A Fluorescent Biosensor for Streptavidin Detection Based on Double-Hairpin DNA-Templated Copper Nanoparticles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Apparatus
2.3. Optimization of the Experimental Conditions
2.4. Detection of SA
2.5. Selectivity
3. Results
3.1. Principle of the SA Detection
3.2. Feasibility Assessment of the SA Detection Assay
3.3. Optimization of the Detection Strategy
3.4. Performances of the Proposed Strategy
3.5. Selectivity of the Method
3.6. Practical Applicability of the Detection Strategy
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lee, C.Y.; Kim, H.Y.; Kim, S.; Park, K.S.; Park, H.G. A simple and sensitive detection of small molecule-protein interactions based on terminal protection-mediated exponential strand displacement amplification. Analyst 2018, 143, 2023–2028. [Google Scholar] [CrossRef]
- Wu, Y.; Huang, J.; Yang, X.; Yang, Y.; Quan, K.; Xie, N.; Li, J.; Ma, C.; Wang, K. Gold nanoparticle loaded split DNAzyme probe for amplified miRNA detection in living cells. Anal. Chem. 2017, 89, 8377–8383. [Google Scholar] [CrossRef] [PubMed]
- Bai, D.M.; Ji, D.Y.; Shang, J.H.; Hu, Y.L.; Gao, J.; Lin, Z.; Ge, J.; Li, Z.H. A rapid biosensor for highly sensitive protein detection based on G-quadruplex-Thioflavin T complex and terminal protection of small molecule-linked DNA. Sens. Actuators B Chem. 2017, 252, 1146–1152. [Google Scholar] [CrossRef]
- Chen, M.; Li, W.; Ma, C.; Wu, K.; He, H.; Wang, K. Fluorometric determination of the activity of uracil-DNA glycosylase by using on graphene oxide and exonuclease I assisted signal amplification. Microchim. Acta 2019, 186, 110. [Google Scholar] [CrossRef]
- Wang, Q.; Jiang, B.Y.; Xu, J.; Xie, J.Q.; Xiang, Y.; Yuan, R.; Chai, Y.Q. Amplified terminal protection assay of small molecule/protein interactions via a highly characteristic solid-state Ag/AgCl process. Biosens. Bioelectron. 2013, 43, 19–24. [Google Scholar] [CrossRef]
- Liu, Q.; Sun, X.; Liu, M.; Jin, Y.; Li, B. G-triplex molecular beacon-based fluorescence biosensor for sensitive detection of small molecule-protein interaction via exonuclease III-assisted recycling amplification. Sens. Actuators B Chem. 2020, 310, 127804. [Google Scholar] [CrossRef]
- Zhang, Z.; Xia, X.; Xiang, X.; Huang, F.; Han, L. Conjugated cationic polymer-assisted amplified fluorescent biosensor for protein detection via terminal protection of small molecule-linked DNA and graphene oxide. Sens. Actuators B Chem. 2017, 249, 8–13. [Google Scholar] [CrossRef]
- Ouyang, P.; Fang, C.; Han, J.; Zhang, J.; Yang, Y.; Qing, Y.; Chen, Y.; Shang, W.; Du, J. A DNA Electrochemical Sensor via Terminal Protection of Small-Molecule-Linked DNA for Highly Sensitive Protein Detection. Biosensors 2021, 11, 451. [Google Scholar] [CrossRef]
- He, Y.; Jiao, B.N. Detection of biotin-streptavidin interactions via terminal protection of small molecule linked DNA and the formation of fluorescent DNA-templated silver nanoclusters. Microchim. Acta 2016, 183, 3183–3189. [Google Scholar] [CrossRef]
