Impact of Nanotechnology from Nanosilica to Mitigate N and P Deficiencies Favoring the Sustainable Cultivation of Sugar Beet
Abstract
:1. Introduction
2. Material and Methods
2.1. Location of Experiments
2.2. Treatments and Experimental Design
2.3. Analysis
2.3.1. Nitrogen and Phosphorus Use: Efficiency and Accumulation
2.3.2. Silicon Accumulation
2.3.3. Dry Mass of Plants
2.3.4. Photosystem II Quantum Efficiency (Fv/Fm)
2.3.5. Electrolyte Extravasation Index
2.3.6. Determination of Total Phenol Contents
2.3.7. Quantification of Chlorophyll and Carotenoid Pigments
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Galewski, P.; McGrath, J.M. Genetic Diversity among Cultivated Beets (Beta vulgaris) Assessed via Population-Based Whole Genome Sequences. BMC Genom. 2020, 21, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Tivelli, S.; Factor, T.; Teramoto, J. Beterraba: Do Plantio à Comercialização; (N. 210); Boletim Técnico IAC: Campinas, Brazil, 2011; ISBN 1809-7936. [Google Scholar]
- Ali, N.; Réthoré, E.; Yvin, J.C.; Hosseini, S.A. The Regulatory Role of Silicon in Mitigating Plant Nutritional Stresses. Plants 2020, 9, 1779. [Google Scholar] [CrossRef]
- Hawkesford, M.; Horst, W.; Kichey, T.; Lambers, H.; Schjoerring, J.; Møller, I.S.; White, P. Functions of Macronutrients. In Marschner’s Mineral Nutrition of Higher Plants, 3rd ed.; Elsevier Ltd.: Amsterdam, The Netherlands, 2012; pp. 135–189. [Google Scholar] [CrossRef]
- Alves, A.U.; Prado, R.D.M.; Gondim, A.R.D.O.; Fonseca, I.M.; Cecílio Filho, A.B. Desenvolvimento e Estado Nutricional Da Beterraba Em Função Da Omisão de Nutrientes. Hortic. Bras. 2008, 26, 292–295. [Google Scholar] [CrossRef]
- Akhtar, N.; Ilyas, N.; Meraj, T.A.; Pour-Aboughadareh, A.; Sayyed, R.Z.; Mashwani, Z.U.R.; Poczai, P. Improvement of Plant Responses by Nanobiofertilizer: A Step towards Sustainable Agriculture. Nanomaterials 2022, 12, 965. [Google Scholar] [CrossRef]
- Ma, J.F. Role of Silicon in Enhancing the Resistance of Plants to Biotic and Abiotic Stresses. Soil Sci. Plant Nutr. 2011, 50, 11–18. [Google Scholar] [CrossRef]
- Pavlovic, J.; Kostic, L.; Bosnic, P.; Kirkby, E.A.; Nikolic, M. Interactions of Silicon with Essential and Beneficial Elements in Plants. Front. Plant Sci. 2021, 12, 1224. [Google Scholar] [CrossRef]
- Wang, L.; Ning, C.; Pan, T.; Cai, K. Role of Silica Nanoparticles in Abiotic and Biotic Stress Tolerance in Plants: A Review. Int. J. Mol. Sci. 2022, 23, 1947. [Google Scholar] [CrossRef]
- Sales, A.C.; Campos, C.N.S.; de Souza Junior, J.P.; da Silva, D.L.; Oliveira, K.S.; de Mello Prado, R.; Teodoro, L.P.R.; Teodoro, P.E. Silicon Mitigates Nutritional Stress in Quinoa (Chenopodium Quinoa Willd.). Sci. Rep. 2021, 11, 1–16. [Google Scholar] [CrossRef]
- Buchelt, A.C.; Teixeira, G.C.M.; Oliveira, K.S.; Rocha, A.M.S.; de Mello Prado, R.; Caione, G. Silicon Contribution Via Nutrient Solution in Forage Plants to Mitigate Nitrogen, Potassium, Calcium, Magnesium, and Sulfur Deficiency. J. Soil Sci. Plant Nutr. 2020, 20, 1532–1548. [Google Scholar] [CrossRef]
- Da Silva, J.L.F.; de Mello Prado, R. Elucidating the Action Mechanisms of Silicon in the Mitigation of Phosphorus Deficiency and Enhancement of Its Response in Sorghum Plants. J. Plant Nutr. 2021, 44, 2572–2582. [Google Scholar] [CrossRef]
