Different Aspects of the Voltammetric Detection of Vitamins: A Review
Abstract
:1. Introduction
2. The Vitamins
2.1. Characterization of the Electrochemical Behavior of Vitamins
2.1.1. Fat-Soluble Vitamins
Voltammetric Properties of Vitamin A (Retinol)
Voltammetric Properties of Vitamin D
Voltammetric Properties of Vitamin E (α-Tocopherol)
Voltammetric Properties of Vitamin K
2.1.2. Water-Soluble Vitamins
Voltammetric Properties of Vitamin C (Ascorbic Acid)
Voltammetric Properties of Vitamin B1 (Thiamine)
Voltammetric Properties of Vitamin B2 (Riboflavin)
Voltammetric Properties of Vitamin B3 (Niacin/Nicotinic acid)
Voltammetric Properties of Vitamin B5 (Pantothenic Acid)
Voltammetric Properties of Vitamin B6 (Pyridoxine)
Voltammetric Properties of Vitamin B7 (Biotin)
Voltammetric Properties of Vitamin B9 (Folic Acid)
Voltammetric Properties of Vitamin B12 (Cobalamin)
3. Vitamin Analysis Using Electroanalytical Techniques
3.1. Fat-Soluble Vitamins
3.1.1. Vitamin A
3.1.2. Vitamin D
3.1.3. Vitamin E
3.1.4. Vitamin K
3.2. Water-Soluble Vitamins
3.2.1. Vitamin C
3.2.2. Vitamin B1 (Thiamine)
3.2.3. Vitamin B2 (Riboflavin)
3.2.4. Vitamin B3 (Nicotinic Acid/Niacin)
3.2.5. Vitamin B5 (Pantothenic Acid)
3.2.6. Vitamin B6 (Pyridoxine)
3.2.7. Vitamin B7 (Biotin)
3.2.8. Vitamin B9 (Folic Acid)
3.2.9. Vitamin B12 (Cobalamin)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Combs, G.F.; McClung, J.P. The Vitamins: Fundamental Aspects in Nutrition and Health; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Funk, C. The etiology of the deficiency diseases, Beri-beri, polyneuritis in birds, epidemic dropsy, scurvy, experimental scurvy in animals, infantile scurvy, ship beri-beri, pellagra. J. State Med. 1912, 20, 341–368. [Google Scholar] [CrossRef]
- Combs, G. The Vitamins; Elsevier: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Dawson-Hughes, B.; Harris, S.S.; Lichtenstein, A.H.; Dolnikowski, G.; Palermo, N.J.; Rasmussen, H. Dietary fat increases vitamin D-3 absorption. J. Acad. Nutr. Diet. 2015, 115, 225–230. [Google Scholar] [CrossRef]
- Brown, M.J.; Ferruzzi, M.G.; Nguyen, M.L.; Cooper, D.A.; Eldridge, A.L.; Schwartz, S.J.; White, W.S. Carotenoid bioavailability is higher from salads ingested with full-fat than with fat-reduced salad dressings as measured with electrochemical detection. Am. J. Clin. Nutr. 2004, 80, 396–403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schweigert, F.J.; Bathe, K.; Chen, F.; Büscher, U.; Dudenhausen, J.W. Effect of the stage of lactation in humans on carotenoid levels in milk, blood plasma and plasma lipoprotein fractions. Eur. J. Nutr. 2004, 43, 39–44. [Google Scholar] [CrossRef] [PubMed]
- Esvelt, R.P.; Schnoes, H.K.; DeLuca, H.F. Vitamin D3 from rat skins irradiated in vitro with ultraviolet light. Arch. Biochem. Biophys. 1978, 188, 282–286. [Google Scholar] [CrossRef]
- Heaney, R.P.; Armas, L.A.; French, C. All-Source Basal Vitamin D Inputs Are Greater Than Previously Thought and Cutaneous Inputs Are Smaller. J. Nutr. 2013, 143, 571–575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karras, S.N.; Shah, I.; Petroczi, A.; Goulis, D.G.; Bili, H.; Papadopoulou, F.; Harizopoulou, V.; Tarlatzis, B.C.; Naughton, D.P. An observational study reveals that neonatal vitamin D is primarily determined by maternal contributions: Implications of a new assay on the roles of vitamin D forms. Nutr. J. 2013, 12, 77. [Google Scholar] [CrossRef] [Green Version]
- Maras, J.E.; Bermudez, O.I.; Qiao, N.; Bakun, P.J.; Boody-Alter, E.L.; Tucker, K.L. Intake of alpha-tocopherol is limited among US adults. J. Am. Diet. Assoc. 2004, 104, 567–575. [Google Scholar] [CrossRef]
- Sontag, T.J.; Parker, R.S. Influence of major structural features of tocopherols and tocotrienols on their omega-oxidation by tocopherol-omega-hydroxylase. J. Lipid Res. 2007, 48, 1090–1098. [Google Scholar] [CrossRef] [Green Version]
- Zingg, J.M.; Meydani, M.; Azzi, A. α-Tocopheryl phosphate—An active lipid mediator? Mol. Nutr. Food Res. 2010, 54, 679–692. [Google Scholar] [CrossRef]
- Ahsan, H.; Ahad, A.; Iqbal, J.; Siddiqui, W.A. Pharmacological potential of tocotrienols: A review. Nutr. Metab. 2014, 11, 52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rimbach, G.; Moehring, J.; Huebbe, P.; Lodge, J. Gene-Regulatory Activity of α-Tocopherol. Molecules 2010, 15, 1746–1761. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beck, M.A.; Levander, O.A. Dietary oxidative stress and the potentiation of viral infection. Annu. Rev. Nutr. 1998, 18, 93–116. [Google Scholar] [CrossRef]
