Systematic Research on the Transport of Ball-Milled Biochar in Saturated Porous Media: Effect of Humic Acid, Ionic Strength, and Cation Types
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Column Experiment
2.3. Mathematical Model
3. Results and Discussion
3.1. Properties of Ball-Milled Biochar, Pristine Biochar, and Quart Sand
3.2. HA-Facilitated Transport of BMBC
3.3. Antagonistic Effect of Humic Acid and Ionic Strength in the Presence of Na+ and Mg2+
3.4. Effect of Al3+ and HA on Transport of BMBC under Acidic Conditions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Marris, E. Putting the carbon back: Black is the new green. Nature 2006, 442, 624. [Google Scholar] [CrossRef] [PubMed]
- Kleiner, K. The bright prospect of biochar. Nat. Rep. Clim. Change 2009, 65, 72–74. [Google Scholar] [CrossRef]
- Chen, W.; Meng, J.; Han, X.; Lan, Y.; Zhang, W. Past, present, and future of biochar. Biochar 2019, 1, 75–87. [Google Scholar] [CrossRef] [Green Version]
- Razzaghi, F.; Obour, P.B.; Arthur, E. Does biochar improve soil water retention? A systematic review and meta-analysis. Geoderma 2020, 361, 114055. [Google Scholar] [CrossRef]
- Godlewska, P.; Schmidt, H.P.; Ok, Y.S.; Oleszczuk, P. Biochar for composting improvement and contaminants reduction. A review. Bioresour. Technol. 2017, 246, 193–202. [Google Scholar] [CrossRef]
- Ibrahim, H.M.; Al-Wabel, M.I.; Usman, A.R.; Al-Omran, A. Effect of Conocarpus biochar application on the hydraulic properties of a sandy loam soil. Soil Sci. Soc. Am. J. 2013, 178, 165–173. [Google Scholar] [CrossRef]
- El-Naggar, A.; Lee, S.S.; Rinklebe, J.; Farooq, M.; Song, H.; Sarmah, A.K.; Zimmerman, A.R.; Ahmad, M.; Shaheen, S.M.; Ok, Y.S. Biochar application to low fertility soils: A review of current status, and future prospects. Geoderma 2019, 337, 536–554. [Google Scholar] [CrossRef]
- Inyang, M.; Gao, B.; Yao, Y.; Xue, Y.; Zimmerman, A.R.; Mosa, A.; Pullammanappallil, P.; Ok, Y.S.; Cao, X. A review of biochar as a low-cost adsorbent for aqueous heavy metal removal. Crit. Rev. Environ. Sci. Technol. 2016, 46, 406–433. [Google Scholar] [CrossRef]
- Ahmed, M.B.; Zhou, J.L.; Ngo, H.H.; Guo, W.; Chen, M. Progress in the preparation and application of modified biochar for improved contaminant removal from water and wastewater. Bioresour. Technol. 2016, 214, 836–851. [Google Scholar] [CrossRef]
- Srivastav, A.L.; Pham, T.D.; Izah, S.C.; Singh, N.; Singh, P.K. Biochar Adsorbents for Arsenic Removal from Water Environment: A Review. Bull. Environ. Contam. Toxicol. 2021. [Google Scholar] [CrossRef]
- Liu, G.; Zheng, H.; Jiang, Z.; Zhao, J.; Wang, Z.; Pan, B.; Xing, B. Formation and Physicochemical Characteristics of Nano Biochar: Insight into Chemical and Colloidal Stability. Environ. Sci. Technol. 2018, 52, 10369–10379. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Bair, D.A.; Parikh, S.J. Estimating potential dust emissions from biochar amended soils under simulated tillage. Sci. Total Environ. 2018, 625, 1093–1101. [Google Scholar] [CrossRef] [PubMed]