- Xu, F.F.; Yang, T.; Chen, Y. Quantification of microRNA by DNA-peptide probe and liquid chromatography-tandem mass spectrometry-based quasi-targeted proteomics. Anal. Chem. 2016, 88, 754–763. [Google Scholar] [CrossRef]
- Chen, M.J.; Deng, Z.Y.; Ma, C.B.; Zhao, H.; Wu, K.F.; Wang, K.M. A sensitive fluorescence method for the detection of streptavidin based on target-induced DNA machine amplification. Anal. Methods. 2018, 10, 1870–1874. [Google Scholar] [CrossRef]
- Cao, J.; Wang, W.; Bo, B.; Mao, X.; Wang, K.; Zhu, X. A dual-signal strategy for the solid detection of both small molecules and proteins based on magnetic separation and highly fluorescent copper nanoclusters. Biosens. Bioelectron. 2017, 90, 534–541. [Google Scholar] [CrossRef]
- Zhuang, Y.D.; Chiang, P.Y.; Wang, C.W.; Tan, K.T. Environment-sensitive fluorescent turn-on probes targeting hydrophobic ligand-binding domains for selective protein detection. Angew. Chem. Int. Ed. 2013, 52, 8124–8128. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Qian, J.H.; Tian, H.Y.; Duan, L.P.; Zhang, W.B. Rational design of biotinylated probes: Fluorescent turn-on detection of (strept)avidin and bioimaging in cancer cells. Chem. Commun. 2014, 50, 8518–8521. [Google Scholar] [CrossRef] [PubMed]
- Drabovich, A.P.; Berezovski, M.V.; Musheev, M.U.; Krylov, S.N. Selection of smart small-molecule ligands: The proof of principle. Anal. Chem. 2009, 81, 490–494. [Google Scholar] [CrossRef] [PubMed]
- Seto, H.; Yamashita, C.; Kamba, S.; Kondo, T.; Hasegawa, M.; Matsuno, M.; Ogawa, Y.C.; Hoshino, Y.; Miura, Y. Biotinylation of silicon and nickel surfaces and detection of streptavidin as biosensor. Langmuir 2009, 29, 9457–9463. [Google Scholar] [CrossRef] [PubMed]
- Ban, F.F.; Shi, H.; Feng, C.; Mao, X.X.; Yin, Y.M.; Zhu, X.L. A one-pot strategy for the detection of proteins based on sterically and allosterically tunable hybridization chain reaction. Biosens. Bioelectron. 2016, 86, 219–224. [Google Scholar] [CrossRef]
- Focsan, M.; Campu, A.; Craciun, A.M.; Potara, M.; Leordean, C.; Maniu, D.; Astilean, S. A simple and efficient design to improve the detection of biotin-streptavidin interaction with plasmonic nanobiosensors. Biosens. Bioelectron. 2016, 86, 728–735. [Google Scholar] [CrossRef]
- Khan, M.; Park, S.Y. Specific detection of avidin-biotin binding using liquid crystal droplets. Colloids Surf. B Biointerfaces 2015, 127, 241–246. [Google Scholar] [CrossRef]
- Liu, H.S.; Ma, C.B.; Wang, J.; Wang, K.M.; Wu, K.F. A turn-on fluorescent method for determination of the activity of alkaline phosphatase based on dsDNA-templated copper nanoparticles and exonuclease based amplification. Microchim. Acta 2017, 184, 2483–2488. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, Q.; Jin, Y.; Li, B. Determination of the activity of T4 polynucleotide kinase phosphatase by exploiting the sequence-dependent fluorescence of DNA-templated copper nanoclusters. Microchim. Acta 2019, 186, 3. [Google Scholar] [CrossRef]
