State of the Art on the SARS-CoV-2 Toolkit for Antigen Detection: One Year Later
Abstract
:1. Introduction
- -
- CoNVat: Combating 2019-nCoV: Advanced Nanobiosensing platforms for POC global diagnostics and surveillance to develop a point-of-care device using optical biosensor technology for rapid diagnosis and monitoring of the new coronavirus directly in the patient’s sample (four partners: ES(2), FR, and IT) [8].
- -
- CORONADX: Three rapid diagnostic tests (point-of-care) for COVID-19 Coronavirus, improving epidemic preparedness, public health, and socioeconomic benefits to deliver three complementary diagnostic tools, including one point-of-care diagnostic that can be used with minimal training (eight partners: AT, CN(2), DK(2), IT(2), and SE) [9].
- -
- HG nCoV19 test: Development and validation of a rapid molecular diagnostic test for nCoV19 to develop and validate a novel rapid molecular diagnostic test for coronavirus (four partners: CN, IE, IT, and UK) [10].
2. SARS-CoV-2 Antigen Detection Using Nasopharyngeal Swab
3. SARS-CoV-2 Antigen Detection in Saliva
4. SARS-CoV-2 Antigen Detection in Serum
5. SARS-CoV-2 Antigen Detection in Droplets
6. Biosensors in the Literature vs. Commercialized Toolkits
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jain, S.; Nehra, M.; Kumar, R.; Dilbaghi, N.; Hu, T.; Kumar, S.; Kaushik, A.; Li, C.Z. Internet of Medical Things (IoMT)-integrated biosensors for point-of-care testing of infectious diseases. Biosens. Bioelectron. 2021, 179, 113074. [Google Scholar] [CrossRef]
- Everyone Included: Social Impact of COVID-19|DISD. Available online: https://www.un.org/development/desa/dspd/everyone-included-covid-19.html/ (accessed on 28 June 2021).
- The Territorial Impact of COVID-19: Managing the Crisis Across Levels of Government. Available online: https://www.oecd.org/coronavirus/policy-responses/the-territorial-impact-of-covid-19-managing-the-crisis-across-levels-of-government-d3e314e1/ (accessed on 28 June 2021).
- Mahapatra, S.; Chandra, P. Clinically practiced and commercially viable nanobio engineered analytical methods for COVID-19 diagnosis. Biosens. Bioelectron. 2020, 165, 112361. [Google Scholar] [CrossRef]
- Soler, M.; Estevez, M.C.; Cardenosa-Rubio, M.; Astua, A.; Lechuga, L.M. How nanophotonic label-free biosensors can contribute to rapid and massive diagnostics of respiratory virus infections: COVID-19 Case. ACS Sens. 2020, 5, 2663–2678. [Google Scholar] [CrossRef]
- Guidelines on COVID-19 In Vitro Diagnostic Tests and Their Performance (2020/C 122I/01). Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52020XC0415(04) (accessed on 1 June 2021).
- European Research Area Corona Platform. Available online: https://ec.europa.eu/info/sites/info/files/research_and_innovation/research_by_area/documents/ec_rtd_cv-projects.pdf (accessed on 1 June 2021).
- Combating 2019-nCoV: Advanced Nanobiosensing Platforms for POC Global Diagnostics and Surveillance. Available online: https://cordis.europa.eu/project/id/101003544 (accessed on 1 June 2021).
- Three Rapid Diagnostic Tests (Point-of-Care) for COVID-19 CoronaThree Rapid Diagnostic Tests (Point-of-Care) for Coronavirus, Improving Epidemic Preparedness, Public Health and Socio-Economic Benefits. Available online: https://cordis.europa.eu/project/id/101003562 (accessed on 1 June 2021).
- Development and Validation of Rapid Molecular Diagnostic Test for nCoV19. Available online: https://cordis.europa.eu/project/id/101003713 (accessed on 1 June 2021).