- Yin, X.; Yu, L.; Luo, X.; Zhang, Z.; Sun, H.; Mosa, A.A.; Wang, N. Sorption of Pb (II) onto <1 μm effective diameter clay minerals extracted from different soils of the Loess Plateau, China. Geoderma 2019, 337, 1058–1066. [Google Scholar] [CrossRef]
- Peterson, S.C.; Jackson, M.A.; Kim, S.; Palmquist, D.E. Increasing biochar surface area: Optimization of ball milling parameters. Powder Technol. 2012, 228, 115–120. [Google Scholar] [CrossRef]
- Delogu, F.; Gorrasi, G.; Sorrentino, A. Fabrication of polymer nanocomposites via ball milling: Present status and future perspectives. Prog. Mater. Sci. 2017, 86, 75–126. [Google Scholar] [CrossRef]
- Amusat, S.O.; Kebede, T.G.; Dube, S.; Nindi, M.M. Ball-milling synthesis of biochar and biochar–based nanocomposites and prospects for removal of emerging contaminants: A review. J. Water Process Eng. 2021, 41, 101993. [Google Scholar] [CrossRef]
- Lyu, H.; Gao, B.; He, F.; Zimmerman, A.R.; Ding, C.; Huang, H.; Tang, J. Effects of ball milling on the physicochemical and sorptive properties of biochar: Experimental observations and governing mechanisms. Environ. Pollut. 2018, 233, 54–63. [Google Scholar] [CrossRef]
- Wang, B.; Gao, B.; Wan, Y. Entrapment of ball-milled biochar in Ca-alginate beads for the removal of aqueous Cd(II). J. Ind. Eng. Chem. 2018, 61, 161–168. [Google Scholar] [CrossRef]
- Lyu, H.; Xia, S.; Tang, J.; Zhang, Y.; Gao, B.; Shen, B. Thiol-modified biochar synthesized by a facile ball-milling method for enhanced sorption of inorganic Hg2+ and organic CH3Hg+. J. Hazard. Mater. 2020, 384, 121357. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, J.; Lyu, H.; Zhao, Q.; Jiang, L.; Liu, L. Ball-milled biochar for galaxolide removal: Sorption performance and governing mechanisms. Sci. Total Environ. 2019, 659, 1537–1545. [Google Scholar] [CrossRef]
- Naghdi, M.; Taheran, M.; Brar, S.K.; Rouissi, T.; Verma, M.P.; Surampalli, R.Y.; Valero, J.R. A green method for production of nanobiochar by ball milling- optimization and characterization. J. Clean. Prod. 2017, 164, 1394–1405. [Google Scholar] [CrossRef] [Green Version]
- Lyu, H.; Gao, B.; He, F.; Zimmerman, A.R.; Ding, C.; Tang, J.; Crittenden, J.C. Experimental and modeling investigations of ball-milled biochar for the removal of aqueous methylene blue. Chem. Eng. J. 2018, 335, 110–119. [Google Scholar] [CrossRef]
- Xiang, W.; Wan, Y.; Zhang, X.; Tan, Z.; Xia, T.; Zheng, Y.; Gao, B. Adsorption of tetracycline hydrochloride onto ball-milled biochar: Governing factors and mechanisms. Chemosphere 2020, 255, 127057. [Google Scholar] [CrossRef] [PubMed]
- Lægdsmand, M.; Villholth, K.G.; Ullum, M.; Jensen, K.H. Processes of colloid mobilization and transport in macroporous soil monoliths. Geoderma 1999, 93, 33–59. [Google Scholar] [CrossRef]
- Liu, X.; Tang, J.; Wang, L.; Liu, Q.; Liu, R. A comparative analysis of ball-milled biochar, graphene oxide, and multi-walled carbon nanotubes with respect to toxicity induction in Streptomyces. J. Environ. Manag. 2019, 243, 308–317. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Tang, J.; Wang, L.; Liu, R. Synergistic toxic effects of ball-milled biochar and copper oxide nanoparticles on Streptomyces coelicolor M145. Sci. Total Environ. 2020, 720, 137582. [Google Scholar] [CrossRef]
