State-of-the-Art Functional Biomaterials in China
1. Introduction
2. Overview of Published Articles
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
List of Contributions
- Yang, Y.; Liu, M.Y.; Yang, Z.; Lin, W.S.; Chen, L.; Tan, J.G. Enhanced Antibacterial Effect on Zirconia Implant Abutment by Silver Linear-Beam Ion Implantation. J. Funct. Biomater. 2023, 14, 46.
- Ye, K.; Huang, M.R.; He, X.J.; An, Z.Q.; Qin, H. Synergistic Antibacterial Effect of Zinc Oxide Nanoparticles and Polymorphonuclear Neutrophils. J. Funct. Biomater. 2022, 13, 25.
- Li, W.L.; Hua, G.P.; Cai, J.F.; Zhou, Y.M.; Zhou, X.; Wang, M.; Wang, X.M.; Fu, B.Q.; Ren, L. Multi-Stimulus Responsive Multilayer Coating for Treatment of Device-Associated Infections. J. Funct. Biomater. 2022, 13, 24.
- Chen, X.; Bi, Y.K.; Huang, M.R.; Cao, H.L.; Qin, H. Why Is Tantalum Less Susceptible to Bacterial Infection? J. Funct. Biomater. 2022, 13, 264.
- Zhi, Q.; Zhang, Y.H.; Wei, J.X.; Lv, X.L.; Qiao, S.C.; Lai, H.C. Cell Responses to Calcium- and Protein-Conditioned Titanium: An In Vitro Study. J. Funct. Biomater. 2023, 14, 253.
- Peng, T.; Shi, Q.; Chen, M.L.; Yu, W.Y.; Yang, T.T. Antibacterial-Based Hydrogel Coatings and Their Application in the Biomedical Field—A Review. J. Funct. Biomater. 2023, 14, 243.
- Zhang, X.; Peng, F.; Wang, D. MOFs and MOF-Derived Materials for Antibacterial Application. J. Funct. Biomater. 2022, 13, 215.
- Yang, Y.J.; Jiang, X.; Lai, H.C.; Zhang, X.M. Smart Bacteria-Responsive Drug Delivery Systems in Medical Implants. J. Funct. Biomater. 2022, 13, 173.
- Cao, H.L.; Qiao, S.C.; Qin, H.; Jandt, K.D. Antibacterial Designs for Implantable Medical Devices: Evolutions and Challenges. J. Funct. Biomater. 2022, 13, 86.
- Zhang, Z.; Lv, Y.L.; Harati, J.; Song, J.A.; Du, P.; Ou, P.Y.; Liang, J.Q.; Wang, H.Y.; Wang, P.Y. Submicron-Grooved Films Modulate the Directional Alignment and Biological Function of Schwann Cells. J. Funct. Biomater. 2023, 14, 238.
- Xie, J.N.; Cheng, S.; Zhong, G.Q.; Zhou, R.X.; Zhang, C.; He, Y.; Peng, F.; Zhang, Y. Oxyhydroxide-Coated PEO-Treated Mg Alloy for Enhanced Corrosion Resistance and Bone Regeneration. J. Funct. Biomater. 2022, 13, 50.
- Wang, G.F.; Luo, J.X.; Qiao, Y.Q.; Zhang, D.D.; Liu, Y.L.; Zhang, W.J.; Liu, X.Y.; Jiang, X.Q. AMPK/mTOR Pathway Is Involved in Autophagy Induced by Magnesium-Incorporated TiO2 Surface to Promote BMSC Osteogenic Differentiation. J. Funct. Biomater. 2022, 13, 221.
- Zhao, T.; Chu, Z.Z.; Ma, J.; Ouyang, L.P. Immunomodulation Effect of Biomaterials on Bone Formation. J. Funct. Biomater. 2022, 13, 103.
