Cuttlefish Bone-Derived Calcium Phosphate Bioceramics Have Enhanced Osteogenic Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of C-CaPs from Cuttlefish Bone
2.3. Characterization
2.4. In Vitro Degradation Test
2.5. In Vitro Mineralization Test
2.6. Cell Viability Assay
2.7. Osteogenic Potential Analyses
2.7.1. Preparation of Conditioned Medium
2.7.2. Osteogenic Differentiation and Mineralization In Vitro
2.7.3. Quantitative Real-Time PCR Analysis
3. Results and Discussion
3.1. Compositions and Morphologies of Cuttlefish Bone-Derived C-CaPs
3.2. Morphology
3.3. Degradation and Ca2+ Dissolution Properties
3.4. Apatite Formation Ability
3.5. Cytotoxicity Assessment
3.6. Osteoblast Differentiation of rBMSCs In Vitro
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kim, M.J.; Park, J.-H.; Lee, J.-H.; Kim, H.; Choi, H.-J.; Lee, H.-C.; Lee, J.H.; Byun, J.-H.; Oh, S.H. Bioactive Porous Particles as Biological and Physical Stimuli for Bone Regeneration. ACS Biomater. Sci. Eng. 2022, 8, 5233–5244. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Cao, F.; Wu, B.; Yang, J.; Xu, W.; Wang, W.; Wei, X.; Liu, G.; Zhao, D. Immobiliza tion of bioactive vascular endothelial growth factor onto Ca-deficient hydroxyapatite-coated Mg by covalent bonding using polydopamine. J. Orthop. Transl. 2021, 30, 82–92. [Google Scholar]
- Cao, X.; Zhu, J.; Zhang, C.; Xian, J.; Li, M.; Nath Varma, S.; Qin, Z.; Deng, Q.; Zhang, X.; Yang, W.; et al. Magnesium-Rich Calcium Phosphate Derived from Tilapia Bone Has Superior Osteogenic Potential. J. Funct. Biomater. 2023, 14, 390. [Google Scholar] [CrossRef]
- Bose, S.; Tarafder, S.; Bandyopadhyay, A. Hydroxyapatite coatings for metallic implants. In Hydroxyapatite (HAp) for Biomedical Applications; Woodhead Publishing: Cambridge, UK, 2015; pp. 143–157. [Google Scholar]
- Xu, J.; Shen, J.; Kang, Q.; Rui, B.; Li, G. In vivo prevascularization strategy enhances neovascularization of β-tricalcium phosphate scaffolds in bone regeneration. J. Orthop. Translation. 2022, 37, 143–151. [Google Scholar] [CrossRef] [PubMed]
- Ressler, A.; Cvetnic, M.; Antunovic, M.; Marijanovic, I.; Ivankovic, M.; Ivankovic, H. Strontium substituted biomimetic calcium phosphate system derived from cuttlefish bone. J. Biomed Mater. Res. B Appl. Biomater. 2020, 108, 1697–1709. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Zhao, L.; Liu, J.; Weir, M.D.; Zhou, X.; Xu, H.H. Bone tissue engineering via nanostructured calcium phosphate biomaterials and stem cells. Bone Res. 2014, 2, 14017. [Google Scholar] [CrossRef]
- Venkatesan, J.; Anil, S. Hydroxyapatite Derived from Marine Resources and their Potential Biomedical Applications. Biotechnol. Bioprocess Eng. 2021, 26, 312–324. [Google Scholar] [CrossRef]
- Arokiasamy, P.; Al Bakri Abdullah, M.M.; Rahim, S.Z.A.; Luhar, S.; Sandu, A.V.; Jamil, N.H.; Nabiałek, M. Synthesis methods of hydroxyapatite from natural sources: A review. Ceram. Int. 2022, 48, 14959–14979. [Google Scholar] [CrossRef]
- Barua, E.; Das, A.; Pamu, D.; Deoghare, A.B.; Deb, P.; Lala, S.D.; Chatterjee, S. Effect of thermal treatment on the physico-chemical properties of bioactive hydroxyapatite derived from caprine bone bio-waste. Ceram. Int. 2019, 45, 23265–23277. [Google Scholar] [CrossRef]