- Zhang, W.; Niu, J.; Morales, V.L.; Chen, X.; Hay, A.G.; Lehmann, J.; Steenhuis, T.S. Transport and retention of biochar particles in porous media: Effect of pH, ionic strength, and particle size. Ecohydrology 2010, 3, 497–508. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, W.; Hao, X.; Zhou, D. Transport of Biochar Particles in Saturated Granular Media: Effects of Pyrolysis Temperature and Particle Size. Environ. Sci. Technol. 2013, 47, 821. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, W.; Zhou, D. Antagonistic Effects of Humic Acid and Iron Oxyhydroxide Grain-Coating on Biochar Nanoparticle Transport in Saturated Sand. Environ. Sci. Technol. 2013, 47, 5154–5161. [Google Scholar] [CrossRef]
- Wang, M.; Gao, B.; Tang, D. Review of key factors controlling engineered nanoparticle transport in porous media. J. Hazard. Mater. 2016, 318, 233–246. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.; Wang, Y.; Sharma, P.; Li, B.; Liu, K.; Liu, J.; Flury, M.; Shang, J. Effect of naphthalene on transport and retention of biochar colloids through saturated porous media. Colloids Surf. A Physicochem. Eng. Asp. 2017, 530, 146–154. [Google Scholar] [CrossRef]
- Yang, W.; Shang, J.; Sharma, P.; Li, B.; Liu, K.; Flury, M. Colloidal stability and aggregation kinetics of biochar colloids: Effects of pyrolysis temperature, cation type, and humic acid concentrations. Sci. Total Environ. 2019, 658, 1306–1315. [Google Scholar] [CrossRef]
- Song, B.; Chen, M.; Zhao, L.; Qiu, H.; Cao, X. Physicochemical property and colloidal stability of micron- and nano-particle biochar derived from a variety of feedstock sources. Sci. Total Environ. 2019, 661, 685–695. [Google Scholar] [CrossRef]
- Yang, W.; Wang, Y.; Shang, J.; Liu, K.; Sharma, P.; Liu, J.; Li, B. Antagonistic effect of humic acid and naphthalene on biochar colloid transport in saturated porous media. Chemosphere 2017, 189, 556–564. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Zhang, H.; Tu, C.; Luo, Y. The limited facilitating effect of dissolved organic matter extracted from organic wastes on the transport of titanium dioxide nanoparticles in acidic saturated porous media. Chemosphere 2019, 237, 124529. [Google Scholar] [CrossRef] [PubMed]
- de Melo, B.A.G.; Motta, F.L.; Santana, M.H.A. Humic acids: Structural properties and multiple functionalities for novel technological developments. Mater. Sci. Eng. C 2016, 62, 967–974. [Google Scholar] [CrossRef]
- Pham, H.D.; Dang, T.H.M.; Nguyen, T.T.N.; Nguyen, T.A.H.; Pham, T.N.M.; Pham, T.D. Separation and determination of alkyl sulfate surfactants in wastewater by capillary electrophoresis coupled with contactless conductivity detection after preconcentration by simultaneous adsorption using alumina beads. Electrophoresis 2021, 42, 191–199. [Google Scholar] [CrossRef]