- Oliveira, K.S.; de Mello Prado, R.; Checchio, M.V.; Gratão, P.L. Silicon via Nutrient Solution Modulates Deficient and Sufficient Manganese Sugar and Energy Cane Antioxidant Systems. Sci. Rep. 2021, 11, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, D.L.; de Mello Prado, R.; Tenesaca, L.F.L.; da Silva, J.L.F.; Mattiuz, B.-H. Silicon Attenuates Calcium Deficiency by Increasing Ascorbic Acid Content, Growth and Quality of Cabbage Leaves. Sci. Rep. 2021, 11, 1770. [Google Scholar] [CrossRef] [PubMed]
- Vaculíková, M.; Vaculík, M.; Šimková, L.; Fialová, I.; Kochanová, Z.; Sedláková, B.; Luxová, M. Influence of Silicon on Maize Roots Exposed to Antimony—Growth and Antioxidative Response. Plant Physiol. Biochem. 2014, 83, 279–284. [Google Scholar] [CrossRef] [PubMed]
- Jafarei, Y.; Tabrizi, E.F.M.; Bybordi, A. Effect of Different Stages and Times of Silicon Foliar Spray on Yield and Yield Components of Bean. Cumhur. Sci. J. 2015, 36, 81–92. [Google Scholar]
- Mantovani, C.; Prado, R.M.; Pivetta, K.F.L. Silicon Foliar Application on Nutrition and Growth of Phalaenopsis and Dendrobium Orchids. Sci. Hortic. 2018, 241, 83–92. [Google Scholar] [CrossRef] [Green Version]
- Prado, R.D.M. Mineral Nutrition of Tropical Plants, 1st ed.; Springer International Publishing: Jaboticabal, Brazil, 2021. [Google Scholar]
- Urban, J.; Pulkrabek, J. Increased Yield and Quality of Sugar Beet by Means of Foliar Nutrition and Biologically Active Substances. Listy Cukrov. Řepařské 2018, 134, 188–194. [Google Scholar]
- Artyszak, A.; Kondracka, M.; Gozdowski, D.; Siuda, A.; Litwińczuk-Bis, M. Impact of Foliar Application of Various Forms of Silicon on the Chemical Composition of Sugar Beet Plants. Sugar Tech 2021, 23, 546–559. [Google Scholar] [CrossRef]
- Artyszak, A.; Gozdowski, D.; Siuda, A.; Matichenkov, V.; Schaller, J.; Nagabovanalli, P.B.; Katz, O. Effect of the Application Date of Fertilizer Containing Silicon and Potassium on the Yield and Technological Quality of Sugar Beet Roots. Plants 2021, 10, 370. [Google Scholar] [CrossRef]
- Dos Santos Sarah, M.M.; de Mello Prado, R.; Teixeira, G.C.M.; de Souza Júnior, J.P.; de Medeiros, R.L.S.; Barreto, R.F. Silicon Supplied Via Roots or Leaves Relieves Potassium Deficiency in Maize Plants. Silicon 2021, 14, 773–782. [Google Scholar] [CrossRef]
- De Souza Júnior, J.P.; de Mello Prado, R.; Campos, C.N.S.; Teixeira, G.C.M.; Ferreira, P.M. Nanosilica-Mediated Plant Growth and Environmental Stress Tolerance in Plants: Mechanisms of Action. In Silicon and Nano-Silicon in Environmental Stress Management and Crop Quality Improvement; Academic Press: Cambridge, MA, USA, 2022; pp. 325–337. [Google Scholar] [CrossRef]
- Felisberto, G.; de Mello Prado, R.; de Oliveira, R.L.L.; de Carvalho Felisberto, P.A. Are Nanosilica, Potassium Silicate and New Soluble Sources of Silicon Effective for Silicon Foliar Application to Soybean and Rice Plants? Silicon 2020, 13, 3217–3228. [Google Scholar] [CrossRef]
- Dos Santos, L.C.N.; Teixeira, G.C.M.; de Mello Prado, R.; Rocha, A.M.S.; dos Santos Pinto, R.C. Response of Pre-Sprouted Sugarcane Seedlings to Foliar Spraying of Potassium Silicate, Sodium and Potassium Silicate, Nanosilica and Monosilicic Acid. Sugar Tech 2020, 22, 773–781. [Google Scholar] [CrossRef]
- De Oliveira, R.L.L.; de Mello Prado, R.; Felisberto, G.; Cruz, F.J.R. Different Sources of Silicon by Foliar Spraying on the Growth and Gas Exchange in Sorghum. J. Soil Sci. Plant Nutr. 2019, 19, 948–953. [Google Scholar] [CrossRef]
- De Souza Junior, J.P.; de Mello Prado, R.; Soares, M.B.; da Silva, J.L.F.; de Farias Guedes, V.H.; dos Santos Sarah, M.M.; Cazetta, J.O. Effect of Different Foliar Silicon Sources on Cotton Plants. J. Soil Sci. Plant Nutr. 2021, 21, 95–103. [Google Scholar] [CrossRef]
