Antioxidative 2D Bismuth Selenide via Halide Passivation for Enhanced Device Stability
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Synthesis of Bi2Se3 Nanosheets
2.3. Characterization
2.4. Fabrication of Field-Effect Transistors
3. Results and Discussion
3.1. Characterization of Synthetic Bi2Se3 Nanosheets
3.2. Effects of Halide Ion over the Surface Stability of the Bi2Se3 Nanosheets
3.3. Device Performance
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, Y.; Duan, X.; Shin, H.; Park, S.; Huang, Y.; Duan, X. Promises and prospects of two-dimensional transistors. Nature 2021, 591, 43–53. [Google Scholar] [CrossRef]
- Huang, X.; Liu, C.; Zhou, P. 2D semiconductors for specific electronic applications: From device to system. npj 2d Mater. Appl. 2022, 6, 51. [Google Scholar] [CrossRef]
- Liu, B.; Abbas, A.; Zhou, C. Two-Dimensional Semiconductors: From Materials Preparation to Electronic Applications. Adv. Electron. Mater. 2017, 3, 1700045. [Google Scholar] [CrossRef]
- Bilc, D.; Mahanti, S.D.; Tessmer, S.H.; Kyratsi, T.; Kanatzidis, M.G.; Urazhdin, S. Surface effects in layered semiconductors Bi2Se3 and Bi2Te3. Phys. Rev. B 2004, 69, 85313. [Google Scholar]
- Zhang, H.; Liu, C.; Qi, X.; Dai, X.; Fang, Z.; Zhang, S. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat. Phys. 2009, 5, 438–442. [Google Scholar] [CrossRef]
- Wang, F.K.; Yang, S.J.; Zhai, T.Y. 2D Bi2Se3 materials for optoelectronics. iScience 2021, 24, 103291. [Google Scholar] [CrossRef]
- Kong, D.; Cui, Y. Opportunities in chemistry and materials science for topological insulators and their nanostructures. Nat. Chem. 2011, 3, 845–849. [Google Scholar] [CrossRef] [PubMed]
- Peng, H.; Lai, K.; Kong, D.; Meister, S.; Chen, Y.; Qi, X.; Zhang, S.; Shen, Z.; Cui, Y. Aharonov–Bohm interference in topological insulator nanoribbons. Nat. Mater. 2010, 9, 225–229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, J.; Register, L.F.; Banerjee, S.K. Topological insulator Bi2Se3 thin films as an alternative channel material in metal-oxide-semiconductor field-effect transistors. J. Appl. Phys. 2012, 112, 124511. [Google Scholar] [CrossRef] [Green Version]
- Zhu, H.; Richter, C.A.; Zhao, E.; Bonevich, J.E.; Kimes, W.A.; Jang, H.; Yuan, H.; Li, H.; Arab, A.; Kirillov, O.; et al. Topological Insulator Bi2Se3 Nanowire High Performance Field-Effect Transistors. Sci. Rep. 2013, 3, 1757. [Google Scholar] [CrossRef] [Green Version]
- Son, J.; Banerjee, K.; Brahlek, M.; Koirala, N.; Lee, S.; Ahn, J.; Oh, S.; Yang, H. Conductance modulation in topological insulator Bi2Se3 thin films with ionic liquid gating. Appl. Phys. Lett. 2013, 103, 213114. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Singh, D.J. Using gapped topological surface states of Bi2Se3 films in a field effect transistor. J. Appl. Phys. 2017, 121, 64301. [Google Scholar] [CrossRef]
- Mazumder, K.; Shirage, P.M. A brief review of Bi2Se3 based topological insulator: From fundamentals to applications. J. Alloys Compd. 2021, 888, 161492. [Google Scholar] [CrossRef]
- Kong, D.; Cha, J.J.; Lai, K.; Peng, H.; Analytis, J.G.; Meister, S.; Chen, Y.; Zhang, H.; Fisher, I.R.; Shen, Z.; et al. Rapid Surface Oxidation as a Source of Surface Degradation Factor for Bi2Se3. ACS Nano 2011, 5, 4698–4703. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Zheng, B.; Chen, Z.; Xu, W.; Wang, R.; Xu, H. Robust Topological States in Bi2Se3 against Surface Oxidation. J. Phys. Chem. C 2020, 124, 6253–6259. [Google Scholar] [CrossRef]