- Arumugam, M.; Raes, J.; Pelletier, E.; Le Paslier, D.; Yamada, T.; Mende, D.R.; Fernandes, G.R.; Tap, J.; Bruls, T.; Batto, J.M.; et al. Enterotypes of the human gut microbiome. Nature 2011, 473, 174–180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shea, M.K.; Gundberg, C.M.; Meigs, J.B.; Dallal, G.E.; Saltzman, E.; Yoshida, M.; Jacques, P.F.; Booth, S.L. Gamma-carboxylation of osteocalcin and insulin resistance in older men and women. Am. J. Clin. Nutr. 2009, 90, 1230–1235. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, Y.S.; Hakeda, Y.; Takakura, N.; Kameda, T.; Hamaguchi, I.; Miyamoto, T.; Kakudo, S.; Nakano, T.; Kumegawa, M.; Suda, T. Tyro 3 Receptor Tyrosine Kinase and its Ligand, Gas6, Stimulate the Function of Osteoclasts. Stem Cells 1998, 16, 229–238. [Google Scholar] [CrossRef]
- Liu, A.Y.; Zheng, H.; Ouyang, G. Periostin, a multifunctional matricellular protein in inflammatory and tumor microenvironments. Matrix Biol. 2014, 37, 150–156. [Google Scholar] [CrossRef]
- Møller, P.; Loft, S. The Role of Antioxidants in the Prevention of Oxidative Damage to Nucleic Acids. In Oxidative Damage to Nucleic Acids; Evans, M.D., Cooke, M.S., Eds.; Springer: New York, NY, USA, 2007. [Google Scholar] [CrossRef]
- Du, J.; Cullen, J.J.; Buettner, G. Ascorbic acid: Chemistry, biology and the treatment of cancer. Biochim. Biophys. Acta 2012, 1826, 443–457. [Google Scholar] [CrossRef] [Green Version]
- Magnúsdóttir, S.; Ravcheev, D.; de Crécy-Lagard, V.; Thiele, I. Systematic genome assessment of B-vitamin biosynthesis suggests co-operation among gut microbes. Front. Genet. 2015, 6, 148. [Google Scholar] [CrossRef] [Green Version]
- Makarchikov, A. Vitamin B1: Metabolism and functions. Biochem. Suppl. Ser. B Biomed. Chem. 2009, 3, 116–128. [Google Scholar] [CrossRef]
- Pácal, L.; Kuricová, K.; Kaňková, K. Evidence for altered thiamine metabolism in diabetes: Is there a potential to oppose gluco- and lipotoxicity by rational supplementation? World J. Diabetes 2014, 5, 288–295. [Google Scholar] [CrossRef]
- Mehta, R.; Shangari, N.; O’Brien, P.J. Preventing cell death induced by carbonyl stress, oxidative stress or mitochondrial toxins with vitamin B anti-AGE agents. Mol. Nutr. Food Res. 2008, 52, 379–385. [Google Scholar] [CrossRef]
- Mimori, Y.; Katsuoka, H.; Nakamura, S. Thiamine therapy in Alzheimer’s disease. Metab. Brain Dis. 1996, 11, 89–94. [Google Scholar] [CrossRef]
- Vinh quoc Luong, K.; Nguyen, L.T.H. The Beneficial Role of Thiamine in Parkinson’s Disease: Preliminary Report. J. Neurol. Res. 2012, 2, 211–214. [Google Scholar] [CrossRef] [Green Version]
- Lienhart, W.D.; Gudipati, V.; Macheroux, P. The human flavoproteome. Arch. Biochem. Biophys. 2013, 535, 150–162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agte, V.V.; Paknikar, K.M.; Chiplonkar, S.A. Effect of nicotinic acid on zinc and iron metabolism. Biometals 1997, 10, 271–276. [Google Scholar] [CrossRef] [PubMed]
- Said, Z.M.; Subramanian, V.S.; Vaziri, N.D.; Said, H.M. Pyridoxine uptake by colonocytes: A specific and regulated carrier-mediated process. Am. J. Physiol. Physiol. 2008, 294, C1192–C1197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ueland, P.M.; Ulvik, A.; Rios-Avila, L.; Midttun, Ø.; Gregory, J.F. Direct and Functional Biomarkers of Vitamin B6 Status. Annu. Rev. Nutr. 2015, 35, 33–70. [Google Scholar] [CrossRef] [PubMed]
- Mahfouz, M.M.; Zhou, S.Q.; Kummerow, F. Vitamin B6 compounds are capable of reducing the superoxide radical and lipid peroxide levels induced by H2O2 in vascular endothelial cells in culture. Int. J. Vitam. Nutr. Res. 2009, 79, 218–229. [Google Scholar] [CrossRef]
- Matxain, J.M.; Ristilä, M.; Strid, Å.; Eriksson, L.A. Theoretical Study of the Antioxidant Properties of Pyridoxine. Phys. Chem. A 2006, 110, 13068–13072. [Google Scholar] [CrossRef] [PubMed]
- Salhany, J.M.; Schopfer, L.M. Pyridoxal 5′-phosphate binds specifically to soluble CD4 protein, the HIV-1 receptor. Implications for AIDS therapy. J. Biol. Chem. 1993, 268, 7643–7645. [Google Scholar] [CrossRef]
- Oka, T. Modulation of gene expression by vitamin B6. Nutr. Res. Rev. 2001, 14, 257–266. [Google Scholar] [CrossRef] [PubMed]
- Robinson, K.; Arheart, K.; Refsum, H.; Brattström, L.; Boers, G.; Ueland, P.; Rubba, P.; Palma-Reis, R.; Meleady, R.; Daly, L.; et al. Low Circulating Folate and Vitamin B6 Concentrations. Risk Factors Stroke, Peripher. Vasc. Dis. Coron. Artery Dis. 1998, 97, 437–443. [Google Scholar]
- Selhub, J. The many facets of hyperhomocysteinemia: Studies from the Framingham cohorts. J. Nutr. 2006, 136, 1726S–1730S. [Google Scholar] [CrossRef] [Green Version]
- Rossi, M.; Amaretti, A.; Raimondi, S. Folate production by probiotic bacteria. Nutrients 2011, 3, 118–134. [Google Scholar] [CrossRef] [Green Version]