- Dos Santos, M.M.M.; da Silva, G.P.; de Mello Prado, R.; Pinsetta Junior, J.S.; Mattiuz, B.H.; Braun, H. Biofortification of Tomato with Stabilized Alkaline Silicate and Silicic Acid, Nanosilica, and Potassium Silicate via Leaf Increased Ascorbic Acid Content and Fruit Firmness. J. Plant Nutr. 2021, 45, 896–903. [Google Scholar] [CrossRef]
- Hoagland, D.R.; Arnon, D.I. The Water-Culture Method for Growing Plants without Soil; (No. 337); The College of Agriculture University of California: Berkeley, CA, USA, 1950. [Google Scholar]
- Bataglia, O.C.; Furlani, A.M.C.; Teixeira, J.P.F.; Furlani, P.R.; Gallo, J.R. Métodos de Análise Química de Plantas; Boletim Técnico: Campinas, Brazil, 1983. [Google Scholar]
- Siddiqi, M.Y.; Glass, A.D.M. Utilization Index: A Modified Approach to the Estimation and Comparison of Nutrient Utilization Efficiency in Plants. J. Plant Nutr. 1981, 4, 289–302. [Google Scholar] [CrossRef]
- Kraska, J.E.; Breitenbeck, G.A. Simple, Robust Method for Quantifying Silicon in Plant Tissue. Soil Sci. Plant Anal. 2010, 41, 2075–2085. [Google Scholar] [CrossRef]
- Korndörfer, G.H.; Pereira, H.S.; Nolla, A. Análise de Silício No Solo, Planta e Fertilizantes, 2nd ed.; UFU: Uberlândia, Brazil, 2004. [Google Scholar]
- Lichtenthaler, H.K.; Buschmann, C.; Knapp, M. How to Correctly Determine the Different Chlorophyll Fluorescence Parameters and the Chlorophyll Fluorescence Decrease Ratio R Fd of Leaves with the PAM Fluorometer. Photosynthetica 2005, 43, 379–393. [Google Scholar] [CrossRef]
- Dionisio-Sese, M.L.; Tobita, S. Antioxidant Responses of Rice Seedlings to Salinity Stress. Plant Sci. 1998, 135, 1–9. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A., Jr. Colorimetry to Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vinic. 1965, 16, 144–158. [Google Scholar]
- Lichtenthaler, H.K. Chlorophylls and Carotenoids: Pigments of Photosynthetic Biomembranes. Methods Enzym. 1987, 148, 350–382. [Google Scholar] [CrossRef]
- Souza Osório, C.R.W.; Teixeira, G.C.M.; Barreto, R.F.; Campos, C.N.S.; Leal, A.J.F.; Teodoro, P.E.; de Mello Prado, R. Macronutrient Deficiency in Snap Bean Considering Physiological, Nutritional, and Growth Aspects. PLoS ONE 2020, 15, e0234512. [Google Scholar] [CrossRef] [PubMed]
- Havaux, M. Carotenoid Oxidation Products as Stress Signals in Plants. Plant J. 2014, 79, 597–606. [Google Scholar] [CrossRef] [PubMed]
- Calderón-Vázquez, C.; Sawers, R.J.H.; Herrera-Estrella, L. Phosphate Deprivation in Maize: Genetics and Genomics. Plant Physiol. 2011, 156, 1067–1077. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santos, K.R.; Pereira, M.P.; Ferreira, A.C.G.; de Almeida Rodrigues, L.C.; de Castro, E.M.; Corrêa, F.F.; Pereira, F.J. Typha Domingensis Pers. Growth Responses to Leaf Anatomy and Photosynthesis as Influenced by Phosphorus. Aquat. Bot. 2015, 122, 47–53. [Google Scholar] [CrossRef]
- Sun, L.; Tian, J.; Zhang, H.; Liao, H. Phytohormone Regulation of Root Growth Triggered by P Deficiency or Al Toxicity. J. Exp. Bot. 2016, 67, 3655–3664. [Google Scholar] [CrossRef] [Green Version]
- Cavalcante, V.S.; de Mello Prado, R.; de Lima Vasconcelos, R.; de Almeida, H.J.; da Silva, T.R. Growth and Nutritional Efficiency of Watermelon Plants Grown under Macronutrient Deficiencies. HortScience 2019, 54, 738–742. [Google Scholar] [CrossRef] [Green Version]