References
- Gaharwar, A.K.; Singh, I.; Khademhosseini, A. Engineered biomaterials for in situ tissue regeneration. Nat. Rev. Mater. 2020, 5, 686–705. [Google Scholar] [CrossRef]
- Kalelkar, P.P.; Riddick, M.; García, A.J. Biomaterial-based antimicrobial therapies for the treatment of bacterial infections. Nat. Rev. Mater. 2022, 7, 39–54. [Google Scholar] [CrossRef] [PubMed]
- Darby, E.M.; Trampari, E.; Siasat, P.; Gaya, M.S.; Alav, I.; Webber, M.A.; Blair, J.M.A. Molecular mechanisms of antibiotic resistance revisited. Nat. Rev. Microbiol. 2023, 21, 280–295. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, G.; Riquelme, S.; Prince, A.; Avraham, R. Immunometabolic crosstalk during bacterial infection. Nat. Microbiol. 2022, 7, 497–507. [Google Scholar] [CrossRef] [PubMed]
- Cao, H.L.; Dauben, T.J.; Helbing, C.; Jia, Z.C.; Zhang, Y.C.; Huang, M.R.; Müller, L.; Gu, S.; Zhang, X.Y.; Qin, H.; et al. The antimicrobial effect of calcium-doped titanium is activated by fibrinogen adsorption. Mater. Horiz. 2022, 9, 1962–1968. [Google Scholar] [CrossRef] [PubMed]
- Duan, S.; Wu, R.N.; Xiong, Y.H.; Ren, H.M.; Lei, C.Y.; Zhao, Y.Q.; Zhang, X.Y.; Xu, F.J. Multifunctional antimicrobial materials: From rational design to biomedical applications. Prog. Mater. Sci. 2022, 125, 100887. [Google Scholar] [CrossRef]
- Sadtler, K.; Singh, A.; Wolf, M.T.; Wang, X.K.; Pardoll, D.M.; Elisseeff, J.H. Design, clinical translation and immunological response of biomaterials in regenerative medicine. Nat. Rev. Mater. 2016, 1, 16040. [Google Scholar] [CrossRef]
- Rahmati, M.; Silva, E.A.; Reseland, J.E.; Heyward, C.A.; Haugen, H.J. Biological responses to physicochemical properties of biomaterial surface. Chem. Soc. Rev. 2020, 49, 5178–5224. [Google Scholar] [CrossRef]
- Sun, F.; Poss, K.D. Inter-organ communication during tissue regeneration. Development 2023, 150, dev202166. [Google Scholar] [CrossRef] [PubMed]
- Collins, M.N.; Ren, G.; Young, K.; Pina, S.; Reis, R.L.; Oliveira, J.M. Scaffold Fabrication Technologies and Structure/Function Properties in Bone Tissue Engineering. Adv. Funct. Mater. 2021, 31, 2010609. [Google Scholar] [CrossRef]
- Hu, X.; Wang, T.; Li, F.Q.; Mao, X. Surface modifications of biomaterials in different applied fields. RSC Adv. 2023, 13, 20495–20511. [Google Scholar] [CrossRef] [PubMed]
- Akdogan, E.; Sirin, H.T. Plasma surface modification strategies for the preparation of antibacterial biomaterials: A review of the recent literature. Mater. Sci. Eng. C-Mater. 2021, 131, 112474. [Google Scholar] [CrossRef] [PubMed]
- Makurat-Kasprolewicz, B.; Ossowska, A. Recent advances in electrochemically surface treated titanium and its alloys for biomedical applications: A review of anodic and plasma electrolytic oxidation methods. Mater. Today Commun. 2023, 34, 105425. [Google Scholar] [CrossRef]
- Tran, K.T.M.; Nguyen, T.D. Lithography-based methods to manufacture biomaterials at small scales. J. Sci.-Adv. Mater. Dev. 2017, 2, 1–14. [Google Scholar] [CrossRef]
- Ge, X.Y.; Wong, R.; Anisa, A.; Ma, S.Q. Recent development of metal-organic framework nanocomposites for biomedical applications. Biomaterials 2022, 281, 121322. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiao, Y.; Cao, H. State-of-the-Art Functional Biomaterials in China. J. Funct. Biomater. 2024, 15, 23. https://doi.org/10.3390/jfb15010023
Qiao Y, Cao H. State-of-the-Art Functional Biomaterials in China. Journal of Functional Biomaterials. 2024; 15(1):23. https://doi.org/10.3390/jfb15010023
Chicago/Turabian StyleQiao, Yuqin, and Huiliang Cao. 2024. "State-of-the-Art Functional Biomaterials in China" Journal of Functional Biomaterials 15, no. 1: 23. https://doi.org/10.3390/jfb15010023
APA StyleQiao, Y., & Cao, H. (2024). State-of-the-Art Functional Biomaterials in China. Journal of Functional Biomaterials, 15(1), 23. https://doi.org/10.3390/jfb15010023