- Stover, P.J. Polymorphisms in 1-carbon metabolism, epigenetics and folate-related pathologies. J. Nutr. Nutr. 2011, 4, 293–305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luchsinger, J.A.; Tang, M.X.; Miller, J.; Green, R.; Mayeux, R. Relation of higher folate intake to lower risk of Alzheimer disease in the elderly. Arch. Neurol. 2007, 64, 86–92. [Google Scholar] [CrossRef] [Green Version]
- Johnson, J.E., Jr.; Reyes, F.E.; Polaski, J.T.; Batey, R.T. B12 cofactors directly stabilize an mRNA regulatory switch. Nature 2012, 492, 133–137. [Google Scholar] [CrossRef] [Green Version]
- Safi, J.; Joyeux, L.; Chalouhi, G.E. Periconceptional folate deficiency and implications in neural tube defects. J. Pregnancy 2012, 2012, 295083. [Google Scholar] [CrossRef]
- Bailey, R.L.; Looker, A.C.; Lu, Z.; Fan, R.; Eicher-Miller, H.A.; Fakhouri, T.H.; Gahche, J.J.; Weaver, C.M.; Mills, J.L. B-vitamin status and bone mineral density and risk of lumbar osteoporosis in older females in the United States. Am. J. Clin. Nutr. 2015, 102, 687–694. [Google Scholar] [CrossRef] [Green Version]
- Houston, D.K.; Johnson, M.A.; Nozza, R.J.; Gunter, E.W.; Shea, K.J.; Cutler, G.M.; Edmonds, J.T. Age-related hearing loss, vitamin B-12, and folate in elderly women. Am. J. Clin. Nutr. 1999, 69, 564–571. [Google Scholar] [CrossRef] [Green Version]
- Brunetti, B. Recent Advances in Electroanalysis of Vitamins. Electroanalysis 2016, 28, 1930–1942. [Google Scholar] [CrossRef]
- Baś, B.; Jakubowska, M.; Górski, Ł. Application of renewable silver amalgam annular band electrode to voltammetric determination of vitamins C, B1 and B2. Talanta 2011, 84, 1032–1037. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Du, D. Differential pulse voltammetry determination of ascorbic acid with ferrocene-l-cysteine self-assembled supramolecular film modified electrode. Sens. Actuators B Chem. 2004, 97, 373–378. [Google Scholar] [CrossRef]
- Sutton, J.; Shabangi, M. Activation of the electrochemical properties of thiamin and its phosphate esters in acidic solutions. J. Electroanal. Chem. 2004, 571, 283–287. [Google Scholar] [CrossRef]
- Wang, J. Adsorptive Stripping Voltammetric Studies of Biologically-Significant Compounds. Anal. Chem. 1985, 57, 158–162. [Google Scholar] [CrossRef]
- Amin, D. Application of differential pulse polarography to the assay of ascorbic acid. Microchem. J. 1983, 28, 174–179. [Google Scholar] [CrossRef]
- Barek, J.; Fischer, J.; Navratil, T.; Peckova, K.; Yosypchuk, B. Silver Solid Amalgam Electrodes as Sensors for Chemical Carcinogens. Sensors 2006, 6, 445–452. [Google Scholar] [CrossRef] [Green Version]
- Yosypchuk, B.; Novotný, L. Determination of iodates using silver solid amalgam electrodes. Electroanalysis 2002, 14, 1138–1142. [Google Scholar] [CrossRef]
- Wring, S.A.; Hart, J.P.; Knight, D.W. Voltammetric behaviour of all-trans-retinol [vitamin A1] at a glassy carbon electrode and its determination in human serum using high-performance liquid chromatography with electrochemical detection. Analyst 1988, 113, 1785–1789. [Google Scholar] [CrossRef] [PubMed]
- Webster, R.D. Voltammetry of the liposoluble vitamins [A, D, e and K] in organic solvents. Chem. Rec. 2012, 12, 188–200. [Google Scholar] [CrossRef] [PubMed]
- Lovander, M.D.; Lyon, J.D.; Parr, D.L.; Wang, J.; Parke, B.; Leddy, J. Critical Review—Electrochemical Properties of 13 Vitamins: A Critical Review and Assessment. J. Electrochem. Soc. 2018, 165, G18–G49. [Google Scholar] [CrossRef]
- Fuliaş, A.; Vlase, G.; Vlase, T.; Oneţiu, D.; Doca, N.; Ledeţi, I. Thermal degradation of B-group vitamins: B-1, B-2 and B-6. J. Therm. Anal. Calorim. 2014, 118, 1033. [Google Scholar] [CrossRef]
- Riaz, M.N.; Asif, M.; Ali, R. Stability of Vitamins during Extrusion. Crit. Rev. Food Sci. Nutr. 2009, 49, 361. [Google Scholar] [CrossRef] [PubMed]
- Lešková, E.; Kubíková, J.; Kováčiková, E.; Košická, M.; Porubská, J.; Holčíková, K. Vitamin losses: Retention during heat treatment and continual changes expressed by mathematical models. J. Food Compos. Anal. 2006, 19, 252. [Google Scholar] [CrossRef]
- Mairanovsky, V.G.; Engovatov, A.A.; Ioffe, N.T.; Samokhvalov, G.I. Electron-donor and electron-acceptor properties of carotenoids: Electrochemical study of carotenes. J. Electroanal. Chem. Interfacial Electrochem. 1975, 66, 123. [Google Scholar] [CrossRef]
- Ziyatdinova, G.; Giniyatova, E.; Budnikov, H. Cyclic Voltammetry of Retinol in Surfactant Media and Its Application for the Analysis of Real Samples. Electroanalysis 2010, 22, 2708–2713. [Google Scholar] [CrossRef]
