Recent Advances in the Use of CoPc-MWCNTs Nanocomposites as Electrochemical Sensing Materials
Abstract
:1. Introduction
2. Application of CoPc-MWCNTs Nanocomposite as Electrochemical Sensing Material
2.1. Detection of Ascorbic Acid, Dopamine, Paracetamol
2.2. Detection of Hydrogen Peroxide, Nitrite, and Heavy Metals
2.3. Detection of Carbaryl, Acetaminophen, Epinephrine, and Procalcitonin
2.4. Detection of Uric Acid, Glutathione, and Cysteine
2.5. Detection of lactic Acid, Glucose, and Hydrazine
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Merkoçi, A.; Pumera, M.; Llopis, X.; Pérez, B.; Del Valle, M.; Alegret, S. New materials for electrochemical sensing VI: Carbon nanotubes. TrAC Trends Anal. Chem. 2005, 24, 826–838. [Google Scholar] [CrossRef]
- Ma, L.; Dong, X.; Chen, M.; Zhu, L.; Wang, C.; Yang, F.; Dong, Y. Fabrication and water treatment application of carbon nanotubes (CNTs)-based composite membranes: A review. Membranes 2017, 7, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jia, X.; Wei, F. Advances in Production and Applications of Carbon Nanotubes. In Single-Walled Carbon Nanotubes. Topics in Current Chemistry Collections; Li, Y., Maruyama, S., Eds.; Springer: Cham, Switzerland, 2019; pp. 299–333. [Google Scholar] [CrossRef]
- Wang, Y.; Tang, L.; Li, Y.; Li, Q.; Bai, B. Preparation of modified multi—walled carbon nanotubes as a reinforcement for epoxy shape—memory polymer composites. Polym. Adv. Technol. 2021, 32, 67–75. [Google Scholar] [CrossRef]
- Lai, M.; Jiang, L.; Wang, X.; Zhou, H.; Huang, Z.; Zhou, H. Effects of multi-walled carbon nanotube/graphene oxide-based sizing on interfacial and tribological properties of continuous carbon fiber/poly(ether ether ketone) composites. Mater. Chem. Phys. 2022, 276, 125344. [Google Scholar] [CrossRef]
- Qiu, S.; Li, Y.; Xu, H.; Liang, Q.; Zhou, M.; Rong, J.; Li, Z.; Xu, S. Efficient catalytic oxidation of benzyl alcohol by tetrasubstituted cobalt phthalocyanine-MWCNTs composites. Solid State Sci. 2022, 129, 106905. [Google Scholar] [CrossRef]
- Li, Q.; Wang, Z.; Liang, Q.; Zhou, M.; Xu, S.; Li, Z.; Sun, D. Tetra-substituted cobalt (II) phthalocyanine/multi-walled carbon nanotubes as new efficient catalyst for the selective oxidation of styrene using tert-butyl hydroperoxide. Fuller. Nanotub. Carbon Nanostruct. 2020, 28, 799–807. [Google Scholar] [CrossRef]
- Şavk, A.; Özdil, B.; Demirkan, B.; Nas, M.S.; Calimli, M.H.; Alma, M.H.; Asiri, A.M.; Şen, F. Multiwalled carbon nanotube-based nanosensor for ultrasensitive detection of uric acid, dopamine, and ascorbic acid. Mater. Sci. Eng. C 2019, 99, 248–254. [Google Scholar] [CrossRef]
- Bo, W.U.; Yeasmin, S.; Liu, Y.; Cheng, L.J. Ferrocene Functionalized Gold Nanoparticles on Carbon Nanotube Electrodes for Portable Dopamine Sensor. In ECS Meeting Abstracts; IOP Publishing: Bristol, UK, 2021; Volume MA2021-01. [Google Scholar]
- Reddy, K.K.; Satyanarayana, M.; Goud, K.Y.; Gobi, K.V.; Kim, H. Carbon nanotube ensembled hybrid nanocomposite electrode for direct electrochemical detection of epinephrine in pharmaceutical tablets and urine. Mater. Sci. Eng. C 2017, 79, 93–99. [Google Scholar] [CrossRef]
- Tahernejad-Javazmi, F.; Shabani-Nooshabadi, M.; Karimi-Maleh, H. Analysis of glutathione in the presence of acetaminophen and tyrosine via an amplified electrode with MgO/SWCNTs as a sensor in the hemolyzed erythrocyte. Talanta 2018, 176, 208–213. [Google Scholar] [CrossRef]
- Musarraf Hussain, M.; Asiri, A.M.; Uddin, J.; Marwani, H.M.; Rahman, M.M. Development of a L-cysteine Sensor Based on Thallium Oxide Coupled Multi-walled Carbon Nanotube Nanocomposites with Electrochemical Approach. Chem. Asian J. 2022, 17, e202101117. [Google Scholar] [CrossRef]