- Cheng, V.C.C.; Lau, S.K.P.; Woo, P.C.Y.; Yuen, K.Y. Severe acute respiratory syndrome coronavirus as an agent of emerging and reemerging Infection. Clin. Microbiol. Rev. 2007, 20, 660–694. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morales-Narváez, E.; Dincer, C. The impact of biosensing in a pandemic outbreak: COVID-19. Biosens. Bioelectron. 2020, 163, 112274. [Google Scholar] [CrossRef] [PubMed]
- Chan, W.C.W. Nano Research for COVID-19. ACS Nano 2020, 14, 3719–3720. [Google Scholar] [CrossRef] [Green Version]
- Chung, Y.H.; Beiss, V.; Fiering, S.N.; Steinmetz, N.F. COVID-19 Vaccine frontrunners and their nanotechnology design. ACS Nano 2020, 14, 12522–12537. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, G.; Madou, M.J.; Kalra, S.; Chopra, V.; Ghosh, D.; Martinez-Chapa, S.O. Nanotechnology for COVID-19: Therapeutics and vaccine research. ACS Nano 2020, 14, 7760–7782. [Google Scholar] [CrossRef]
- Bhalla, N.; Pan, Y.; Yang, Z.; Payam, A.F. Opportunities and challenges for biosensors and nanoscale analytical tools for pandemics: COVID-19. ACS Nano 2020, 14, 7783–7807. [Google Scholar] [CrossRef]
- Ates, H.C.; Yetisen, A.K.; Güder, F.; Dincer, C. Wearable devices for the detection of COVID-19. Nat. Electron. 2021, 4, 13–14. [Google Scholar] [CrossRef]
- Strongstep SARS-CoV-2 Antigen Rapid Test. Available online: https://www.finddx.org/product/strongstep-sars-cov-2-antigen-rapid-test/ (accessed on 30 August 2021).
- Biocredit COVID-19 Ag Test. Available online: https://www.biovendor.com/biocredit-covid-19-ag-detection-kit?utm_source=google&utm_medium=organic (accessed on 30 August 2021).
- Realy Tech Novel Coronavirus (SARS-Cov-2) Antigen Rapid Test (Swab). Available online: https://feldundstall.at/wp-content/uploads/2020/12/%e6%9c%80%e6%96%b0Realy-COVID-Antigen-kit112.pdf (accessed on 30 August 2021).
- VivaDiag Pro SARS-CoV-2 Ag Rapid Test. Available online: https://vivacare.gr/wp-content/uploads/2020/10/VivaDiag-SARS-CoV-2-Ag-Rapid-Test-Package-Insert%EF%BC%88sealed-pouch.pdf (accessed on 30 August 2021).
- Healgen Coronavirus Antigen Rapid Test Kit. Available online: https://theppeonlineshop.co.uk/pdfs/Healgen-Test-Data-Sheet.pdf (accessed on 30 August 2021).
- Molab Corona Antigen Test + Prefilled Buffer. Available online: https://www.quadratech.co.uk/product/molab-covid-19-rapid-antigen-test-kit/ (accessed on 30 August 2021).
- Joysbio COVID-19 Antigen Rapid Test Kit. Available online: https://en.joysbio.com/covid-19-antigen-rapid-test-kit/ (accessed on 28 June 2021).
- Antigen Rapid Test Cassette Clungene. Available online: https://www.mmbiotech.it/wp-content/uploads/2021/03/Bugiardino-CLUNGENE-for-COVID-19-Antigen-Rapid-Test-Cassette-EN-109155103-version-3.0.pdf (accessed on 28 June 2021).
- Seo, G.; Lee, G.; Kim, M.J.; Baek, S.H.; Choi, M.; Ku, K.B.; Lee, C.S.; Jun, S.; Park, D.; Kim, H.G.; et al. Rapid detection of COVID-19 causative virus (SARS-CoV-2) in human nasopharyngeal swab specimens using field-effect transistor-based biosensor. ACS Nano 2020, 14, 5135–5142. [Google Scholar] [CrossRef] [Green Version]
- Verdecchia, P.; Cavallini, C.; Spanevello, A.; Angeli, F. The pivotal link between ACE2 deficiency and SARS-CoV-2 infection. Eur. J. Intern. Med. 2020, 76, 14–20. [Google Scholar] [CrossRef] [PubMed]
- Xia, S.; Liu, M.; Wang, C.; Xu, W.; Lan, Q.; Feng, S.; Qi, F.; Bao, L.; Du, L.; Liu, S.; et al. Inhibition of SARS-CoV-2 (previously 2019-NCoV) infection by a highly potent pan-coronavirus fusion inhibitor targeting its spike protein that harbors a high capacity to mediate membrane fusion. Cell Res. 2020, 30, 343–355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Föh, B.; Borsche, M.; Balck, A.; Taube, S.; Rupp, J.; Klein, C.; Katalinic, A. Complications of nasal and pharyngeal swabs: A relevant challenge of the COVID-19 pandemic? Eur. Respir. J. 2021, 57, 2004004. [Google Scholar] [CrossRef]