- Cao, G.; Sun, J.; Chen, M.; Sun, H.; Zhang, G. Co-transport of ball-milled biochar and Cd2+ in saturated porous media. J. Hazard. Mater. 2021, 416, 125725. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhang, X.; Yin, X.; Sun, H.; Wang, N. Graphene oxide-facilitated transport of Pb2+ and Cd2+ in saturated porous media. Sci. Total Environ. 2018, 631, 369–376. [Google Scholar] [CrossRef]
- Ščančar, J.; Milačič, R. Aluminium speciation in environmental samples: A review. Anal. Bioanal. Chem. 2006, 386, 999–1012. [Google Scholar] [CrossRef]
- Jiang, Y.; Guan, D.; Liu, Y.; Yin, X.; Zhou, S.; Zhang, G.; Wang, N.; Sun, H. The transport of graphitic carbon nitride in saturated porous media: Effect of hydrodynamic and solution chemistry. Chemosphere 2020, 248, 125973. [Google Scholar] [CrossRef]
- Li, H.; Qing, C.L.; Wei, S.Q.; Jiang, X.J. An approach to the method for determination of surface potential on solid/liquid interface: Theory. J. Colloid Interface Sci. 2004, 275, 172–176. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Li, H.; Xu, C.-Y.; Huang, X.-R.; Xie, D.-T.; Ni, J.-P. Particle Interaction Forces Induce Soil Particle Transport during Rainfall. Soil Sci. Soc. Am. J. 2013, 77, 1563–1571. [Google Scholar] [CrossRef]
- Li, H.; Hou, J.; Liu, X.M.; Li, R.; Zhu, H.L.; Wu, L.S. Combined Determination of Specific Surface Area and Surface Charge Properties of Charged Particles from a Single Experiment. Soil Sci. Soc. Am. J. 2011, 75, 2128–2135. [Google Scholar] [CrossRef]
- Zhuang, J.; Flury, M.; Jin, Y. Colloid-Facilitated Cs Transport through Water-Saturated Hanford Sediment and Ottawa Sand. Environ. Sci. Technol. 2003, 37, 4905–4911. [Google Scholar] [CrossRef] [PubMed]
- Lv, X.; Gao, B.; Sun, Y.; Shi, X.; Xu, H.; Wu, J. Effects of Humic Acid and Solution Chemistry on the Retention and Transport of Cerium Dioxide Nanoparticles in Saturated Porous Media. Water Air Soil Pollut. 2014, 225. [Google Scholar] [CrossRef]
- Yu, S.; Liu, J.; Yin, Y.; Shen, M. Interactions between engineered nanoparticles and dissolved organic matter: A review on mechanisms and environmental effects. J. Environ. Sci. 2018, 63, 198–217. [Google Scholar] [CrossRef]
- Babakhani, P.; Bridge, J.; Doong, R.-A.; Phenrat, T. Continuum-based models and concepts for the transport of nanoparticles in saturated porous media: A state-of-the-science review. Adv. Colloid Interface Sci. 2017, 246, 75–104. [Google Scholar] [CrossRef] [Green Version]
- Babakhani, P.; Fagerlund, F.; Shamsai, A.; Lowry, G.V.; Phenrat, T. Modified MODFLOW-based model for simulating the agglomeration and transport of polymer-modified Fe0 nanoparticles in saturated porous media. Environ. Sci. Pollut. Res. 2018, 25, 7180–7199. [Google Scholar] [CrossRef]
- Xu, F.; Wei, C.; Zeng, Q.; Li, X.; Alvarez, P.J.J.; Li, Q.; Qu, X.; Zhu, D. Aggregation Behavior of Dissolved Black Carbon: Implications for Vertical Mass Flux and Fractionation in Aquatic Systems. Environ. Sci. Technol. 2017, 51, 13723–13732. [Google Scholar] [CrossRef]
- Wang, M.; Gao, B.; Tang, D.; Yu, C. Concurrent aggregation and transport of graphene oxide in saturated porous media: Roles of temperature, cation type, and electrolyte concentration. Environ. Pollut. 2018, 235, 350–357. [Google Scholar] [CrossRef] [PubMed]