- Chan, Y.Y.; Yue, Y.; Webster, R.D. Voltammetric studies on vita-mins D2 and D3 in organic solvents. Electrochim. Acta 2014, 138, 400–409. [Google Scholar] [CrossRef]
- Đurović, A.; Stojanović, Z.; Kravić, S.; Kos, J.; Richtera, L. Electrochemical Determination of Vitamin D3 in Pharmaceutical Products by Using Boron Doped Diamond Electrode. Electroanalysis 2020, 32, 741–748. [Google Scholar] [CrossRef]
- Mendez, J.H.; Perez, A.S.; Zamarreño, M.D.; Garcia, M.H. Voltammetric determination of vitamin D3 with a rotating glassy carbon electrode. J. Pharm. Biomed. Anal. 1988, 6, 737–741. [Google Scholar] [CrossRef]
- Kahya, Ş.E.; Cittan, M.; Çelik, A. Electrochemical Behavior of Cholecalciferol on a Multiwalled Carbon Nanotube Modified Glassy Carbon Electrode. Sci. J. 2018, 39, 1081–1088. [Google Scholar] [CrossRef] [Green Version]
- Macpherson, J.V. A practical guide to using boron doped diamond in electrochemical research. Phys. Chem. Chem. Phys. 2015, 17, 2935–2949. [Google Scholar] [CrossRef]
- Hart, J.P.; Norman, M.D.; Lacey, C.J. Voltammetric behaviour of vitamins D2 and D3 at a glassy carbon electrode and their determination in pharmaceutical products by using liquid chromatography with amperometric detection. Analyst 1992, 117, 1441. [Google Scholar] [CrossRef]
- Cincotto, F.H.; Canevari, T.C.; Machado, S.A. Highly sensitive electrochemical sensor for determination of vitamin D in mixtures of water-ethanol. Electroanalysis 2014, 26, 2783. [Google Scholar] [CrossRef]
- OHammerich, S.B. The Anodic Oxidation of Oxygen-Containing Compounds. In Org. Electrochem., 3rd ed.; Lund, H., Baizer, M.M., Eds.; Marcel Dekker: New York, NY, USA, 1991; pp. 615–657. [Google Scholar]
- Webster, R.D. Electrochemical and Spectroscopic Characterization of Oxidized Intermediate Forms of Vitamin E. J. Phys. Chem. B 2011, 115, 4244–4250. [Google Scholar] [CrossRef] [PubMed]
- Ha, Y.L.; Csallany, A.S. α-tocopherol oxidation mediated by superoxide anion [O2−]. II. Identification of the stable α-tocopherol oxidation products. Biochim. Biophys. Acta 1970, 201, 1–8. [Google Scholar] [CrossRef]
- Tan, Y.S.; Chen, S.; Hong, W.M.; Kan, J.M.; Kwek, E.S.H.; Lim, S.Y.; Lim, Z.H.; Tessensohn, M.E.; Zhang, Y.; Webster, R.D. The role of low levels of water in the electrochemical oxidation of α-tocopherol [vitamin E] and other phenols in acetonitrile. Phys. Chem. Chem. Phys. 2011, 13, 12745–12754. [Google Scholar] [CrossRef]
- Lee, S.B.; Willis, A.C.; Webster, R.D. Synthesis of the Phenoxonium Cation of an α-Tocopherol Model Compound Crystallized with Non-Nucleophilic [B[C6F5]4]− and [CB11H6Br6]− Anions. J. Org. Chem. 2005, 70, 10466–10473. [Google Scholar] [CrossRef]
- Williams, L.L.; Webster, R.D. Electrochemically Controlled Chemically Reversible Transformation of α-Tocopherol [Vitamin E] into Its Phenoxonium Cation. J. Am. Chem. Soc. 2004, 126, 12441–12450. [Google Scholar] [CrossRef]
- Costentin, C. Electrochemical Approach to the Mechanistic Study of Proton-Coupled Electron Transfer. Chem. Rev. 2008, 108, 2145–2179. [Google Scholar] [CrossRef]
- Webster, R.D. Electrochemical and Spectroscopic Characterization of Oxidized Intermediate Forms of Vitamin E. Molecules 2022, 27, 6194. [Google Scholar] [CrossRef] [PubMed]
- Peng, H.M.; Webster, R.D. Investigation into phenoxonium cations produced during the electrochemical oxidation of chroman-6-ol and dihydrobenzofuran-5-ol substituted compounds. J. Org. Chem. 2008, 73, 2169–2175. [Google Scholar] [CrossRef]
- Malyszko, J.; Karbarz, M. Electrochemical oxidation of trolox and alpha-tocopherol in acetic acid: A comparative study. J. Electroanal. Chem. 2006, 595, 136–144. [Google Scholar] [CrossRef]
- MF Marcus, M.D.H. Redox behavior of .alpha.-tocopherol and model compounds. II. Ring opening of 8a-hydroxy-2,2,5,7,8-pentamethyl-6-chromanone. J. Org. Chem. 1970, 35, 2185–2190. [Google Scholar] [CrossRef]
- WDürckheimer, L.A.C. The Chemistry of 9-Hydroxy-α-tocopherone, a Quinone Hemiacetal. J. Am. Chem. Soc. 1964, 86, 4388–4393. [Google Scholar] [CrossRef]
- TOkugaki, M.; Kasuno, K.; Maeda, S.K. Redox reactions of vitamin E in 1,2-dichloroethane with oxidants in water at the water/1,2-dichloroethane interface. J. Electroanal. Chem. 2010, 639, 67–76. [Google Scholar] [CrossRef]
- Hui, Y.; Chng, E.L.K.; Chua, L.P.L.; Liu, W.Z.; Webster, R.D. Voltammetric Method for Determining the Trace Moisture Content of Organic Solvents Based on Hydrogen-Bonding Interactions with Quinones. J. Am. Chem. Soc. 2009, 131, 1523–1534. [Google Scholar] [CrossRef]
- Hui, Y.; Webster, R.D. Absorption of Water into Organic Solvents Used for Electrochemistry under Conventional Operating Conditions. Anal. Chem. 2011, 83, 976–981. [Google Scholar] [CrossRef]