- Khaghani, R.; Esrafili, A.; Zeynalzadeh, D.; Asl, F.B. Synthesis of magnetic multiwalled carbon nano tubes and investigation of isotherm and kinetic models for cleanup of carbaryl pesticide. Glob. Nest J. 2020, 22, 281–288. [Google Scholar]
- Matute, R.A.; Toro-Labbé, A.; Oyarzún, M.P.; Ramirez, S.; Ortega, D.E.; Oyarce, K.; Silva, N.; Zagal, J.H. Mapping experimental and theoretical reactivity descriptors of fe macrocyclic complexes deposited on graphite or on multi walled carbon nanotubes for the oxidation of thiols: Thioglycolic acid oxidation. Electrochim. Acta 2021, 391, 138905. [Google Scholar] [CrossRef]
- Baghayeri, M.; Amiri, A.; Fayazi, M.; Nodehi, M.; Esmaeelnia, A. Electrochemical detection of bisphenol a on a MWCNTs/CuFe2O4 nanocomposite modified glassy carbon electrode. Mater. Chem. Phys. 2021, 261, 124247. [Google Scholar] [CrossRef]
- Yao, Y.; Yin, C.; Xu, S.; Jiang, M.; Zhu, L.; Zou, R.; Sun, W. Preparation of Horseradish Peroxidase Modified Gold Nanoparticle/Coiled Carbon Nanotube Nanocomposite and its application for bromate and nitrite determination. Int. J. Electrochem. Sci. 2022, 17, 2. [Google Scholar] [CrossRef]
- Gurusamy, T.; Rajaram, R.; Murugan, R.; Ramanujam, K. A web of poly (bisbenzimidazolatocopper (ii)) around multiwalled carbon nanotubes for the electrochemical detection of hydrogen peroxide. New J. Chem. 2022, 46, 1222–1231. [Google Scholar] [CrossRef]
- Reddy, K.V.; Yuvaraja, D.; Manriquez, J.M.; Lokesh, K.S.; Amshumali, M.K. Novel Schiff base iron (ii) phthalocyanine with composite MWCNTs on modified GCE: Electrochemical sensor development for paracetamol. React. Chem. Eng. 2022. [Google Scholar] [CrossRef]
- Shao, W.; Mai, J.; Wei, Z. Nonenzymatic Lactic Acid Detection Using Cobalt Polyphthalocyanine/Carboxylated Multiwalled Carbon Nanotube Nanocomposites Modified Sensor. Chemosensors 2022, 10, 83. [Google Scholar] [CrossRef]
- Kweon, H.; Hosking, A.; Mushfiq, M.; Alam, M.M. Selective and trace level detection of hydrazine using functionalized single-walled carbon nanotube-based microelectronic devices. ACS Appl. Electron. Mater. 2021, 3, 711–719. [Google Scholar] [CrossRef]
- Ghanam, A.; Haddour, N.; Mohammadi, H.; Amine, A.; Sabac, A.; Buret, F. Nanoporous Cauliflower-like Pd-Loaded Functionalized Carbon Nanotubes as an Enzyme-Free Electrocatalyst for Glucose Sensing at Neutral pH: Mechanism Study. Sensors 2022, 22, 2706. [Google Scholar] [CrossRef]
- Balogun, S.A.; Fayemi, O.E. Effects of Electrolytes on the Electrochemical Impedance Properties of NiPcMWCNTs-Modified Glassy Carbon Electrode. Nanomaterials 2022, 12, 1876. [Google Scholar] [CrossRef]
- Kaya, E.N.; Tuncel, S.; Basova, T.V.; Banimuslem, H.; Hassan, A.; Gürek, A.G.; Ahsen, V.; Durmuş, M. Effect of pyrene substitution on the formation and sensor properties of phthalocyanine-single walled carbon nanotube hybrids. Sens. Actuators B Chem. 2014, 199, 277–283. [Google Scholar] [CrossRef]
- Das, G.; Sain, B.; Kumar, S. Synthesis, characterization and catalytic activity of cobalt phthalocyanine dichloride in sweetening of heavier petroleum fractions. Catal. Today 2012, 198, 228–232. [Google Scholar]
- Wang, L.; Pan, D.; Zhou, M.; Liang, Q.; Li, Z. Effect of phthalocyanines supported carbon nanotube for the catalytic oxidation of benzyl alcohol. Solid State Sci. 2021, 113, 106546. [Google Scholar] [CrossRef]
- Reddy, K.V. Sensitive and reliable electrochemical detection of nitrite and H2O2 embellish-CoPc coupled with appliance of composite MWCNTs. Anal. Chim. Acta 2020, 1108, 98–107. [Google Scholar]