- Castan, S.; Sigmund, G.; Hüffer, T.; Hofmann, T. Biochar particle aggregation in soil pore water: The influence of ionic strength and interactions with pyrene. Environ. Sci. Processes Impacts 2019, 21, 1722–1728. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parsons, D.F.; Ninham, B.W. Charge Reversal of Surfaces in Divalent Electrolytes: The Role of Ionic Dispersion Interactions. Langmuir 2010, 26, 6430–6436. [Google Scholar] [CrossRef]
- Wu, L.; Liu, L.; Gao, B.; Muñoz-Carpena, R.; Zhang, M.; Chen, H.; Zhou, Z.; Wang, H. Aggregation Kinetics of Graphene Oxides in Aqueous Solutions: Experiments, Mechanisms, and Modeling. Langmuir 2013, 29, 15174–15181. [Google Scholar] [CrossRef] [PubMed]
- Hou, J.; Li, H.; Zhu, H.; Wu, L. Determination of Clay Surface Potential: A More Reliable Approach. Soil Sci. Soc. Am. J. 2009, 73, 1658–1663. [Google Scholar] [CrossRef]
- Li, H.; Wei, S.; Qing, C.; Yang, J. Discussion on the position of the shear plane. J. Colloid Interface Sci. 2003, 258, 40–44. [Google Scholar] [CrossRef]
- Du, W.; Liu, X.M.; Tian, R.; Li, R.; Ding, W.Q.; Li, H. Specific ion effects of incomplete ion-exchange by electric field-induced ion polarization. Rsc Adv. 2020, 10, 15190–15198. [Google Scholar] [CrossRef]
- Hu, J.-D.; Zevi, Y.; Kou, X.-M.; Xiao, J.; Wang, X.-J.; Jin, Y. Effect of dissolved organic matter on the stability of magnetite nanoparticles under different pH and ionic strength conditions. Sci. Total Environ. 2010, 408, 3477–3489. [Google Scholar] [CrossRef]
- Yukselen-Aksoy, Y.; Kaya, A. A study of factors affecting on the zeta potential of kaolinite and quartz powder. Environ. Earth Sci. 2011, 62, 697–705. [Google Scholar] [CrossRef]
- Zhang, L.; Zheng, J.; Tian, S.; Zhang, H.; Guan, X.; Zhu, S.; Zhang, X.; Bai, Y.; Xu, P.; Zhang, J.; et al. Effects of Al3+ on the microstructure and bioflocculation of anoxic sludge. J. Environ. Sci. 2020, 91, 212–221. [Google Scholar] [CrossRef]
- Buschmann, J.; Kappeler, A.; Lindauer, U.; Kistler, D.; Berg, M.; Sigg, L. Arsenite and Arsenate Binding to Dissolved Humic Acids: Influence of pH, Type of Humic Acid, and Aluminum. Environ. Sci. Technol. 2006, 40, 6015–6020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, X.; Jiang, Y.; Tan, Y.; Meng, X.; Sun, H.; Wang, N. Co-transport of graphene oxide and heavy metal ions in surface-modified porous media. Chemosphere 2019, 218, 1–13. [Google Scholar] [CrossRef] [PubMed]
- von Wandruszka, R. Humic acids: Their detergent qualities and potential uses in pollution remediation. Geochem. Trans. 2000, 1, 10. [Google Scholar] [CrossRef]
IS (mM) | φ0-BMBC (mV) | φ0-Q (mV) | |
---|---|---|---|
Na | 1 | −274.06 | −431.35 |
10 | −215.78 | −371.95 | |
100 | −159.04 | −312.88 | |
Mg | 0.1 | −180.49 | −267.41 |
1 | −151.05 | −237.82 | |
10 | −121.75 | −208.72 |
Cation Type | HA (mg L−1) | IS (mM) | ζBMBC (mV) | ζQ (mV) | k (min−1) | Smax (mg g−1) | R2 | Recovery (%) |
---|---|---|---|---|---|---|---|---|