- Ganjali, M.R.; Nejad, F.G.; Beitollahi, H.; Jahani, S.; Rezapour, M.; Larijani, B. Highly sensitive voltammetric sensor for determination of ascorbic acid using graphite screen printed electrode modified with ZnO/Al2O3 nanocomposite. Int. J. Electrochem. Sci. 2017, 12, 3231–3240. [Google Scholar] [CrossRef]
- Moreno, P.; Salvado, V. Determination of eight water- and fat-soluble vitamins in multi-vitamin pharmaceutical formulations by high-performance liquid chromatography. J. Chromatogr. A 2000, 870, 207–215. [Google Scholar] [CrossRef]
- Raoof, J.B.; Ojani, R.; Beitollahi, H.; Hossienzadeh, R. Electrocatalytic Determination of Ascorbic Acid at the Surface of 2,7-Bis[ferrocenyl ethyl]fluoren-9-one Modified Carbon Paste Electrode. Electroanalysis 2006, 18, 1193. [Google Scholar] [CrossRef]
- Pisoschi, A.M.; Pop, A.; Serban, A.I.; Fafaneata, C. Electrochemical methods for ascorbic acid determination. Electrochim. Acta 2014, 11, 443–460. [Google Scholar] [CrossRef]
- Rueda, M.; Aldaz, A.; Sanchez-Burgos, F. Oxidation of L-ascorbic acid on a gold electrode. Electrochim. Acta 1978, 23, 419–424. [Google Scholar] [CrossRef]
- Nezamzadeh, A.; Amini, M.K.; Faghihian, H. Square-wave voltammetric determination of ascorbic acid based on its electrocatalytic oxidation at zeolite-modified carbon-paste electrodes. Int. J. Electrochem. Sci. 2007, 2, 583–594. [Google Scholar]
- Oni, J.; Westbroek, P.; Nyokong, T. Voltammetric detection of vitamin B1 at carbon paste electrodes and its determination in tablets. Electroanalysis 2002, 14, 1165–1168. [Google Scholar] [CrossRef]
- Tan, S.L.J.; Webster, R.D. Electrochemically Induced Chemically Reversible Proton-Coupled Electron Transfer Reactions of Riboflavin (Vitamin B2). J. Am. Chem. Soc. 2021, 134, 5954–5964. [Google Scholar] [CrossRef]
- Ganesamurthi, J.; Shanmugam, R.; Chen, S.M. Electrochemical Evaluation of Vitamin B2 through a Portable Electrochemical Sensor Based on Binary Transition Metal Oxide in Various Biological Vegetable Samples. J. Electrochem. Soc. 2022, 169, 096505. [Google Scholar] [CrossRef]
- Lee, J.H.Q.; Yue, Y.; Ganguly, R.; Webster, R.D. Electrochemical Study of Pyridoxine (Vitamin B6) in Acetonitrile. ChemElectroChem 2015, 2, 412–420. [Google Scholar] [CrossRef]
- Liu, S.Q.; Sun, W.H.; Li, L.C.; Li, H.; Wang, X.L. Electrocatalytic oxidation and voltammetric determination of vitamin B6 by a ssDNA-modified Electrode. Int. J. Electrochem. Sci. 2012, 7, 324–337. [Google Scholar] [CrossRef] [Green Version]
- ANezamzadeh-Ejhieh, P.P. Voltammetric determination of riboflavin based on electrocatalytic oxidation at zeolite-modified carbon paste electrodes. J. Ind. Eng. Chem. 2014, 20, 2146–2152. [Google Scholar] [CrossRef]
- Lauw, S.J.; Ganguly, R.; Webster, R.D. The electrochemical reduction of biotin [vitamin B7] and conversion into its ester. Electrochim. Acta 2013, 114, 514. [Google Scholar] [CrossRef]
- Mirmoghtadaie, L.; Ensafi, A.A.; Kadivar, M.; Shahedi, M.; Ganjali, M.R. Highly selective, sensitive and fast determination of folic acid in food samples using new electrodeposited gold nanoparticles by differential pulse voltammetry. Int. J. Electrochem. Sci. 2013, 8, 3755–3767. [Google Scholar] [CrossRef]
- Le Gall, A.C.; van den Berg, C.M. Determination of folic acid in sea water using adsorptive cathodic stripping voltammetry. Anal. Chim. Acta 1993, 282, 459. [Google Scholar] [CrossRef]
- Wei, S.; Zhao, F.; Xu, Z.; Zeng, B. Voltammetric Determination of Folic Acid with a Multi-Walled Carbon Nanotube-Modified Gold Electrode. Microchim. Acta 2006, 152, 285. [Google Scholar] [CrossRef]
- Brainina, K.Z.; Galperin, L.G.; Vikulova, E.V. Electrochemistry of metal nanoparticles: The effect of substrate. J. Solid. State Electrochem. 2012, 16, 2357. [Google Scholar] [CrossRef]
- Lexa, D.; Sayeant, J.M.; Zickler, J. The electrochemistry of vitamin B12. Acc. Chem. Res. 1983, 16, 235. [Google Scholar] [CrossRef]
- Kumari, A.; Vyas, V.; Kumar, S. Advances in electrochemical and optical sensing techniques for vitamins detection: A review. ISSS J. Micro Smart Syst. 2022, 11, 329–341. [Google Scholar] [CrossRef]
- Žabčíková, S.; Mikysek, T.; Červenka, L.; Sýs, M. Electrochemical study and determination of all-trans-retinol at carbon paste electrode modified by a surfactant. Food Technol. Biotechnol. 2018, 56, 337–343. [Google Scholar] [CrossRef]
- Sarkar, T.; Bohidar, H.B.; Solanki, P.R. Carbon dots-modified chitosan based electrochemical biosensing platform for detection of vitamin D. Int. J. Biol. Macromol. 2018, 109, 687–697. [Google Scholar] [CrossRef]