- Yadav, K.K.; Ahmad, S.; Narang, U.; Bhattacharya, S.; Chauhan, S.M.S. Xanthenedione Substituted Metallophthalocyanines as an Efficient and Recyclable Catalyst for One-pot Three Component Synthesis of 3—Substituted Indoles. ChemistrySelect 2016, 1, 3635–3639. [Google Scholar] [CrossRef]
- Saka, E.T.; Uzun, S.; Çağlar, Y. Synthesis, structural characterization, catalytic activity on aerobic oxidation of novel Co (II) and Fe (II) phthalocyanines and computational studies of 4-[2-(2, 3-dichlorophenoxy) ethoxy] phthalonitrile. J. Organomet. Chem. 2016, 810, 25–32. [Google Scholar] [CrossRef]
- Nandan, D.; Zoppellaro, G.; Medřík, I.; Aparicio, C.; Kumar, P.; Petr, M.; Tomanec, O.; Gawande, M.B.; Varma, R.S.; Zbořil, R. Cobalt-entrenched N-, O-, and S-tridoped carbons as efficient multifunctional sustainable catalysts for base-free selective oxidative esterification of alcohols. Green Chem. 2018, 20, 3542–3556. [Google Scholar] [CrossRef]
- Saka, E.T.; Çağlar, Y. New Co (II) and Cu (II) phthalocyanine catalysts reinforced by long alkyl chains for the degradation of organic pollutants. Catal. Lett. 2017, 147, 1471–1477. [Google Scholar] [CrossRef]
- Eyele-Mezui, S.; Vialat, P.; Higy, C.; Bourzami, R.; Leuvrey, C.; Parizel, N.; Turek, P.; Rabu, P.; Rogez, G.; Mousty, C. Electrocatalytic properties of metal phthalocyanine tetrasulfonate intercalated in metal layered simple hydroxides (Metal: Co, Cu, and Zn). J. Phys. Chem. C 2015, 119, 13335–13342. [Google Scholar] [CrossRef]
- de Barros, M.R.; Winiarski, J.P.; de Matos Morawski, F.; Marim, R.G.; Chaves, E.S.; Blacha-Grzechnik, A.; Jost, C.L. A high-performance electrochemical sensor based on a mesoporous silica/titania material and cobalt (II) phthalocyanine for sensitive pentachlorophenol determination. Microchim. Acta 2022, 189, 269. [Google Scholar] [CrossRef]
- Li, H.; Pan, Y.; Wang, Z.; Yu, Y.; Xiong, J.; Du, H.; Lai, J.; Wang, L.; Feng, S. Coordination engineering of cobalt phthalocyanine by functionalized carbon nanotube for efficient and highly stable carbon dioxide reduction at high current density. Nano Res. 2022, 15, 3056–3064. [Google Scholar] [CrossRef]
- Han, N.; Wang, Y.; Ma, L.; Wen, J.; Li, J.; Zheng, H.; Nie, K.; Wang, X.; Zhao, F.; Li, Y.; et al. Supported cobalt polyphthalocyanine for high-performance electrocatalytic CO2 reduction. Chem 2017, 3, 652–664. [Google Scholar] [CrossRef]
- Mei, B.; Liu, C.; Li, J.; Gu, S.; Du, X.; Lu, S.; Song, F.; Xu, W.; Jiang, Z. Operando HERFD-XANES and surface sensitive Δμ analyses identify the structural evolution of copper (II) phthalocyanine for electroreduction of CO2. J. Energy Chem. 2022, 64, 1–7. [Google Scholar] [CrossRef]
- Jiang, Z.; Wang, Y.; Zhang, X.; Zheng, H.; Wang, X.; Liang, Y. Revealing the hidden performance of metal phthalocyanines for CO2 reduction electrocatalysis by hybridization with carbon nanotubes. Nano Res. 2019, 12, 2330–2334. [Google Scholar] [CrossRef]
- Zhu, M.; Chen, J.; Huang, L.; Ye, R.; Xu, J.; Han, Y.F. Covalently grafting cobalt porphyrin onto carbon nanotubes for efficient CO2 electroreduction. Angew. Chem. Int. Ed. 2019, 58, 6595–6599. [Google Scholar] [CrossRef]
- Chen, K.; Liu, K.; An, P.; Li, H.; Lin, Y.; Hu, J.; Jia, C.; Fu, J.; Li, H.; Liu, H.; et al. Iron phthalocyanine with coordination induced electronic localization to boost oxygen reduction reaction. Nat. Commun. 2020, 11, 4173. [Google Scholar] [CrossRef]
- Wang, J.; Huang, X.; Xi, S.; Xu, H.; Wang, X. Axial modification of cobalt complexes on heterogeneous surface with enhanced electron transfer for carbon dioxide reduction. Angew. Chem. Int. Ed. 2020, 59, 19162–19167. [Google Scholar] [CrossRef]