- Ressler, A.; Ivanković, T.; Ivanišević, I.; Cvetnić, M.; Antunović, M.; Urlić, I.; Ivanković, H.; Ivanković, M. Multiphase zinc and magnesium mono-substituted calcium phosphates derived from cuttlefish bone: A multifunctional biomaterials. Ceram. Int. 2023, 49, 11005–11017. [Google Scholar] [CrossRef]
- Galindo-Moreno, P.; Abril-Garcia, D.; Carrillo-Galvez, A.B.; Zurita, F.; Martin-Morales, N.; O’Valle, F.; Padial-Molina, M. Maxillary sinus floor augmentation comparing bovine versus porcine bone xenografts mixed with autogenous bone graft. A split-mouth randomized controlled trial. Clin. Oral Implants Res. 2022, 33, 524–536. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.P.; Lu, J.F.; Xu, A.T.; He, F.M. Physiochemical characterization and biological effect of anorganic bovine bone matrix and organic-containing bovine bone matrix in comparison with Bio-Oss in rabbits. J. Biomater. Appl. 2018, 33, 566–575. [Google Scholar] [CrossRef]
- Tomas, M.; Karl, M.; Candrlic, M.; Matijevic, M.; Juzbasic, M.; Peloza, O.C.; Radetic, A.T.J.; Kuis, D.; Vidakovic, B.; Ivanisevic, Z.; et al. Histomorphometric, and Immunohistochemical Evaluation of Anorganic Bovine Bone and Injectable Biphasic Calcium Phosphate in Humans: A Randomized Clinical Trial. Int. J. Mol. Sci. 2023, 24, 5539. [Google Scholar] [CrossRef] [PubMed]
- Aminatun, A.; Handayani, F.D.E.; Widiyanti, P.; Winarni, D.; Siswanto, S. In vivo approach on femur bone regenera tion of white rat (Rattus norvegicus) with the use of hydroxyapatite from cuttlefish bone (Sepia spp.) as bone filler. Vet. World 2019, 12, 809–816. [Google Scholar] [CrossRef]
- Cozza, N.; Monte, F.; Bonani, W.; Aswath, P.; Motta, A.; Migliaresi, C. Bioactivity and mineralization of natural hy droxyapatite from cuttlefish bone and Bioglass((R)) co-sintered bioceramics. J. Tissue Eng. Regen. Med. 2018, 12, e1131–e1142. [Google Scholar] [CrossRef] [PubMed]
- Tkalcec, E.; Popovic, J.; Orlic, S.; Milardovic, S.; Ivankovic, H. Hydrothermal synthesis and thermal evolution of car bonate-fluorhydroxyapatite scaffold from cuttlefish bones. Mater. Sci. Eng. C Mater. Biol. Appl. 2014, 42, 578–586. [Google Scholar] [CrossRef] [PubMed]
- Ivankovic, H.; Tkalcec, E.; Orlic, S.; Ferrer, G.G.; Schauperl, Z. Hydroxyapatite formation from cuttlefish bones: Kinetics. J. Mater. Sci. Mater. Med. 2010, 21, 2711–2722. [Google Scholar] [CrossRef]
- Sarin, P.; Lee, S.-J.; Apostolov, Z.D.; Kriven, W.M. Porous Biphasic Calcium Phosphate Scaffolds from Cuttlefish Bone. J. Am. Ceram. Soc. 2011, 94, 2362–2370. [Google Scholar] [CrossRef]
- Neto, A.S.; Fonseca, A.C.; Abrantes, J.C.C.; Coelho, J.F.J.; Ferreira, J.M.F. Surface functionalization of cuttlefish bone-derived biphasic calcium phosphate scaffolds with polymeric coatings. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 105, 110014. [Google Scholar] [CrossRef]
- Li, X.; Deng, Y.; Wang, M.; Chen, X.; Xiao, Y.; Zhang, X. Stabilization of Ca-deficient hydroxyapatite in biphasic calcium phosphate ceramics by adding alginate to enhance their biological performances. J. Mater. Chem. B 2018, 6, 84–97. [Google Scholar] [CrossRef] [PubMed]
- Kokubo, T.; Takadama, H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 2006, 27, 2907–2915. [Google Scholar] [CrossRef] [PubMed]