- Debona, D.; Rodrigues, F.A.; Datnoff, L.E. Silicon’s Role in Abiotic and Biotic Plant Stresses. Annu. Rev. Phytopathol. 2017, 55, 85–107. [Google Scholar] [CrossRef] [Green Version]
- Cooke, J.; Leishman, M.R. Consistent Alleviation of Abiotic Stress with Silicon Addition: A Meta-Analysis. Funct. Ecol. 2016, 30, 1340–1357. [Google Scholar] [CrossRef]
- Teixeira, G.C.M.; de Mello Prado, R.; Rocha, A.M.S.; de Cássia Piccolo, M. Root- and Foliar-Applied Silicon Modifies C: N: P Ratio and Increases the Nutritional Efficiency of Pre-Sprouted Sugarcane Seedlings under Water Deficit. PLoS ONE 2020, 15, e0240847. [Google Scholar] [CrossRef]
- Detmann, K.C.; Araújo, W.L.; Martins, S.C.V.; Sanglard, L.M.V.P.; Reis, J.V.; Detmann, E.; Rodrigues, F.Á.; Nunes-Nesi, A.; Fernie, A.R.; Damatta, F.M. Silicon Nutrition Increases Grain Yield, Which, in Turn, Exerts a Feed-Forward Stimulation of Photosynthetic Rates via Enhanced Mesophyll Conductance and Alters Primary Metabolism in Rice. New Phytol. 2012, 196, 752–762. [Google Scholar] [CrossRef] [Green Version]
- Artyszak, A.; Gozdowski, D.; Payne, W.A.; Barbanti, L. Influence of Various Forms of Foliar Application on Root Yield and Technological Quality of Sugar Beet. Agriculture 2021, 11, 693. [Google Scholar] [CrossRef]
- Chen, D.; Cao, B.; Wang, S.; Liu, P.; Deng, X.; Yin, L.; Zhang, S. Silicon Moderated the K Deficiency by Improving the Plant-Water Status in Sorghum. Sci. Rep. 2016, 6, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Oliveira, R.L.L.; de Mello Prado, R.; Felisberto, G.; Checchio, M.V.; Gratão, P.L. Silicon Mitigates Manganese Deficiency Stress by Regulating the Physiology and Activity of Antioxidant Enzymes in Sorghum Plants. J. Soil Sci. Plant Nutr. 2019, 19, 524–534. [Google Scholar] [CrossRef]
- Sharma, P.; Jha, A.B.; Dubey, R.S.; Pessarakli, M. Reactive Oxygen Species, Oxidative Damage, and Antioxidative Defense Mechanism in Plants under Stressful Conditions. J. Bot. 2012, 2012, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Araújo, W.B.S.; Teixeira, G.C.M.; de Mello Prado, R.; Rocha, A.M.S. Silicon Mitigates Nutritional Stress of Nitrogen, Phosphorus, and Calcium Deficiency in Two Forages Plants. Sci. Rep. 2022, 12, 6611. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carvalho, L.T.d.S.; Prado, R.d.M.; Da Silva, J.L.F.; Ferreira, P.M.; Antonio, R.I. Impact of Nanotechnology from Nanosilica to Mitigate N and P Deficiencies Favoring the Sustainable Cultivation of Sugar Beet. Nanomaterials 2022, 12, 4038. https://doi.org/10.3390/nano12224038
Carvalho LTdS, Prado RdM, Da Silva JLF, Ferreira PM, Antonio RI. Impact of Nanotechnology from Nanosilica to Mitigate N and P Deficiencies Favoring the Sustainable Cultivation of Sugar Beet. Nanomaterials. 2022; 12(22):4038. https://doi.org/10.3390/nano12224038
Chicago/Turabian StyleCarvalho, Lívia Tálita da Silva, Renato de Mello Prado, José Lucas Farias Da Silva, Patrícia Messias Ferreira, and Renan Izildo Antonio. 2022. "Impact of Nanotechnology from Nanosilica to Mitigate N and P Deficiencies Favoring the Sustainable Cultivation of Sugar Beet" Nanomaterials 12, no. 22: 4038. https://doi.org/10.3390/nano12224038
APA StyleCarvalho, L. T. d. S., Prado, R. d. M., Da Silva, J. L. F., Ferreira, P. M., & Antonio, R. I. (2022). Impact of Nanotechnology from Nanosilica to Mitigate N and P Deficiencies Favoring the Sustainable Cultivation of Sugar Beet. Nanomaterials, 12(22), 4038. https://doi.org/10.3390/nano12224038