- Gu, S.; Marianov, A.N.; Zhu, Y.; Jiang, Y. Cobalt porphyrin immobilized on the TiO2 nanotube electrode for CO2 electroreduction in aqueous solution. J. Energy Chem. 2021, 55, 219–227. [Google Scholar] [CrossRef]
- Shi, Y.M.; Zhang, X.; Mei, L.; Han, D.E.; Hu, K.; Chao, L.Q.; Li, X.M. Sensitive acetaminophen electrochemical sensor with amplified signal strategy via non-covalent functionalization of soluble tetrahydroxyphthalocyanine and graphene. Microchem. J. 2021, 160, 105609. [Google Scholar] [CrossRef]
- Shen, C.; Li, Y.; Gong, M.; Zhou, C.; An, Q.; Xu, X.; Mai, L. Ultrathin Cobalt Phthalocyanine@ Graphene Oxide Layer-Modified Separator for Stable Lithium–Sulfur Batteries. ACS Appl. Mater. Interfaces 2021, 13, 60046–60053. [Google Scholar] [CrossRef]
- Nemakal, M.; Sannegowda, L. Hybrid composites based on phthalocyanine and carbonaceous materials for sensing applications: A review. Int. J. Biosen. Bioelectron. 2021, 7, 84–89. [Google Scholar]
- Ozoemena, K.I.; Nyokong, T.; Nkosi, D.; Chambrier, I.; Cook, M.J. Insights into the surface and redox properties of single-walled carbon nanotube—Cobalt (II) tetra-aminophthalocyanine self-assembled on gold electrode. Electrochim. Acta 2007, 52, 4132–4143. [Google Scholar] [CrossRef] [Green Version]
- Mphuthi, N.G.; Adekunle, A.S.; Fayemi, O.E.; Olasunkanmi, L.O.; Ebenso, E.E. Phthalocyanine doped metal oxide nanoparticles on multiwalled carbon nanotubes platform for the detection of dopamine. Sci. Rep. 2017, 7, 43181. [Google Scholar] [CrossRef] [PubMed]
- Kantize, K.; Booysen, I.N.; Mambanda, A. Electrochemical sensing of acetaminophen using nanocomposites comprised of cobalt phthalocyanines and multiwalled carbon nanotubes. J. Electroanal. Chem. 2019, 850, 113391. [Google Scholar] [CrossRef]
- Winiarski, J.P.; de Barros, M.R.; Wecker, G.S.; Nagurniak, G.R.; Parreira, R.L.T.; Affeldt, R.F.; Peralta, R.A.; Jost, C.L. A novel hybrid organic–inorganic silsesquioxane and cobalt (ii) tetrasulphophthalocyanine material as an efficient electrochemical sensor for the simultaneous determination of the anti-hypertensive nifedipine and its metabolite. J. Mater. Chem. C 2020, 8, 6839–6850. [Google Scholar] [CrossRef]
- Guaraldo, T.T.; Goulart, L.A.; Moraes, F.C.; Lanza, M.R. Carbon black nanospheres modified with Cu (II)-phthalocyanine for electrochemical determination of Trimethoprim antibiotic. Appl. Surf. Sci. 2019, 470, 555–564. [Google Scholar] [CrossRef]
- Gorduk, O.; Gencten, M.; Gorduk, S.; Sahin, M.; Sahin, Y. Electrochemical fabrication and supercapacitor performances of metallo phthalocyanine/functionalized-multiwalled carbon nanotube/polyaniline modified hybrid electrode materials. J. Energy Storage 2021, 33, 102049. [Google Scholar] [CrossRef]
- Kutluay, A.; Aslanoglu, M. An electrochemical sensor prepared by sonochemical one-pot synthesis of multi-walled carbon nanotube-supported cobalt nanoparticles for the simultaneous determination of paracetamol and dopamine. Anal. Chim. Acta 2014, 839, 59–66. [Google Scholar] [CrossRef]
- Zuo, X.; Zhang, H.; Li, N. An electrochemical biosensor for determination of ascorbic acid by cobalt (II) phthalocyanine–multi-walled carbon nanotubes modified glassy carbon electrode. Sens. Actuators B Chem. 2012, 161, 1074–1079. [Google Scholar] [CrossRef]
- Jilani, B.S.; Pari, M.; Reddy, K.V.; Lokesh, K.S. Simultaneous and sensitive detection of ascorbic acid in presence of dopamine using MWCNTs-decorated cobalt (II) phthalocyanine modified GCE. Microchem. J. 2019, 147, 755–763. [Google Scholar]