- Fehr, A.R.; Perlman, S. Coronaviruses: An Overview of Their Replication and Pathogenesis. In Coronaviruses; Maier, H.J., Bickerton, E., Britton, P., Eds.; Springer: New York, NY, USA, 2015; Volume 1282, pp. 1–23. ISBN 9781493924370. [Google Scholar]
- Di, B.; Hao, W.; Gao, Y.; Wang, M.; Wang, Y.; Qiu, L.; Wen, K.; Zhou, D.; Wu, X.; Lu, E.; et al. Monoclonal antibody-based antigen capture enzyme-linked immunosorbent assay reveals high sensitivity of the nucleocapsid protein in acute-phase sera of severe acute respiratory syndrome patients. Clin. Diagn. Lab. Immunol. 2005, 12, 135–140. [Google Scholar] [CrossRef] [Green Version]
- Shao, W.; Shurin, M.R.; Wheeler, S.E.; He, X.; Star, A. Rapid detection of SARS-CoV-2 antigens using high-purity semiconducting single-walled carbon nanotube-based field-effect transistors. ACS Appl. Mater. Interfaces 2021, 13, 10321–10327. [Google Scholar] [CrossRef]
- Chaimayo, C.; Kaewnaphan, B.; Tanlieng, N.; Athipanyasilp, N.; Sirijatuphat, R.; Chayakulkeeree, M.; Angkasekwinai, N.; Sutthent, R.; Puangpunngam, N.; Tharmviboonsri, T.; et al. Rapid SARS-CoV-2 antigen detection assay in comparison with real-time RT-PCR assay for laboratory diagnosis of COVID-19 in Thailand. Virol. J. 2020, 17, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-Y.; Lee, J.-H.; Kim, M.J.; Park, S.C.; Choi, M.; Lee, W.; Ku, K.B.; Kim, B.T.; Changkyun Park, E.; Kim, H.G.; et al. Development of a SARS-CoV-2-specific biosensor for antigen detection using scFv-Fc fusion proteins. Biosens. Bioelectron. 2021, 175, 112868. [Google Scholar] [CrossRef]
- Raziq, A.; Kidakova, A.; Boroznjak, R.; Reut, J.; Öpik, A.; Syritski, V. Development of a portable MIP-based electrochemical sensor for detection of SARS-CoV-2 antigen. Biosens. Bioelectron. 2021, 178, 113029. [Google Scholar] [CrossRef]
- To, K.K.-W.; Tsang, O.T.-Y.; Leung, W.-S.; Tam, A.R.; Wu, T.-C.; Lung, D.C.; Yip, C.C.-Y.; Cai, J.-P.; Chan, J.M.-C.; Chik, T.S.-H.; et al. Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: An observational cohort study. Lancet Infect. Dis. 2020, 20, 565–574. [Google Scholar] [CrossRef] [Green Version]
- Teo, A.K.J.; Choudhury, Y.; Tan, I.B.; Cher, C.Y.; Chew, S.H.; Wan, Z.Y.; Cheng, L.T.E.; Oon, L.L.E.; Tan, M.H.; Chan, K.S.; et al. Saliva is more sensitive than nasopharyngeal or nasal swabs for diagnosis of asymptomatic and mild COVID-19 infection. Sci. Rep. 2021, 11, 3134. [Google Scholar] [CrossRef]
- Fabiani, L.; Saroglia, M.; Galatà, G.; De Santis, R.; Fillo, S.; Luca, V.; Faggioni, G.; D’Amore, N.; Regalbuto, E.; Salvatori, P.; et al. Magnetic beads combined with carbon black-based screen-printed electrodes for COVID-19: A Reliable and miniaturized electrochemical immunosensor for SARS-CoV-2 detection in saliva. Biosens. Bioelectron. 2021, 171, 112686. [Google Scholar] [CrossRef]
- Singh, N.K.; Ray, P.; Carlin, A.F.; Magallanes, C.; Morgan, S.C.; Laurent, L.C.; Aronoff-Spencer, E.S.; Hall, D.A. Hitting the diagnostic sweet spot: Point-of-care SARS-CoV-2 salivary antigen testing with an off-the-shelf Glucometer. Biosens. Bioelectron. 2021, 180, 113111. [Google Scholar] [CrossRef] [PubMed]
- Yousefi, H.; Mahmud, A.; Chang, D.; Das, J.; Gomis, S.; Chen, J.B.; Wang, H.; Been, T.; Yip, L.; Coomes, E.; et al. Detection of SARS-CoV-2 viral particles using direct, reagent-free electrochemical sensing. J. Am. Chem. Soc. 2021, 143, 1722–1727. [Google Scholar] [CrossRef] [PubMed]