/ | 0 | / | −28.36 | −47.10 | 1.23 × 10−2 | 42.85 | 0.98 | 74.29 |
1 | −29.92 | −46.57 | 9.99 × 10−3 | 39.43 | 0.98 | 76.89 | ||
5 | −31.57 | −49.95 | 8.82 × 10−3 | 25.00 | 0.97 | 83.93 | ||
Na | 0 | 1 | −25.69 | −45.47 | 1.81 × 10−2 | 46.64 | 0.98 | 64.06 |
10 | −22.52 | −34.50 | 3.66 × 10−2 | 110.54 | 0.95 | 31.60 | ||
100 | −4.60 | −26.48 | / | / | / | 3.39 | ||
1 | 1 | −27.21 | −47.92 | 1.37 × 10−2 | 33.22 | 0.98 | 74.03 | |
10 | −23.07 | −38.61 | 2.85 × 10−2 | 83.78 | 0.96 | 43.96 | ||
100 | −6.49 | −27.55 | / | / | / | 7.56 | ||
5 | 1 | −28.47 | −48.42 | 8.89 × 10−3 | 32.81 | 0.97 | 79.79 | |
10 | −26.86 | −39.23 | 1.47 × 10−2 | 57.96 | 0.98 | 64.15 | ||
100 | −11.22 | −29.83 | 3.52 × 10−2 | 690.07 | 0.97 | 23.31 | ||
Mg | 0 | 0.1 | −25.87 | −40.70 | 1.52 × 10−2 | 49.37 | 0.98 | 65.37 |
1 | −14.94 | −32.50 | 3.42 × 10−2 | 107.60 | 0.97 | 34.63 | ||
10 | +7.59 | −25.08 | / | / | / | 0.98 | ||
1 | 0.1 | −25.56 | −41.43 | 1.14 × 10−2 | 41.93 | 0.99 | 73.93 | |
1 | −15.80 | −34.09 | 3.32 × 10−2 | 79.64 | 0.99 | 39.74 | ||
10 | +6.83 | −26.64 | / | / | / | 0.23 | ||
5 | 0.1 | −26.57 | −39.70 | 1.29 × 10−2 | 36.01 | 0.97 | 73.83 | |
1 | −15.61 | −35.56 | 2.81 × 10−2 | 79.55 | 0.97 | 44.39 | ||
10 | −2.30 | −26.35 | / | / | / | 1.91 | ||
Al | 0 | 0.1 | +4.50 | −9.50 | / | / | / | 0.25 |
1 | +21.70 | +14.89 | 2.10 × 10−2 | 47.09 | 0.99 | 59.35 | ||
10 | +33.74 | +17.20 | 5.12 × 10−2 | 189.80 | 0.99 | 14.97 | ||
1 | 0.1 | −8.27 | −12.31 | 1.00 × 10−2 | 35.41 | 0.94 | 81.03 | |
1 | +17.98 | +17.67 | 1.72 × 10−2 | 62.49 | 0.98 | 60.27 | ||
10 | +26.25 | +19.08 | 3.15 × 10−2 | 99.46 | 0.98 | 35.81 | ||
5 | 0.1 | −15.42 | −16.31 | 1.13 × 10−2 | 33.52 | 0.97 | 76.71 | |
1 | −13.69 | −22.68 | 1.71 × 10−2 | 55.37 | 0.99 | 58.22 | ||
10 | +16.74 | +19.94 | 2.16 × 10−2 | 89.82 | 0.99 | 49.44 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, G.; Qiao, J.; Ai, J.; Ning, S.; Sun, H.; Chen, M.; Zhao, L.; Zhang, G.; Lian, F. Systematic Research on the Transport of Ball-Milled Biochar in Saturated Porous Media: Effect of Humic Acid, Ionic Strength, and Cation Types. Nanomaterials 2022, 12, 988. https://doi.org/10.3390/nano12060988
Cao G, Qiao J, Ai J, Ning S, Sun H, Chen M, Zhao L, Zhang G, Lian F. Systematic Research on the Transport of Ball-Milled Biochar in Saturated Porous Media: Effect of Humic Acid, Ionic Strength, and Cation Types. Nanomaterials. 2022; 12(6):988. https://doi.org/10.3390/nano12060988
Chicago/Turabian StyleCao, Gang, Jiachang Qiao, Juehao Ai, Shuaiqi Ning, Huimin Sun, Menghua Chen, Lin Zhao, Guilong Zhang, and Fei Lian. 2022. "Systematic Research on the Transport of Ball-Milled Biochar in Saturated Porous Media: Effect of Humic Acid, Ionic Strength, and Cation Types" Nanomaterials 12, no. 6: 988. https://doi.org/10.3390/nano12060988
APA StyleCao, G., Qiao, J., Ai, J., Ning, S., Sun, H., Chen, M., Zhao, L., Zhang, G., & Lian, F. (2022). Systematic Research on the Transport of Ball-Milled Biochar in Saturated Porous Media: Effect of Humic Acid, Ionic Strength, and Cation Types. Nanomaterials, 12(6), 988. https://doi.org/10.3390/nano12060988