- Dorozhkina, E.I.; Dorozhkin, S.V. Mechanism of the solid-state transformation of a calcium-deficient hydroxyapatite (CDHA) into biphasic calcium phosphate (BCP) at elevated temperatures. Chem. Mater. 2002, 14, 4267–4272. [Google Scholar] [CrossRef]
- Zhu, Q.; Ablikim, Z.; Chen, T.; Cai, Q.; Xia, J.; Jiang, D.; Wang, S. The preparation and characterization of HA/β-TCP biphasic ceramics from fish bones. Ceram. Int. 2017, 43, 12213–12220. [Google Scholar] [CrossRef]
- Zyman, Z.Z.; Tkachenko, M.V.; Polevodin, D.V. Preparation and characterization of biphasic calcium phosphate ce ramics of desired composition. J. Mater. Sci. Mater. Med. 2008, 19, 2819–2825. [Google Scholar] [CrossRef] [PubMed]
- Dorozhkin, S.V. Biphasic, triphasic and multiphasic calcium orthophosphates. Acta Biomater. 2012, 8, 963–977. [Google Scholar] [CrossRef] [PubMed]
- Goto, T.; Sasaki, K. Effects of trace elements in fish bones on crystal characteristics of hydroxyapatite obtained by calcination. Ceram. Int. 2014, 40, 10777–10785. [Google Scholar] [CrossRef]
- Xie, L.; Yu, H.; Deng, Y.; Yang, W.; Liao, L.; Long, Q. Preparation, characterization and in vitro dissolution behavior of porous biphasic alpha/beta-tricalcium phosphate bioceramics. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 59, 1007–1015. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Matinlinna, J.P.; Chen, Z.; Ning, C.; Ni, G.; Pan, H.; Darvell, B.W. Effect of thermal treatment on carbonated hydroxyapatite: Morphology, composition, crystal characteristics and solubility. Ceram. Int. 2015, 41, 6149–6157. [Google Scholar] [CrossRef]
- Zhang, L.; Lu, T.; He, F.; Zhang, W.; Yuan, X.; Wang, X.; Ye, J. Physicochemical and cytological properties of poorly crystalline calcium-deficient hydroxyapatite with different Ca/P ratios. Ceram. Int. 2022, 48, 24765–24776. [Google Scholar] [CrossRef]
- Jahangir, M.U.; Islam, F.; Wong, S.Y.; Jahan, R.A.; Matin, M.A.; Li, X.; Arafat, M.T. Comparative analysis and antibacte rial properties of thermally sintered apatites with varied processing conditions. J. Am. Ceram. Soc. 2020, 104, 1023–1039. [Google Scholar] [CrossRef]
- Truite, C.V.R.; Noronha, J.N.G.; Prado, G.C.; Santos, L.N.; Palacios, R.S.; Nascimento, A.D.; Volnistem, E.A.; da Silva Crozatti, T.T.; Francisco, C.P.; Sato, F.; et al. Bioperformance Studies of Biphasic Calcium Phosphate Scaffolds Extracted from Fish Bones Impregnated with Free Curcumin and Complexed with beta-Cyclodextrin in Bone Regeneration. Biomolecules 2022, 12, 383. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Dai, C.; Wei, J.; Wen, Z.; Zhang, S.; Lin, L. Calcium phosphate/chitosan composite coating: Effect of different concentrations of Mg2+ in the m-SBF on its bioactivity. Appl. Surf. Sci. 2013, 280, 256–262. [Google Scholar] [CrossRef]
- Li, L.; Hu, H.; Zhu, Y.; Zhu, M.; Liu, Z. 3D-printed ternary SiO2-CaO-P2O5 bioglass-ceramic scaffolds with tunable compositions and properties for bone regeneration. Ceram. Int. 2019, 45, 10997–11005. [Google Scholar] [CrossRef]
- Miyajima, H.; Touji, H.; Iijima, K. Hydroxyapatite Particles from Simulated Body Fluids with Different pH and Their Effects on Mesenchymal Stem Cells. Nanomaterials 2021, 11, 2517. [Google Scholar] [CrossRef] [PubMed]