- Han, Y.; Zhang, F.; Gong, H.; Cai, C. Double G-quadruplexes in a copper nanoparticle based fluorescent probe for determination of HIV genes. Microchim. Acta 2019, 186, 30. [Google Scholar] [CrossRef] [PubMed]
- Qing, Z.; He, X.; He, D.; Wang, K.; Xu, F.; Qing, T.; Yang, X. Poly(thymine)-Templated Selective Formation of Fluorescent Copper Nanoparticles. Angew. Chem. Int. Ed. 2013, 52, 9719–9722. [Google Scholar] [CrossRef]
- Qing, T.; Long, C.; Wang, X.; Zhang, K.; Zhang, P.; Feng, B. Detection of micrococcal nuclease for identifying Staphylococcus aureus based on DNA templated fluorescent copper nanoclusters. Microchim. Acta 2019, 186, 248. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Ma, C.; Yan, Y. Label-free fluorescence method for actin detection based on DNA-templated silver nanoclusters. Anal. Methods 2019, 11, 4348–4353. [Google Scholar] [CrossRef]
- Cai, Q.; Ge, J.; Xu, H.; Zhang, L.; Hu, Y.; Huang, Z.; Li, Z. A label-free aptasensor for highly sensitive ATP detection by using exonuclease I and oligonucleotide-templated fluorescent copper nanoparticles. Anal. Methods 2017, 9, 2710–2714. [Google Scholar] [CrossRef]
- Ge, J.; Dong, Z.; Zhang, L.; Cai, Q.; Bai, D.; Li, Z. Label-free biosensor based on dsDNA-templated copper nanoparticles for highly sensitive and selective detection of NAD+. RSC Adv. 2016, 6, 91077–91082. [Google Scholar] [CrossRef]
- Chen, M.; Khusbu, F.; Ma, C.; Wu, K.; Zhao, H.; Chen, H.; Wang, K. A sensitive detection method of carcinoembryonic antigen based on dsDNA-templated copper nanoparticles. New J. Chem. 2018, 42, 13702–13707. [Google Scholar] [CrossRef]
- Zhang, L.; Cai, Q.; Li, J.; Ge, J.; Wang, J.; Dong, Z.; Li, Z. A label-free method for detecting biothiols based on poly(thymine)-templated copper nanoparticles. Biosens. Bioelectron. 2015, 69, 77–82. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Kim, J.; Kwon, W.; Hwang, S.; Cha, B.; Kim, J.; Seung, S.; Ki, S. Synthesis of DNA-templated copper nanoparticles with enhanced fluorescence stability for cellular imaging. Microchim. Acta 2019, 186, 479. [Google Scholar] [CrossRef]
- Chen, W.; Dai, L.; Liu, Z.; Yang, W.; Zhao, C.; Li, Y.; Chen, Y. Hairpin-shaped DNA templated copper nanopartides for fluorescence detection of adenosine triphosphate based on ligation-mediated exonuclease cleavage. Anal. Sci. 2017, 33, 203–207. [Google Scholar]
- Xu, F.; Shi, H.; He, X.; Wang, K.; He, D.; Guo, Q.; Qing, Z.; Yan, L.; Ye, X.; Li, D.; et al. Concatemeric dsDNA-templated copper nanoparticles strategy with improved sensitivity and stability based on rolling circle replication and its application in microRNA Detection. Anal. Chem. 2014, 86, 6976–6982. [Google Scholar] [CrossRef]
- He, Y.; Jiao, B.N. DNA covalently linked to graphene oxide for biotin-streptavidin interaction assay. Talanta 2017, 63, 140–145. [Google Scholar] [CrossRef] [PubMed]
- Qing, T.P.; He, X.X.; He, D.G.; Ye, X.S.; Shangguan, J.F.; Liu, J.Q.; Yuan, B.Y.; Wang, K.M. Dumbbell DNA-templated CuNPs as a nano-fluorescent probe for detection of enzymes involved in ligase-mediated DNA repair. Biosens. Bioelectron. 2017, 94, 456–463. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.X.; Liu, F.; Fan, T.T.; Ren, Y.; Jiang, Y.Y. Rapid detection of methyltransferases utilizing dumbbell DNA-templated copper nanoparticles. Sens. Actuators B Chem. 2018, 276, 499–506. [Google Scholar] [CrossRef]