- Chauhan, D.; Gupta, P.K.; Solanki, P.R. Electrochemical immunosensor based on magnetite nanoparticles incorporated electrospun polyacrylonitrile nanofibers for Vitamin-D[3] detection. Mater. Sci. Eng. C Mater. Biol. Appl. 2018, 93, 145–156. [Google Scholar] [CrossRef]
- Canevari, T.C.; Cincotto, F.H.; Landers, R.; Machado, S.A. Synthesis and characterization of α-nickel [II] hydroxide particles on organic-inorganic matrix and its application in a sensitive electrochemical sensor for vitamin D determination. Electrochim. Acta 2014, 147, 688–695. [Google Scholar] [CrossRef]
- Anusha, T.; Bhavani, K.S.; Kumar, J.S.; Brahman, P.K. Designing and fabrication of electrochemical nanosensor employing fullerene-C60 and bimetallic nanoparticles composite film for the detection of vitamin D3 in blood samples. Diam. Relat. Mater. 2020, 104, 107761. [Google Scholar] [CrossRef]
- Kia, S.; Bahar, S.; Bohlooli, S. A novel electrochemical sensor based on plastic antibodies for vitamin D3 detection in real samples. IEEE Sens. J. 2019, 19, 4752–4757. [Google Scholar] [CrossRef]
- Chauhan, D.; Yadav, A.K.; Solanki, P.R. Carbon cloth-based immunosensor for detection of 25-hydroxy vitamin D[3]. Mikrochim Acta 2021, 188, 145. [Google Scholar] [CrossRef]
- Parvin, M.H.; Azizi, E.; Arjomandi, J.; Lee, J.Y. Highly sensitive and selective electrochemical sensor for detection of vitamin B12 using an Au/PPy/FMNPs@TD-modified electrode. Sens. Actuat B Chem. 2018, 261, 335–344. [Google Scholar] [CrossRef]
- Kastrati, G.; Jashari, G.; Sýs, M.; Švecová, B.; Arbneshi, T.; Metelka, R.; Bílková, Z.; Korecká, L. Simultaneous determination of vitamin E and vitamin K in food supplements using adsorptive stripping square-wave voltammetry at glassy carbon electrode. Appl. Sci. 2020, 10, 4759. [Google Scholar] [CrossRef]
- Robledo, S.N.; Zachetti, V.G.L.; Zon, M.A.; Fernández, H. Quantitative determination of tocopherols in edible vegetable oils using electrochemical ultra-microsensors combined with chemometric tools. Talanta 2013, 116, 964–971. [Google Scholar] [CrossRef] [PubMed]
- Antunes, M.C.; Simão, J.J.; Duarte, A.C.; Tauler, R. Multivariate curve resolution of overlapping voltammetric peaks: Quantitative analysis of binary and quaternary metal mixtures. Analyst 2002, 127, 809–817. [Google Scholar] [CrossRef]
- Ni, L.; Wang, S.K. Applications of the Voltammetry. Anal. Chim. Acta 2000, 412, 185–193. [Google Scholar] [CrossRef]
- Gul, W.; Anwar, Z.; Qadeer, K.; Perveen, S.; Ahmad, I. Methods of Analysis of Vitamin K: A Review. J. Pharm. Pharm. Sci. 2015, 3, 14–22. [Google Scholar]
- Sýs, M.; Jashari, G.; Švecová, B.; Arbneshi, T.; Metelka, R. Determination of vitamin K1 using square wave adsorptive stripping voltammetry at solid glassy carbon electrode. J. Electroanal. Chem. 2018, 821, 10–15. [Google Scholar] [CrossRef]
- Jedlińska, K.; Strus, M.; Baś, B. A new electrochemical sensor with the refreshable silver liquid amalgam film multi-electrode for sensitive voltammetric determination of vitamin K2 [menaquinone]. Electrochim. Acta 2018, 265, 355–363. [Google Scholar] [CrossRef]
- Tabassum, R.; Gupta, B.D. Simultaneous estimation of vitamin K1 and heparin with low limit of detection using cascaded channels fiber optic surface plasmon resonance. Biosens. Bioelectron. 2016, 86, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Rostami-Javanroudi, S.; Babakhanian, A. New electrochemical sensor for direct quantification of vitamin K in human blood serum. Microchem. J. 2021, 163, 105716. [Google Scholar] [CrossRef]
- Zhang, Z.; Xu, J.; Wen, Y.; Zhang, J.; Ding, W. The electro-synthesized imprinted PEDOT film as a simple voltammetric sensor for highly sensitive and selective detection of vitamin K3 in poultry drug samples. Synth. Met. 2017, 230, 79–88. [Google Scholar] [CrossRef]
- Sýs, M.; Žabcíková, S.; Cervenka, L.; Vytras, K. Adsorptive stripping voltammetry in lipophilic vitamins determination. Potravinarstvo 2016, 10, 260–264. [Google Scholar] [CrossRef]
- Shahamirifard, S.A.; Ghaedi, M. A new electrochemical sensor for simultaneous determination of arbutin and vitamin C based on hydroxyapatite-ZnO-Pd nanoparticles modified carbon paste electrode. Biosens. Bioelectron. 2019, 114, 111474. [Google Scholar] [CrossRef]
- Li, F.; Li, J.; Feng, Y.; Yang, L.; Du, Z. Electrochemical behavior of graphene doped carbon paste electrode and its application for sensitive determination of ascorbic acid. Sensors Actuators B Chem. 2011, 157, 110–114. [Google Scholar] [CrossRef]
- Stefan-van Staden, R.I.; Balasoiu, S.C.; van Staden, J.F.; Radu, G.L. Microelectrodes based on porphyrins for the determination of ascorbic acid in pharmaceutical samples and beverages. J. Porphyr. Phthalocyanines 2012, 16, 809–816. [Google Scholar] [CrossRef]