- Reddy, K.V. Novel garnished cobalt (II) phthalocyanine with MWCNTs on modified GCE: Sensitive and reliable electrochemical investigation of paracetamol and dopamine. New J. Chem. 2020, 44, 16831–16844. [Google Scholar]
- Cruz Moraes, F.; Cabral, M.F.; Machado, S.A.; Mascaro, L.H. Electrocatalytic behavior of glassy carbon electrodes modified with multiwalled carbon nanotubes and cobalt phthalocyanine for selective analysis of dopamine in presence of ascorbic acid. Electroanal. Int. J. Devoted Fundam. Pract. Asp. Electroanal. 2008, 20, 851–857. [Google Scholar] [CrossRef]
- Wang, H.H.; Li, N.; Li, K.; Bu, Y.; Dai, W.L.; Zuo, X. Multiwalled Carbon Nanotubes Covered with Cobalt (II) Phthalocyanine by In Situ Synthesis and its Electrochemical Sensing Performance towards DA and UA. In Materials Science Forum; Trans Tech Publications Ltd.: Wollerau, Switzerland, 2015; Volume 809–810, pp. 43–52. [Google Scholar]
- Reddy, K.V. Decorated CoPc with appliance of MWCNTs on GCE: Sensitive and reliable electrochemical investigation of heavy metals. Microchem. J. 2021, 160, 105610. [Google Scholar]
- Lu, S.; Hummel, M.; Kang, S.; Gu, Z. Selective Voltammetric Determination of Nitrite Using Cobalt Phthalocyanine Modified on Multiwalled Carbon Nanotubes. J. Electrochem. Soc. 2020, 167, 046515. [Google Scholar] [CrossRef]
- Reddy, K.V. The electrochemical investigation of carboxamide-PEG 2-biotin-CoPc using composite MWCNTs on modified GCE: The sensitive detections for glucose and hydrogen peroxide. New J. Chem. 2020, 44, 3330–3340. [Google Scholar]
- Moraes, F.C.; Mascaro, L.H.; Machado, S.A.; Brett, C.M. Direct electrochemical determination of carbaryl using a multi-walled carbon nanotube/cobalt phthalocyanine modified electrode. Talanta 2009, 79, 1406–1411. [Google Scholar] [CrossRef]
- Aragão, J.S.; Ribeiro, F.W.; Portela, R.R.; Santos, V.N.; Sousa, C.P.; Becker, H.; Correia, A.N.; de Lima-Neto, P. Electrochemical determination diethylstilbestrol by a multi-walled carbon nanotube/cobalt phthalocyanine film electrode. Sens. Actuators B Chem. 2017, 239, 933–942. [Google Scholar] [CrossRef]
- de Holanda, L.F.; Ribeiro, F.W.P.; Sousa, C.P.; da Silva Casciano, P.N.; de Lima-Neto, P.; Correia, A.N. Multi-walled carbon nanotubes–cobalt phthalocyanine modified electrode for electroanalytical determination of acetaminophen. J. Electroanal. Chem. 2016, 772, 9–16. [Google Scholar] [CrossRef]
- Moraes, F.C.; Golinelli, D.L.; Mascaro, L.H.; Machado, S.A. Determination of epinephrine in urine using multi-walled carbon nanotube modified with cobalt phthalocyanine in a paraffin composite electrode. Sens. Actuators B Chem. 2010, 148, 492–497. [Google Scholar] [CrossRef]
- Agboola, B.O.; Vilakazi, S.L.; Ozoemena, K.I. Electrochemistry at cobalt (II) tetrasulfophthalocyanine-multi-walled carbon nanotubes modified glassy carbon electrode: A sensing platform for efficient suppression of ascorbic acid in the presence of epinephrine. J. Solid State Electrochem. 2009, 13, 1367–1379. [Google Scholar] [CrossRef]
- Yang, Z.H.; Zhuo, Y.; Yuan, R.; Chai, Y.Q. Electrochemical activity and electrocatalytic property of cobalt phthalocyanine nanoparticles-based immunosensor for sensitive detection of procalcitonin. Sens. Actuators B Chem. 2016, 227, 212–219. [Google Scholar] [CrossRef]
- Kantize, K.; Booysen, I.N.; Mambanda, A. Electrocatalytic Determination of Nevirapine Using a Platinum Electrode Modified with a Polymeric CoPc-Nafion-carbon nanotube Composite. Int. J. Electrochem. Sci. 2022, 17, 2. [Google Scholar] [CrossRef]
- Pari, M.; Reddy, K.R.V. Electrochemical Investigation of Uric Acid using MWCNTs-Decorated Novel Substituted Cobalt (II) Phthalocyanine Modified GCE. Anal. Bioanal. Electrochem. 2019, 11, 1383–1397. [Google Scholar]
