mineralized strontium-doped hydroxyapatite on porous poly (l-lactic acid) scaffolds for bone defect repair. Int. J. Nanomed. 2018, 13, 1707–1721. [Google Scholar] [CrossRef]
- Stratton, S.; Shelke, N.B.; Hoshino, K.; Rudraiah, S.; Kumbar, S.G. Bioactive polymeric scaffolds for tissue engineering. Bioact. Mater. 2016, 1, 93–108. [Google Scholar] [CrossRef]
- Kumar, A.; Biswas, K.; Basu, B. On the toughness enhancement in hydroxyapatite-based composites. Acta Mater. 2013, 61, 5198–5215. [Google Scholar] [CrossRef]
- Motloung, M.P.; Mofokeng, T.G.; Ray, S.S. Viscoelastic, Thermal, and Mechanical Properties of Melt-Processed Poly (ε-Caprolactone) (PCL)/Hydroxyapatite (HAP) Composites. Materials 2022, 15, 104. [Google Scholar] [CrossRef] [PubMed]
- Milovac, D.; Ferrer, G.G.; Ivankovic, M.; Ivankovic, H. PCL-coated hydroxyapatite scaffold derived from cuttlefish bone: Morphology, mechanical properties and bioactivity. Mater. Sci. Eng. C 2014, 34, 437–445. [Google Scholar] [CrossRef]
- Narayanan, V.; Sumathi, S.; Narayanasamy, A.N.R. Tricomponent composite containing copper–hydroxyapatite/chitosan/polyvinyl pyrrolidone for bone tissue engineering. J. Biomed. Mater. Res. Part A 2020, 108, 1867–1880. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.J.; Choi, H.W.; Kim, K.J.; Lee, S.C. Modification of hydroxyapatite nanosurfaces for enhanced colloidal stability and improved interfacial adhesion in nanocomposites. Chem. Mater. 2006, 18, 5111–5118. [Google Scholar] [CrossRef]
- Lu, K.; Zhao, Z.; Cui, J.; Bai, C.; Zhang, H.; Zhao, X.; Wang, F.; Xia, M.; Zhang, Y. The immobilization of Sr (ll) and Co (ll) via magnetic easy-separation organophosphonate-hydroxyapatite hybrid nanoparticles. Sep. Purif. Technol. 2023, 315, 123750. [Google Scholar] [CrossRef]
- Shuai, C.; Yu, L.; Yang, W.; Peng, S.; Zhong, Y.; Feng, P. Phosphonic acid coupling agent modification of HAP nanoparticles: Interfacial effects in PLLA/HAP bone scaffold. Polymers 2020, 12, 199. [Google Scholar] [CrossRef]
- Kim, H.H.; Park, J.B.; Kang, M.J.; Park, Y.H. Surface-modified silk hydrogel containing hydroxyapatite nanoparticle with hyaluronic acid–dopamine conjugate. Int. J. Biol. Macromol. 2014, 70, 516–522. [Google Scholar] [CrossRef]
- Hossain, M.N.; Lee, S.J.; Kim, C.L. Fabrication of TiO2-KH550-PEG Super-Hydrophilic Coating on Glass Surface without UV/Plasma Treatment for Self-Cleaning and Anti-Fogging Applications. Materials 2022, 15, 3292. [Google Scholar] [CrossRef]
- Milazzo, M.; Fitzpatrick, V.; Owens, C.E.; Carraretto, I.M.; McKinley, G.H.; Kaplan, D.L.; Buehler, M.J. 3D printability of silk/hydroxyapatite composites for microprosthetic applications. ACS Biomater. Sci. Eng. 2023, 9, 1285–1295. [Google Scholar] [CrossRef]
- ASTM D638-14; Standard Test Method for Tensile Properties of Plastics. ASTM International: West Conshohocken, PA, USA, 2014.
- ASTM D790-14; Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials. ASTM International: West Conshohocken, PA, USA, 2014.