- Zhang, R.; Liu, S.; Wang, L.; Yang, G. Electroanalysis of ascorbic acid using poly [bromocresol purple] film modified glassy carbon electrode. Measurement 2013, 46, 1089–1093. [Google Scholar] [CrossRef]
- Ensafi, A.A.; Taei, M.; Khayamian, T. A differential pulse voltammetric method for simultaneous determination of ascorbic acid, dopamine, and uric acid using poly [3-[5-chloro-2-hydroxyphenylazo]-4, 5-dihydroxynaphthalene-2, 7-disulfonic acid] film modified glassy carbon electrode. J. Electroanal. Chem. 2009, 633, 212–220. [Google Scholar] [CrossRef]
- Kul, D.; Ghica, M.E.; Pauliukaite, R.; Brett, C.M. A novel amperometric sensor for ascorbic acid based on poly [Nile blue A] and functionalised multi-walled carbon nanotube modified electrodes. Talanta 2013, 111, 76–84. [Google Scholar] [CrossRef]
- Lin, K.C.; Yeh, P.C.; Chen, S.M. Electrochemical determination of ascorbic acid using poly [xanthurenic acid] and multi-walled carbon nanotubes. Int. J. Electrochem. Sci. 2012, 7, 12752–12763. [Google Scholar]
- Amayreh, M.; Hourani, W.; Hourani, M.K. Voltammetric determination of ascorbic acid in pharmaceutical formulations using modified iodine-coated platinum electrode. Vitae 2021, 28. [Google Scholar] [CrossRef]
- Noroozifar, M.; Motlagh, M.K.; Tavakoli, H. Determination of ascorbic acid by a modified multiwall carbon nanotube paste electrode using cetrimonium iodide/iodine. Turkish J. Chem. 2012, 36, 645–658. [Google Scholar] [CrossRef]
- Ijeri, V.S.; Algarra, M.; Martins, A. Electrocatalytic determination of vitamin C using calixarene modified carbon paste electrodes. Electroanalysis 2004, 16, 2082–2086. [Google Scholar] [CrossRef]
- Zare, H.R.; Nasirizadeh, N.; Ardakani, M.M. Electrochemical properties of a tetrabromo-p-benzoquinone modified carbon paste electrode. Application to the simultaneous determination of ascorbic acid, dopamine and uric acid. J. Electroanal. Chem. 2005, 577, 25–33. [Google Scholar] [CrossRef]
- Mazloum-Ardakani, M.; Habibollahi, F.; Zare, H.R.; Naeimi, H.; Nejati, M. Electrocatalytic oxidation of ascorbic acid at a 2, 2′-[1,8-octanediylbisnitriloethylidine]-bis-hydroquinone modified carbon paste electrode. J. Appl. Electrochem. 2009, 39, 1117–1124. [Google Scholar] [CrossRef]
- Thiagarajan, S.; Tsai, T.H.; Chen, S.M. Easy modification of glassy carbon electrode for simultaneous determination of ascorbic acid, dopamine and uric acid. Biosens. Bioelectron. 2009, 24, 2712–2715. [Google Scholar] [CrossRef]
- Wang, G.; Sun, J.; Zhang, W.; Jiao, S.; Fang, B. Simultaneous determination of dopamine, uric acid and ascorbic acid with LaFeO3 nanoparticles modified electrode. Microchim. Acta 2009, 164, 357–362. [Google Scholar] [CrossRef]
- Sun, C.L.; Lee, H.H.; Yang, J.M.; Wu, C.C. The simultaneous electrochemical detection of ascorbic acid, dopamine, and uric acid using graphene/size-selected Pt nanocomposites. Biosens. Bioelectron. 2011, 26, 3450–3455. [Google Scholar] [CrossRef]
- Zhang, B.; Huang, D.; Xu, X.; Alemu, G.; Zhang, Y.; Zhan, F.; Shen, Y.; Wang, M. Simultaneous electrochemical determination of ascorbic acid, dopamine and uric acid with helical carbon nanotubes. Electrochim. Acta 2013, 91, 261–266. [Google Scholar] [CrossRef]
- Shi, W.; Liu, C.; Song, Y.; Lin, N.; Zhou, S.; Cai, X. An ascorbic acid amperometric sensor using over-oxidized polypyrrole and palladium nanoparticles composites. Biosens. Bioelectron. 2012, 38, 100–106. [Google Scholar] [CrossRef]
- Keyvanfard, M.; Shakeri, R.; Karimi-Maleh, H.; Alizad, K. Highly selective and sensitive voltammetric sensor based on modified multiwall carbon nanotube paste electrode for simultaneous determination of ascorbic acid, acetaminophen and tryptophan. Mater. Sci. Eng. C 2012, 33, 811–816. [Google Scholar] [CrossRef] [PubMed]
- Deng, P.; Xu, Z.; Li, J. Simultaneous determination of ascorbic acid and rutin in pharmaceutical preparations with electrochemical method based on multi-walled carbon nanotubes–chitosan composite film modified electrode. J. Pharm. Biomed. Anal. 2013, 76, 234–242. [Google Scholar] [CrossRef] [PubMed]
- Li, N.B.; Ren, W.; Luo, H.Q. Simultaneous voltammetric measurement of ascorbic acid and dopamine on poly [caffeic acid]-modified glassy carbon electrode. J. Solid. State Electrochem. 2008, 12, 693–699. [Google Scholar] [CrossRef]
- Habibi, B.; Jahanbakhshi, M.; Pournaghi-Azar, M.H. Differential pulse voltammetric simultaneous determination of acetaminophen and ascorbic acid using singlewalled carbon nanotube-modified carbon–ceramic electrode. Anal. Biochem. 2011, 411, 167–175. [Google Scholar] [CrossRef]