- de Fátima Giarola, J.; César Pereira, A. Development and application of a sensor based on carbonaceous materials and cobalt phthalocyanine composite for electrochemical determination of uric acid. Electroanalysis 2016, 28, 1348–1355. [Google Scholar] [CrossRef]
- Porras Gutierrez, A.; Rangel Argote, M.; Griveau, S.; Zagal, J.H.; Gutierrez Granados, S.; Alatorre Ordas, A.; Bedioui, F. Catalytic activity of electrode materials based on polypyrrole, multi-wall carbon nanotubes and cobalt phthalocyanine for the electrooxidation of glutathione and L-cysteine. J. Chil. Chem. Soc. 2012, 57, 1244–1247. [Google Scholar] [CrossRef] [Green Version]
- Rangel Argote, M.; Sanchez Guillen, E.; Gutierrez Porras, A.G.; Serrano Torres, O.; Richard, C.; Zagal, J.H.; Bedioui, F.; Gutierrez Granados, S.; Griveau, S. Preparation and characterization of electrodes modified with pyrrole surfactant, multiwalled carbon nanotubes and metallophthalocyanines for the electrochemical detection of thiols. Electroanalysis 2014, 26, 507–512. [Google Scholar] [CrossRef]
- Sun, X.; Li, F.; Shen, G.; Huang, J.; Wang, X. Aptasensor based on the synergistic contributions of chitosan–gold nanoparticles, graphene–gold nanoparticles and multi-walled carbon nanotubes-cobalt phthalocyanine nanocomposites for kanamycin detection. Analyst 2014, 139, 299–308. [Google Scholar] [CrossRef] [PubMed]
- Mounesh, M.N.; Sharan Kumar, T.M.; Praveen Kumar, N.Y.; Venugopal Reddy, K.R. Poly (L-lactide)-carboxamide-CoPc with composite MWCNTs on glassy carbon electrode sensitive detection of hydrazine and L-cysteine. Anal. Chem. Lett. 2020, 10, 620–635. [Google Scholar] [CrossRef]
- Porto, L.S.; da Silva, D.N.; Silva, M.C.; Pereira, A.C. Electrochemical Sensor Based on Multi-walled Carbon Nanotubes and Cobalt Phthalocyanine Composite for Pyridoxine Determination. Electroanalysis 2019, 31, 820–828. [Google Scholar] [CrossRef]
- Mounesh; Venugopal Reddy, K.R.; Fasiulla. Novel tetracinnamide cobalt (II) phthalocyanine immobilized on MWCNTs for amperometic sensing of glucose. Anal. Chem. Lett. 2020, 10, 137–151. [Google Scholar] [CrossRef]
- Devasenathipathy, R.; Karuppiah, C.; Chen, S.M.; Palanisamy, S.; Lou, B.S.; Ali, M.A.; Al-Hemaid, F.M. A sensitive and selective enzyme-free amperometric glucose biosensor using a composite from multi-walled carbon nanotubes and cobalt phthalocyanine. RSC Adv. 2015, 5, 26762–26768. [Google Scholar] [CrossRef]
- Wang, Z.; Sun, Z.; Li, Q.; Zhou, M.; Liang, Q.; Li, Z.; Sun, D. Selective oxidation of styrene to benzaldehyde by cobalt phthalocyanine-multi-walled carbon nanotube composites. Solid State Sci. 2020, 101, 106122. [Google Scholar] [CrossRef]
- Ju, L.; Li, Z.; Xu, S.; Li, Q. Synthesis and catalytic activity of different substituted metal phthalocyanine-MWCNTs hybrid materials for selective oxidation of styrene. Fuller. Nanotub. Carbon Nanostruct. 2017, 25, 335–341. [Google Scholar] [CrossRef]
- Xu, Z.; Li, H.; Cao, G.; Zhang, Q.; Li, K.; Zhao, X. Electrochemical performance of carbon nanotube-supported cobalt phthalocyanine and its nitrogen-rich derivatives for oxygen reduction. J. Mol. Catal. A Chem. 2011, 335, 89–96. [Google Scholar] [CrossRef]
- Kruusenberg, I.; Matisen, L.; Tammeveski, K. Oxygen electroreduction on multi-walled carbon nanotube supported metal phthalocyanines and porphyrins in acid media. Int. J. Electrochem. Sci. 2013, 8, 1057–1066. [Google Scholar]
- Kruusenberg, I.; Matisen, L.; Tammeveski, K. Oxygen electroreduction on multi-walled carbon nanotube supported metal phthalocyanines and porphyrins in alkaline media. J. Nanosci. Nanotechnol. 2013, 13, 621–627. [Google Scholar] [CrossRef]