- Chourasiya, V.; Bohrey, S.; Pandey, A. Formulation, optimization, characterization and in-vitro drug release kinetics of atenolol loaded PLGA nanoparticles using 33 factorial design for oral delivery. Mater. Discov. 2016, 5, 1–13. [Google Scholar] [CrossRef]
- Ling, Y.; Xu, W.; Yang, L.; Liang, C.; Xu, B. Improved the biocompatibility of cancellous bone with compound physicochemical decellularization process. Regen. Biomater. 2020, 7, 443–451. [Google Scholar] [CrossRef] [PubMed]
- United States Pharmacopeial Convention. United States Pharmacopeia; United States Pharmacopeial Convention: North Bethesda, MD, USA, 2022. [Google Scholar]
- Wang, C.; Yin, J.; Wang, R.; Jiao, T.; Huang, H.; Zhou, J.; Zhang, L.; Peng, Q. Facile preparation of self-assembled polydopamine-modified electrospun fibers for highly effective removal of organic dyes. Nanomaterials 2019, 9, 116. [Google Scholar] [CrossRef] [PubMed]
- Woo, K.M.; Seo, J.; Zhang, R.; Ma, P.X. Suppression of apoptosis by enhanced protein adsorption on polymer/hydroxyapatite composite scaffolds. Biomaterials 2007, 28, 2622–2630. [Google Scholar] [CrossRef] [PubMed]
- Hettiaratchi, M.H.; Rouse, T.; Chou, C.; Krishnan, L.; Stevens, H.Y.; Li, M.T.; McDevitt, T.C.; Guldberg, R.E. Enhanced in vivo retention of low dose BMP-2 via heparin microparticle delivery does not accelerate bone healing in a critically sized femoral defect. Acta Biomater. 2017, 59, 21–32. [Google Scholar] [CrossRef]
- Roseti, L.; Parisi, V.; Petretta, M.; Cavallo, C.; Desando, G.; Bartolotti, I.; Grigolo, B. Scaffolds for Bone Tissue Engineering: State of the Art and New Perspectives. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 78, 1246–1247. [Google Scholar] [CrossRef]
- He, J.; Hu, X.; Cao, J.; Zhang, Y.; Xiao, J.; Peng, L.; Cheng, D.; Xiong, C.; Zhang, L. Chitosan-coated hydroxyapatite and drug-loaded polytrimethylene carbonate/polylactic acid scaffold for enhancing bone regeneration. Carbohydr. Polym. 2021, 253, 117198. [Google Scholar] [CrossRef]
Sample | A | B | C | D | E | F | G |
---|---|---|---|---|---|---|---|
Powder (g) | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
HAp | 0% | 2% | 4% | 6% | 8% | 10% | 15% |
Kinetic Model | Parameter | HAp | KH550-HAp |
---|---|---|---|
K1 (min−1) | 0.2199 | 0.12908 | |
Pseudo-first-order | qe (mg/g) | 59.7160 | 191.8761 |
R | 0.9508 | 0.9937 | |
K2 (g/mg·h) | 0.01220 | 0.001076 | |
Pseudo-second-order | qe (mg/g) | 117.0960 | 239.8082 |
R | 0.9995 | 0.9995 | |
Kip-1 (mg/g·h−0.5) | 38.6075 | 76.6329 | |
C (mg/g) | 33.6565 | −22.7467 | |
R | 0.9619 | 0.9979 | |
Kip-2 (mg/g·h−0.5) | 11.5269 | 31.9712 | |
Intra-particle diffusion | C (mg/g) | 71.9607 | 60.5780 |
R | 0.9999 | 0.9995 | |
Kip-3 (mg/g·h−0.5) | 3.0360 | 7.0771 | |
C (mg/g) | 105.6376 | 174.6759 | |
R | 0.5009 | 0.9967 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hong, Z.; Wang, S.; Liu, F. Synthesis of Tubular Hydroxyapatite and Its Application in Polycaprolactone Scaffold Materials. J. Funct. Biomater. 2024, 15, 22. https://doi.org/10.3390/jfb15010022
Hong Z, Wang S, Liu F. Synthesis of Tubular Hydroxyapatite and Its Application in Polycaprolactone Scaffold Materials. Journal of Functional Biomaterials. 2024; 15(1):22. https://doi.org/10.3390/jfb15010022
Chicago/Turabian StyleHong, Ziyi, Shaohui Wang, and Fengyu Liu. 2024. "Synthesis of Tubular Hydroxyapatite and Its Application in Polycaprolactone Scaffold Materials" Journal of Functional Biomaterials 15, no. 1: 22. https://doi.org/10.3390/jfb15010022
APA StyleHong, Z., Wang, S., & Liu, F. (2024). Synthesis of Tubular Hydroxyapatite and Its Application in Polycaprolactone Scaffold Materials. Journal of Functional Biomaterials, 15(1), 22. https://doi.org/10.3390/jfb15010022