- He, Y.; Tian, F.; Zhou, J.; Jiao, B. A fluorescent aptasensor for ochratoxin A detection based on enzymatically generated copper nanoparticles with a polythymine scaffold. Microchim. Acta 2019, 186, 199. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.X.; Lin, C.S.; Chen, Y.Y.; Luo, F.; Wang, Y.R.; Chen, X. Terminal protection of a small molecule-linked loop DNA probe for turn-on label-free fluorescence detection of proteins. Biosens. Bioelectron. 2016, 83, 97–101. [Google Scholar] [CrossRef]
- Wang, H.B.; Zhang, H.D.; Chen, Y.; Liu, Y.M. A fluorescent biosensor for protein detection based on poly(thymine)-templated copper nanoparticles and terminal protection of small molecule-linked DNA. Biosens. Bioelectron. 2015, 74, 581–586. [Google Scholar] [CrossRef]
- Xiang, X.; Shi, J.B.; Huang, F.G.; Zheng, M.M.; Deng, Q.C.; Xu, J.Q. MoS2 nanosheet-based fluorescent biosensor for protein detection via terminal protection of small-molecule-linked DNA and exonuclease III-aided DNA recycling amplification. Biosens. Bioelectron. 2015, 74, 227–232. [Google Scholar] [CrossRef]
Method | Material | Detection Range (nM) | LOD (nM) | Reference |
---|---|---|---|---|
SPR | Gold nanoparticle | 5 | 18 | |
Electrochemistry | Gold electrode | 0.5–5000 | 0.02 | 8 |
Fluorescence | SYBR Green I | 0.01–0.1 | 0.02 | 1 |
Fluorescence | AgNCs | 6–600 | 2.6 | 9 |
Fluorescence | SYBR Green I | 5–200 | 0.4 | 10 |
Fluorescence | ThT | 0.1–17 | 0.07 | 11 |
Fluorescence | CuNCs | 1–200 | 0.47 | 12 |
Fluorescence | Pyrene | 4–1000 | 1.07 | 17 |
Fluorescence | FAM | 0.15–12 | 0.08 | 33 |
Fluorescence | CuNPs | 0.5–150 | 0.09 | This work |
Sample | Added (nM) | Found (nM) | Recovery (%) | RSD (%) |
---|---|---|---|---|
1 | 20 | 19.8 ± 0.4 | 99 | 7.71 |
2 | 60 | 59.1 ± 1.5 | 98.5 | 9.31 |
3 | 100 | 100.6 ± 2.1 | 100.6 | 6.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, Q.; Chen, M.; Nie, W.; Xie, F.; Yu, X.; Ma, C. A Fluorescent Biosensor for Streptavidin Detection Based on Double-Hairpin DNA-Templated Copper Nanoparticles. Biosensors 2023, 13, 168. https://doi.org/10.3390/bios13020168
Xiao Q, Chen M, Nie W, Xie F, Yu X, Ma C. A Fluorescent Biosensor for Streptavidin Detection Based on Double-Hairpin DNA-Templated Copper Nanoparticles. Biosensors. 2023; 13(2):168. https://doi.org/10.3390/bios13020168
Chicago/Turabian StyleXiao, Qiangsheng, Mingjian Chen, Wanpin Nie, Fengjiao Xie, Xiao Yu, and Changbei Ma. 2023. "A Fluorescent Biosensor for Streptavidin Detection Based on Double-Hairpin DNA-Templated Copper Nanoparticles" Biosensors 13, no. 2: 168. https://doi.org/10.3390/bios13020168
APA StyleXiao, Q., Chen, M., Nie, W., Xie, F., Yu, X., & Ma, C. (2023). A Fluorescent Biosensor for Streptavidin Detection Based on Double-Hairpin DNA-Templated Copper Nanoparticles. Biosensors, 13(2), 168. https://doi.org/10.3390/bios13020168