- Giddaerappa; Manjunatha, N.; Shantharaja; Hojamberdiev, M.; Sannegowda, L.K. Tetraphenolphthalein Cobalt (II) Phthalocyanine Polymer Modified with Multiwalled Carbon Nanotubes as an Efficient Catalyst for the Oxygen Reduction Reaction. ACS Omega 2022, 7, 14291–14304. [Google Scholar] [CrossRef]
- Praats, R.; Käärik, M.; Kikas, A.; Kisand, V.; Aruväli, J.; Paiste, P.; Merisalu, M.; Sarapuu, A.; Leis, J.; Sammelselg, V.; et al. Electroreduction of oxygen on cobalt phthalocyanine-modified carbide-derived carbon/carbon nanotube composite catalysts. J. Solid State Electrochem. 2021, 25, 57–71. [Google Scholar] [CrossRef]
- Sun, C.; Hou, Y.; Lüdi, N.; Hu, H.; de Jesús Gálvez-Vázquez, M.; Liechti, M.; Kong, Y.; Liu, M.; Erni, R.; Rudnev, A.V.; et al. Improving the lifetime of hybrid CoPc@ MWCNT catalysts for selective electrochemical CO2-to-CO conversion. J. Catal. 2022, 407, 198–205. [Google Scholar] [CrossRef]
- Mirzaeian, M.; Rashidi, A.M.; Zare, M.; Ghabezi, R.; Lotfi, R. Mercaptan removal from natural gas using carbon nanotube supported cobalt phthalocyanine nanocatalyst. J. Nat. Gas Sci. Eng. 2014, 18, 439–445. [Google Scholar] [CrossRef]
- Mohammad, E.J.; Kareem, M.M.; Atiyah, A.J. Photocatalytic oxidation of butan-2-ol over multi walled carbon nanotubes/cobalt phthalocynanine composites. Bull. Chem. Soc. Ethiop. 2022, 36, 197–207. [Google Scholar] [CrossRef]
- Bhowmick, G.D.; Kibena-Põldsepp, E.; Matisen, L.; Merisalu, M.; Kook, M.; Käärik, M.; Leis, J.; Sammelselg, V.; Ghangrekar, M.M.; Tammeveski, K. Multi-walled carbon nanotube and carbide-derived carbon supported metal phthalocyanines as cathode catalysts for microbial fuel cell applications. Sustain. Energy Fuels 2019, 3, 3525–3537. [Google Scholar] [CrossRef]
- Elouarzaki, K.; Haddad, R.; Holzinger, M.; Le Goff, A.; Thery, J.; Cosnier, S. MWCNT-supported phthalocyanine cobalt as air-breathing cathodic catalyst in glucose/O2 fuel cells. J. Power Sources 2014, 255, 24–28. [Google Scholar] [CrossRef]
- Boutin, E.; Wang, M.; Lin, J.C.; Mesnage, M.; Mendoza, D.; Lassalle-Kaiser, B.; Hahn, C.; Jaramillo, T.F.; Robert, M. Aqueous electrochemical reduction of carbon dioxide and carbon monoxide into methanol with cobalt phthalocyanine. Angew. Chem. Int. Ed. 2019, 58, 16172–16176. [Google Scholar] [CrossRef]
- Taşaltın, N.; Zirek, Y.; Şan, M.; Taşaltın, C.; Karakuş, S.; Kilislioğlu, A. Flexible GO-CoPc and GO-NiPc nanocomposite electrodes for hybrid supercapacitors. Phys. E Low Dimens. Syst. Nanostruct. 2020, 116, 113766. [Google Scholar] [CrossRef]
- Yue, Z.; Ou, C.; Ding, N.; Tao, L.; Zhao, J.; Chen, J. Advances in metal phthalocyanine based carbon composites for electrocatalytic CO2 reduction. ChemCatChem 2020, 12, 6103–6130. [Google Scholar] [CrossRef]
- Li, Q.; Sun, Z.; Zhou, M.; Liang, Q.; Li, Z.; Xu, S. Synthesis of asymmetric zinc phthalocyanine supported on multi-walled carbon nanotubes and its improvement of catalytic activity on styrene oxidation. J. Mater. Sci. Mater. Electron. 2019, 30, 6277–6286. [Google Scholar] [CrossRef]
Electrode | Analyte | Technique | LOD | LDR | Ref |
---|---|---|---|---|---|
μM | μM | ||||
CoNPs/MWCNT/GCE | Dopamine | SWV | 0.015 | 0.015–3 | [50] |
Paracetamol | SWV | 0.001 | 0.005–0.45 | [50] | |
CoPc-MWCNTs/GCE | Ascorbic acid | CV | 1 | 10–2600 | [51] |
MWCNT-CoTMBANAPc/GCE | Ascorbic acid | AP | 6.6 | 7.5 × 10−3–0.07 | [52] |
Dopamine | DPV | 0.33 | 7.5 × 10−3–0.07 | [52] | |
CoTBPCAPc/MWCNTs/GCE | Dopamine | CA | 0.017 | 0.05–0.75 | [53] |
Paracetamol | CA | 0.019 | 0.05–0.75 | [53] | |