- Torrente-Rodríguez, R.M.; Lukas, H.; Tu, J.; Min, J.; Yang, Y.; Xu, C.; Rossiter, H.B.; Gao, W. SARS-CoV-2 RapidPlex: A graphene-based multiplexed telemedicine platform for rapid and low-cost COVID-19 diagnosis and monitoring. Matter 2020, 3, 1981–1998. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Wang, L.; Wang, H.; Li, X.; Zhang, S.; Xu, Y.; Wei, W. Serum SARS-COV-2 nucleocapsid protein: A sensitivity and specificity early diagnostic marker for SARS-COV-2 infection. Front. Cell. Infect. Microbiol. 2020, 10, 470. [Google Scholar] [CrossRef]
- Li, J.; Lillehoj, P.B. Microfluidic magneto immunosensor for rapid, high sensitivity measurements of SARS-CoV-2 nucleocapsid protein in serum. ACS Sens. 2021, 6, 1270–1278. [Google Scholar] [CrossRef]
- Bourouiba, L. Turbulent gas clouds and respiratory pathogen emissions: Potential implications for reducing transmission of COVID-19. JAMA 2020, 323, 1837–1838. [Google Scholar] [CrossRef]
- Amendola, L.; Saurini, M.T.; Di Girolamo, F.; Arduini, F. A rapid screening method for testing the efficiency of masks in breaking down aerosols. Microchem. J. 2020, 157, 104928. [Google Scholar] [CrossRef]
- Bianco, G.M.; Marrocco, G. Sensorized facemask with moisture-sensitive RFID antenna. IEEE Sens. Lett. 2021, 5, 1–4. [Google Scholar] [CrossRef]
- Xue, Q.; Kan, X.; Pan, Z.; Li, Z.; Pan, W.; Zhou, F.; Duan, X. An intelligent face mask integrated with high density conductive nanowire array for directly exhaled coronavirus aerosols screening. Biosens. Bioelectron. 2021, 186, 113286. [Google Scholar] [CrossRef] [PubMed]
- Lippi, G.; Simundic, A.; Plebani, M. Potential preanalytical and analytical vulnerabilities in the laboratory diagnosis of coronavirus disease 2019 (COVID-19). Clin. Chem. Lab. Med. 2020, 58, 1070–1076. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mao, K.; Zhang, H.; Yang, Z. An integrated biosensor system with mobile health and wastewater-based epidemiology (iBMW) for COVID-19 pandemic. Biosens. Bioelectron. 2020, 169, 112617. [Google Scholar] [CrossRef] [PubMed]
Antigen Swab Test | Sensitivity % | Specificity % | Limit of Detection (TCID50/mL) | Analysis Time (Min) | Ref. |
---|---|---|---|---|---|
STRONGSTEP | 96 | 99 | 2.50 × 102 | 15 | [18] |
BIOCREDIT | 90 | 90 | Not reported | 5–8 | [19] |
REALY TECH | 90 | 100 | 1.25 × 103 | 10–20 | [20] |
VIVADIAG | 83 | 100 | 1.35 × 103 | 15 | [21] |
ZKDENTAL | 87 | 100 | Not reported | 15 | [22] |
MOLAB | 99 | 98 | 1.15 × 102 | 15 | [23] |
JOYSBIO | 89 | 99 | 1.60 × 102 | 15 | [24] |
CLUNGENE | 91 | 100 | 5 × 102.67 | 15 | [25] |
Sample Matrix | Treatment | Ref. |
---|---|---|
Nasopharyngeal swab | Nasopharyngeal swabs were suspended in a universal transport medium | [26] |
Nasopharyngeal swab | Nasopharyngeal swabs were suspended in a viral transport medium | [32] |
Nasopharyngeal and throat swabs | Nasopharyngeal and throat swabs were mixed in a viral transport medium | [33] |
Nasopharyngeal swab | Not reported | [34] |
Nasopharyngeal swab | Nasopharyngeal specimens were vortexed in a universal transport medium | [35] |
Saliva | No treatment | [38] |
Saliva | No treatment | [39] |
Saliva | No treatment | [40] |
Saliva | No treatment | [41] |
Serum | Whole and 5× diluted | [43] |
Droplets | No treatment | [47] |
Analyte | Type of Biosensor | Type of Transduction | Matrix Analyzed | Linear Range (LR)/Detection Limit (LOD) | Time of Analysis | Ref. |
---|---|---|---|---|---|---|
S protein/virus | Graphene-based field-effect transistor immunosensor | FET | Nasopharyngeal swab | S protein LR: 0.1–100 pg/mL LOD: 100 fg/mL Virus: LR: 1.6 × 101–1.6 × 104 pfu/mL LOD: 1.6 × 101 pfu/mL | <1 min | [18] |