- Figueroa, A.I.; van der Laan, G.; Harrison, S.E.; Cibin, G.; Hesjedal, T. Oxidation Effects in Rare Earth Doped Topological Insulator Thin Films. Sci. Rep. 2016, 6, 22935. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Green, A.J.; Dey, S.; An, Y.Q.; O’Brien, B.; O’Mullane, S.; Thiel, B.; Diebold, A.C. Surface oxidation of the topological insulator Bi2Se3. J. Vac. Sci. Technol. A 2016, 34, 61403. [Google Scholar] [CrossRef] [Green Version]
- Huang, W.; Zhang, Y.; Song, M.; Wang, B.; Hou, H.; Hu, X.; Chen, X.; Zhai, T. Encapsulation strategies on 2D materials for field effect transistors and photodetectors. Chin. Chem. Lett. 2022, 33, 2281–2290. [Google Scholar] [CrossRef]
- Jakobs, S.; Narayan, A.; Stadtmüller, B.; Droghetti, A.; Rungger, I.; Hor, Y.S.; Klyatskaya, S.; Jungkenn, D.; Stöckl, J.; Laux, M.; et al. Controlling the Spin Texture of Topological Insulators by Rational Design of Organic Molecules. Nano Lett. 2015, 15, 6022–6029. [Google Scholar] [CrossRef]
- Zamani, M.; Jamali-Sheini, F.; Cheraghizade, M. Space-charge-limited current passivation of the self-powered and ultraviolet-to-visible range bilayer p-Si/n-Bi2S3 heterojunction photodetector by Ag coating. J. Alloys Compd. 2023, 933, 167665. [Google Scholar] [CrossRef]
- Edmonds, M.T.; Hellerstedt, J.T.; Tadich, A.; Schenk, A.; O Donnell, K.M.; Tosado, J.; Butch, N.P.; Syers, P.; Paglione, J.; Fuhrer, M.S. Air-Stable Electron Depletion of Bi2Se3 Using Molybdenum Trioxide into the Topological Regime. ACS Nano 2014, 8, 6400–6406. [Google Scholar] [CrossRef]
- Guo, H.; Hu, Z.; Liu, Z.; Tian, J. Stacking of 2D Materials. Adv. Funct. Mater. 2021, 31, 2007810. [Google Scholar] [CrossRef]
- Das, B.; Sarkar, D.; Maity, S.; Chattopadhyay, K.K. Ag decorated topological surface state protected hierarchical Bi2Se3 nanoflakes for enhanced field emission properties. J. Mater. Chem. C 2015, 3, 1766–1775. [Google Scholar] [CrossRef]
- Yang, C.; Cattelan, M.; Fox, N.; Huang, Y.; Golden, M.S.; Schwarzacher, W. Electrochemical Modification and Characterization of Topological Insulator Single Crystals. Langmuir 2019, 35, 2983–2988. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.; Li, J.; Herng, T.S.; Wang, Z.; Zhao, X.; Chi, X.; Fu, W.; Abdelwahab, I.; Zhou, J.; Dan, J.; et al. Chemically Exfoliated VSe2 Monolayers with Room-Temperature Ferromagnetism. Adv. Mater. 2019, 31, 1903779. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Liu, Y.; Halim, U.; Ding, M.; Liu, Y.; Wang, Y.; Jia, C.; Chen, P.; Duan, X.; Wang, C.; et al. Solution-processable 2D semiconductors for high-performance large-area electronics. Nature 2018, 562, 254–258. [Google Scholar] [CrossRef]
- Yang, R.; Mei, L.; Zhang, Q.; Fan, Y.; Shin, H.S.; Voiry, D.; Zeng, Z. High-yield production of mono- or few-layer transition metal dichalcogenide nanosheets by an electrochemical lithium ion intercalation-based exfoliation method. Nat. Protoc. 2022, 17, 358–377. [Google Scholar] [CrossRef] [PubMed]
- Kappera, R.; Voiry, D.; Yalcin, S.E.; Branch, B.; Gupta, G.; Mohite, A.D.; Chhowalla, M. Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater. 2014, 13, 1128–1134. [Google Scholar] [CrossRef]
- Yang, H.; Kim, S.W.; Chhowalla, M.; Lee, Y.H. Structural and quantum-state phase transitions in van der Waals layered materials. Nat. Phys. 2017, 13, 931–937. [Google Scholar] [CrossRef]