CoPcMWCNTs/GCE | Dopamine | DPV | 0.256 | 3.11–93.2 | [54] |
Pt-CoPc-MWCNTs/GCE | Dopamine | SWV | 2.6 | 5–170 | [55] |
Electrode | Analyte | Technique | LOD | LDR | Ref |
---|---|---|---|---|---|
μM | μM | ||||
CoPc-MWCNTs/GCE | H2O2 | CV | 0.01 | 0.1–0.8 | [26] |
Nitrite | CV | 0.03 | 0.05–0.75 | [26] | |
CoPc-MWCNTs/GCE | Cd2+ | CV | 0.01 | 0.1–1 | [56] |
DPV | 0.006 | 0.1–1 | [56] | ||
CA | 0.005 | 0.1–1 | [56] | ||
Pb2+ | CV | 0.009 | 0.1–1 | [56] | |
DPV | 0.005 | 0.1–1 | [56] | ||
CA | 0.01 | 0.1–1 | [56] | ||
CoPcMWCNTs/GCE | Nitrite | DPV | 2.11 | 10–1.1 × 106 | [57] |
CoTPEG2BAPc-MWCNTs/GCE | H2O2 | CV | 1.5 | 5–25 | [58] |
DPV | 5 | 2–22 | [58] | ||
CA | 10 | 5–50 | [58] |
Electrode | Analyte | Technique | LOD | LDR | Ref |
---|---|---|---|---|---|
μM | μM | ||||
CoPc-fMWCNTs/Au/GCE | DES | SWV | 0.199 | 0.7–5.66 | [60] |
CoPcMWCNTs/GCE | Acetaminophen | CV | 1 | 1–1000 | [46] |
MWCNTs/CoPc/GCE | Carbaryl | SWV | 0.006 | 0.33–6.61 | [59] |
fMWCNT-CoPc/AuNPs/GCE | Acetaminophen | SWV | 0.135 | 1.49–47.6 | [61] |
CoPcMWCNT/PCE | Epinephrine | DPV | 0.016 | 1.33–5.50 | [62] |
SWCNTs-CoPc/PG | Epinephrine | CA | 0.04 | [63] | |
CoPc-MWCNTs/GCE | Procalcitonin | DPV | [64] | ||
CoPc-cou-fMWCNTs/Naf-5/Pt | Nevirapine | LSV | 0.0002 | 0.0006–30 | [65] |
CA | 0.00021 | 2.5–30 | [65] |
Electrode | Analyte | Technique | LOD | LDR | Ref |
---|---|---|---|---|---|
μM | μM | ||||
Pt-CoPc-MWCNTs/GCE | Uric acid | SWV | 1.4 | 5–100 | [55] |
DBCMAT-CoPc/MWCNTs/GCE | Uric acid | CV | 0.03 | 0.1–1.8 | [66] |
DPV | 0.066 | 0.2–2.8 | [66] | ||
CA | 0.016 | 0.05–0.8 | [66] | ||
CoPc-MWCNTs/GCE | Uric acid | SWV | 260 | 125 to 4000 | [67] |
CoPc-MWCNTs-PPy/GCE | Glutathione | CV | 20 | 1–5 × 103 | [68] |
Cysteine | CV | 30 | 1–5 × 103 | [68] | |
PyC10MIM+Br−-CoPc-MWCNT/GCE | Glutathione | CV | 13 | [69] | |
Cysteine | CV | 14 | [69] | ||
CoPc-fMWCNTs/GE | Kanamycin | DPV | 0.0058 | 0.01–0.15 | [70] |
TPLLCA-CoPc/MWCNTs/GCE | Cysteine | CV | 1.3 × 10−3 | 2–10 × 10−3 | [71] |
DPV | 1 × 10−3 | 1–10 × 10−3 | [71] | ||
CA | 3.3 × 10−3 | 5–50 × 10−3 | [71] |
Electrode | Analyte | Technique | LOD | LDR | Ref |
---|---|---|---|---|---|
μM | μM | ||||
CoPPc/fMWCNTs/GCE | Lactic acid | CV | 2 | 10–240 | [19] |
CoPcMWCNT/PGE | Pyridoxine | DPV | 0.5 | 10 to 400 | [72] |
TCIDCoPc-MWCNTs/GCE | Glucose | CV | 900 | 2–20 × 103 | [73] |
DPV | 5330 | 2–12 × 103 | [73] | ||
CA | 6000 | 5–50 × 103 | [73] | ||
MWCNT–CoTsPc/GCE | Glucose | AP | 0.14 | 10–6340 | [74] |
CoTPEG2BAPc-MWCNTs/GCE | Glucose | CV | 0.33 | 2–16 | [58] |
DPV | 2 | 2–22 | [58] | ||
CA | 12.5 | 5–50 | [58] | ||
TPLLCA-CoPc/MWCNTs/GCE | Hydrazine | CV | 3.3 × 10−4 | 2–10 × 10−3 | [71] |
DPV | 3.3 × 10−5 | 1–10 × 10−3 | [71] | ||
CA | 6 × 10−3 | 5–50 × 10−3 | [71] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balogun, S.A.; Fayemi, O.E. Recent Advances in the Use of CoPc-MWCNTs Nanocomposites as Electrochemical Sensing Materials. Biosensors 2022, 12, 850. https://doi.org/10.3390/bios12100850
Balogun SA, Fayemi OE. Recent Advances in the Use of CoPc-MWCNTs Nanocomposites as Electrochemical Sensing Materials. Biosensors. 2022; 12(10):850. https://doi.org/10.3390/bios12100850
Chicago/Turabian StyleBalogun, Sheriff A., and Omolola E. Fayemi. 2022. "Recent Advances in the Use of CoPc-MWCNTs Nanocomposites as Electrochemical Sensing Materials" Biosensors 12, no. 10: 850. https://doi.org/10.3390/bios12100850
APA StyleBalogun, S. A., & Fayemi, O. E. (2022). Recent Advances in the Use of CoPc-MWCNTs Nanocomposites as Electrochemical Sensing Materials. Biosensors, 12(10), 850. https://doi.org/10.3390/bios12100850