S/N protein | Single-walled carbon nanotube-based field-effect transistor immunosensor | FET | Nasopharyngeal swab | S protein LR: 5.5 fg/mL–5.5 pg/mL LOD: 0.55 fg/mL N protein LR: 16 fg/mL–16 pg/mL LOD: 0.016 fg/mL | <5 min | [24] |
N protein | Lateral-flow immunoassay | Colorimetric (visual) detection | Nasopharyngeal swab | sensitivity 98.33% | 15–30 min | [25] |
N protein/virus | Lateral-flow immunoassay based on scFv-Fc fusion proteins | Colorimetric detection | Nasopharyngeal swab | N protein LOD: 2 ng Virus LOD: 2.5 × 104 pfu | 20 min | [26] |
N protein | Molecularly imprinted polymer-based electrochemical sensor | Differential Pulse Voltammetry | Nasopharyngeal swab | LOD: 27 fM in clinical samples | 15 min | [27] |
S/N protein and virus | Magnetic bead-based immunosensor combined with carbon black-modified screen-printed electrode | Differential Pulse Voltammetry | Saliva | S protein LOD: 19 ng/mL in saliva N protein LOD: 8 ng/mL in saliva Virus: 6.5 pfu/mL concentration tested using S protein immunosensor and 6.5 × 103 pfu/mL concentration tested using N protein immunosensor | 30 min | [30] |
S/N protein | Magnetic bead-based sensor using a biotinylated aptamer-oligo-invertase complex | Glucometer | Saliva | N protein LOD: 5.27 pM in saliva S protein LOD: 6.31 pM in saliva | 60 min | [31] |
S protein/virus | A reagent-free electrochemical Sensor modified with an antibody attached to DNA linker functionalized with a ferrocene redox probe | Chronoamperometry | Saliva | S protein LOD: 1 pg/mL Virus LOD: 4000 copies per mL | 5 min/10 min | [32] |
N protein | An electrochemical immunosensing platform using laser-engraved graphene electrodes and a wireless transmission unit | Chronoamperometry | Saliva | LR: Up to 5000 pg/mL | 1 min | [33] |
N protein | Microfluidic immunosensor based on screen-printed gold electrode combined with magnetic nanobeads | Chronoamperometry | Serum | Whole serum LOD: 50 pg/mL 5× Diluted serum LOD: 10 pg/mL | Whole serum: 50 min 5× diluted serum: 25 min | [35] |
S protein/virus | Nanowire-based immunosensor combined with a miniaturized impedance circuit and a wireless transmission unit | Electrochemical impedance spectroscopy | Droplets | S protein in aerosol concentration tested: 1, 10 ng/mL Virus aerosol LOD: 7 pfu/mL corresponding to an air concentration of 0.35 pfu/L | S protein aerosol: 10 min Virus aerosol: 5 min | [39] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fabiani, L.; Caratelli, V.; Fiore, L.; Scognamiglio, V.; Antonacci, A.; Fillo, S.; De Santis, R.; Monte, A.; Bortone, M.; Moscone, D.; et al. State of the Art on the SARS-CoV-2 Toolkit for Antigen Detection: One Year Later. Biosensors 2021, 11, 310. https://doi.org/10.3390/bios11090310
Fabiani L, Caratelli V, Fiore L, Scognamiglio V, Antonacci A, Fillo S, De Santis R, Monte A, Bortone M, Moscone D, et al. State of the Art on the SARS-CoV-2 Toolkit for Antigen Detection: One Year Later. Biosensors. 2021; 11(9):310. https://doi.org/10.3390/bios11090310
Chicago/Turabian StyleFabiani, Laura, Veronica Caratelli, Luca Fiore, Viviana Scognamiglio, Amina Antonacci, Silvia Fillo, Riccardo De Santis, Anella Monte, Manfredo Bortone, Danila Moscone, and et al. 2021. "State of the Art on the SARS-CoV-2 Toolkit for Antigen Detection: One Year Later" Biosensors 11, no. 9: 310. https://doi.org/10.3390/bios11090310
APA StyleFabiani, L., Caratelli, V., Fiore, L., Scognamiglio, V., Antonacci, A., Fillo, S., De Santis, R., Monte, A., Bortone, M., Moscone, D., Lista, F., & Arduini, F. (2021). State of the Art on the SARS-CoV-2 Toolkit for Antigen Detection: One Year Later. Biosensors, 11(9), 310. https://doi.org/10.3390/bios11090310