- Eda, G.; Yamaguchi, H.; Voiry, D.; Fujita, T.; Chen, M.; Chhowalla, M. Photoluminescence from Chemically Exfoliated MoS2. Nano Lett. 2011, 11, 5111–5116. [Google Scholar] [CrossRef]
- Lin, Y.; Dumcenco, D.O.; Huang, Y.; Suenaga, K. Atomic mechanism of the semiconducting-to-metallic phase transition in single-layered MoS2. Nat. Nanotechnol. 2014, 9, 391–396. [Google Scholar] [CrossRef]
- Zhang, J.; Peng, Z.; Soni, A.; Zhao, Y.; Xiong, Y.; Peng, B.; Wang, J.; Dresselhaus, M.S.; Xiong, Q. Raman Spectroscopy of Few-Quintuple Layer Topological Insulator Bi2Se3 Nanoplatelets. Nano Lett. 2011, 11, 2407–2414. [Google Scholar] [CrossRef] [PubMed]
- Vargas, A.; Basak, S.; Liu, F.; Wang, B.; Panaitescu, E.; Lin, H.; Markiewicz, R.; Bansil, A.; Kar, S. The Changing Colors of a Quantum-Confined Topological Insulator. ACS Nano 2014, 8, 1222–1230. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.L.; Wu, S.N.; Yan, Y.; Hu, T.; Zhao, J.; Song, Y.; Qu, Q.; Ding, W. Study on the applied limitation of the micro-crystal model for Raman spectra of nano-crystalline semiconductors. J. Raman Spectrosc. 2008, 39, 1578–1583. [Google Scholar] [CrossRef]
- Ambrosi, A.; Sofer, Z.; Luxa, J.; Pumera, M. Exfoliation of Layered Topological Insulators Bi2Se3 and Bi2Te3 via Electrochemistry. ACS Nano 2016, 10, 11442–11448. [Google Scholar] [CrossRef]
- Khatun, S.; Bhunia, H.; Pal, A.J. Bi2Se3 topological insulator at the 2D-limit: Role of halide-doping on Dirac point. Phys. Chem. Chem. Phys. 2018, 20, 17934–17941. [Google Scholar] [CrossRef] [PubMed]
- Schwierz, F. Graphene transistors. Nat. Nanotechnol. 2010, 5, 487–496. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.; Butch, N.P.; Paglione, J.; Fuhrer, M.S. Insulating Behavior in Ultrathin Bismuth Selenide Field Effect Transistors. Nano Lett. 2011, 11, 1925–1927. [Google Scholar] [CrossRef] [PubMed] [Green Version]
As-Synthesized Bi2Se3 | Air-Exposed Bi2Se3 for 5 Days | |||||||
---|---|---|---|---|---|---|---|---|
Bi 4f | oxid. Bi 4f | Se 3d | oxid. Se 3d | Bi 4f | oxid. Bi 4f | Se 3d | oxid. Se 3d | |
TBAC-Bi2Se3 | 1.66 | 0.34 | 2.9 | 0.25 | 1.48 | 0.52 | 2.49 | 0.52 |
TBAB-Bi2Se3 | 1.64 | 0.36 | 2.85 | 0.35 | 0.96 | 1.04 | 1.91 | 0.92 |
TBAI-Bi2Se3 | 1.69 | 0.31 | 2.96 | 0.34 | 0.92 | 1.08 | 1.88 | 1.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Wu, G.; Ding, Y.; Chen, Q.; Gao, W.; Zhang, T.; Jing, X.; Lin, H.; Xue, F.; Tao, L. Antioxidative 2D Bismuth Selenide via Halide Passivation for Enhanced Device Stability. Nanomaterials 2023, 13, 2056. https://doi.org/10.3390/nano13142056
Chen J, Wu G, Ding Y, Chen Q, Gao W, Zhang T, Jing X, Lin H, Xue F, Tao L. Antioxidative 2D Bismuth Selenide via Halide Passivation for Enhanced Device Stability. Nanomaterials. 2023; 13(14):2056. https://doi.org/10.3390/nano13142056
Chicago/Turabian StyleChen, Jiayi, Guodong Wu, Yamei Ding, Qichao Chen, Wenya Gao, Tuo Zhang, Xu Jing, Huiwen Lin, Feng Xue, and Li Tao. 2023. "Antioxidative 2D Bismuth Selenide via Halide Passivation for Enhanced Device Stability" Nanomaterials 13, no. 14: 2056. https://doi.org/10.3390/nano13142056
APA StyleChen, J., Wu, G., Ding, Y., Chen, Q., Gao, W., Zhang, T., Jing, X., Lin, H., Xue, F., & Tao, L. (2023). Antioxidative 2D Bismuth Selenide via Halide Passivation for Enhanced Device Stability. Nanomaterials, 13(14), 2056. https://doi.org/10.3390/nano13142056