- Kolekar, T.V.; Bandgar, S.S.; Yadav, H.M.; Kim, D.-Y.; Magalad, V.T. Hemolytic and biological assessment of lithium substituted hydroxyapatite nanoparticles for L929 and Hela cervical cancer cells. Inorg. Chem. Commun. 2022, 137, 109172. [Google Scholar] [CrossRef]
- Qi, F.; Wang, Z.; Shuai, Y.; Peng, S.; Shuai, C. Sr2+ Sustained Release System Augments Bioactivity of Polymer Scaffold. ACS Appl. Polym. Mater. 2022, 4, 2691–2702. [Google Scholar] [CrossRef]
- Gong, J.; Sun, M.; Wang, S.; He, J.; Wang, Y.; Qian, Y.; Liu, Y.; Dong, L.; Ma, L.; Cheng, K.; et al. Surface Modification by Divalent Main-Group-Elemental Ions for Improved Bone Remodeling To Instruct Implant Biofabrication. ACS Biomater. Sci. Eng. 2019, 5, 3311–3324. [Google Scholar] [CrossRef] [PubMed]
- Ponnilavan, V.; Vasanthavel, S.; Khan, M.I.K.; Dhayalan, A.; Kannan, S. Structural and bio-mineralization features of alumina zirconia composite influenced by the combined Ca2+ and PO43− additions. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 98, 381–391. [Google Scholar] [CrossRef]
- Oh, S.A.; Kim, S.H.; Won, J.E.; Kim, J.J.; Shin, U.S.; Kim, H.W. Effects on growth and osteogenic differentiation of mesenchymal stem cells by the zinc-added sol-gel bioactive glass granules. J. Tissue Eng. 2010, 1, 475260. [Google Scholar] [CrossRef]
- Boanini, E.; Gazzano, M.; Bigi, A. Ionic substitutions in calcium phosphates synthesized at low temperature. Acta Biomater. 2010, 6, 1882–1894. [Google Scholar] [CrossRef] [PubMed]
Gene | Direction | Primer Sequence (5′ to 3′) |
---|---|---|
m-GAPDH | Forward | TGAAGCAGGCATCTGAGGG |
Reverse | TGAAGTCGCAGGAGACAACC | |
m-OCN | Forward | CAGTCCCCAGCCCAGAT |
Reverse | GTGATACCATAGATGCGTTTGT | |
m-ALP | Forward | TAAACCCTTCAGCCCTTCC |
Reverse | CCCTTGATACAGCACCTACATT |
Sample | Calcination Temperature (°C) | β-Tricalcium Phosphate (βTCP)% | Hydroxyapatite (HA)% |
---|---|---|---|
C-HA | 600 | 0 | 100 |
C-BCP | 700 | 15 | 85 |
C-BCP-1 | 800 | 50 | 50 |
C-BCP-2 | 900 | 70 | 30 |
C-βTCP | 1000 | 100 | 0 |
C-βTCP-1 | 1100 | 100 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pang, B.; Xian, J.; Chen, J.; Ng, L.; Li, M.; Zhao, G.; E, Y.; Wang, X.; Cao, X.; Zhang, C.; et al. Cuttlefish Bone-Derived Calcium Phosphate Bioceramics Have Enhanced Osteogenic Properties. J. Funct. Biomater. 2024, 15, 212. https://doi.org/10.3390/jfb15080212
Pang B, Xian J, Chen J, Ng L, Li M, Zhao G, E Y, Wang X, Cao X, Zhang C, et al. Cuttlefish Bone-Derived Calcium Phosphate Bioceramics Have Enhanced Osteogenic Properties. Journal of Functional Biomaterials. 2024; 15(8):212. https://doi.org/10.3390/jfb15080212
Chicago/Turabian StylePang, Boqi, Jiaru Xian, Jiajun Chen, Liqi Ng, Mengting Li, Guangchun Zhao, Yixun E, Xiaorui Wang, Xiaxin Cao, Changze Zhang, and et al. 2024. "Cuttlefish Bone-Derived Calcium Phosphate Bioceramics Have Enhanced Osteogenic Properties" Journal of Functional Biomaterials 15, no. 8: 212. https://doi.org/10.3390/jfb15080212
APA StylePang, B., Xian, J., Chen, J., Ng, L., Li, M., Zhao, G., E, Y., Wang, X., Cao, X., Zhang, C., Zhang, M., & Liu, C. (2024). Cuttlefish Bone-Derived Calcium Phosphate Bioceramics Have Enhanced Osteogenic Properties. Journal of Functional Biomaterials, 15(8), 212. https://doi.org/10.3390/jfb15080212