- Sripriya, R.; Chandrasekaran, M.; Noel, M. Voltammetric analysis of hydroquinone, ascorbic acid, nitrobenzene and benzyl chloride in aqueous, non-aqueous, micellar and microemulsion media. Colloid Polym. Sci. 2006, 285, 39–48. [Google Scholar] [CrossRef]
- Kalimuthu, P.; John, S.A. Solvent dependent dimercaptothiadiazole monolayers on gold electrode for the simultaneous determination of uric acid and ascorbic acid. Electrochem. Commun. 2005, 7, 1271–1276. [Google Scholar] [CrossRef]
- Wang, M.; Xu, X.; Gao, J. Voltammetric studies of a novel bicopper complex modified glassy carbon electrode for the simultaneous determination of dopamine and ascorbic acid. J. Appl. Electrochem. 2007, 37, 705–710. [Google Scholar] [CrossRef]
- Raoof, J.B.; Kiani, A.; Ojani, R.; Valiollahi, R.; Rashid-Nadimi, S. Simultaneous voltammetric determination of ascorbic acid and dopamine at the surface of electrodes modified with self-assembled gold nanoparticle films. J. Solid. State Electrochem. 2010, 14, 1171–1176. [Google Scholar] [CrossRef]
- Yogeswaran, U.; Thiagarajan, S.; Chen, S.M. Nanocomposite of functionalized multiwall carbon nanotubes with nafion, nano platinum, and nano gold biosensing film for simultaneous determination of ascorbic acid, epinephrine, and uric acid. Anal. Biochem. 2007, 365, 122–131. [Google Scholar] [CrossRef] [PubMed]
- Arenas, L.T.; Villis, P.C.; Arguello, J.; Landers, R.; Benvenutti, E.V.; Gushikem, Y. Niobium oxide dispersed on a carbon–ceramic matrix, SiO2/C/Nb2O5, used as an electrochemical ascorbic acid sensor. Talanta 2010, 83, 241–248. [Google Scholar] [CrossRef]
- Langley, C.E.; Šljukić, B.; Banks, C.E.; Compton, R.G. Manganese dioxide graphite composite electrodes: Application to the electroanalysis of hydrogen peroxide, ascorbic acid and nitrite. Anal. Sci. 2007, 23, 165–170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Freiha, B.A. Evaluation of differential pulse voltammetry at carbon electrodes. Talanta 1983, 30, 317–322. [Google Scholar] [CrossRef] [PubMed]
- Bradshaw, M.P.; Prenzler, P.D.; Scollary, G.R. Square-Wave Voltammetric Determination of Hydrogen Peroxide Generated from the Oxidation of Ascorbic Acid in a Model Wine Base. Electroanalysis 2002, 14, 546–550. [Google Scholar] [CrossRef]
- Yilmaz, S.; Sadikoglu, M.; Saglikoglu, G.; Yagmur, S.; Askin, G. Determination of ascorbic acid in tablet dosage forms and some fruit juices by DPV. Int. J. Electrochem. Sci. 2008, 3, 1534–1542. [Google Scholar] [CrossRef]
- Erdurak-Kiliç, C.S.; Uslu, B.; Dogan, B.; Ozgen, U.; Ozkan, S.A.; Coskun, M. Anodic voltammetric behavior of ascorbic acid and its selective determination in pharmaceutical dosage forms and some Rosa species of Turkey. J. Anal. Chem. 2006, 61, 1113–1120. [Google Scholar] [CrossRef]
- Karastogianni, S.; Diamantidou, D.; Girousi, S. Selective voltammetric detection of ascorbic acid from rosa canina on a modified graphene oxide paste electrode by a manganese[II] complex. Biosensors 2021, 11, 294. [Google Scholar] [CrossRef]
- Farida, A.N.; Fitriany, E.; Baktir, A.; Kurniawan, F.; Harsini, M. Voltammetric Study of Ascorbic Acid Using Polymelamine/Gold Nanoparticle Modified Carbon Paste Electrode. IOP Conf. Ser. Earth Environ. Sci. 2019, 217, 12004. [Google Scholar] [CrossRef]
- Škugor Rončević, I.; Skroza, D.; Vrca, I.; Kondža, A.M.; Vladislavić, N. Development and Optimization of Electrochemical Method for Determination of Vitamin C. Chemosensors 2022, 10, 283. [Google Scholar] [CrossRef]
- Tyszczuk-Rotko, K. New voltammetric procedure for determination of thiamine in commercially available juices and pharmaceutical formulation using a lead film electrode. Food Chem. 2012, 134, 1239–1243. [Google Scholar] [CrossRef]
- An, Q.W.; Ang, N.Y.; Yongkang, Y.E. Electrochemical Behavior of Thiamine on a Self-Assembled Gold Electrode and Its Square-Wave Voltammetric Determination in Pharmaceutical Preparations. Anal. Sci. 2002, 18, 413–416. [Google Scholar] [CrossRef]
- Brahman, P.K.; Dar, R.A.; Pitre, K.S. DNA-functionalized electrochemical biosensor for detection of vitamin B1 using electrochemically treated multiwalled carbon nanotube paste electrode by voltammetric methods. Sens. Actuators B Chem. 2013, 177, 807–812. [Google Scholar] [CrossRef]
- Shiu, K.K.; Shi, K. Selective determination of vitamin B2 at electrochemically activated glassy carbon electrode. Electroanalysis 2000, 12, 134–139. [Google Scholar] [CrossRef]
- Gorton, L.; Johansson, G. Cyclic voltammetry of FAD adsorbed on graphite, glassy carbon, platinum and gold electrodes. Electroanal. Chem. 1980, 113, 151. [Google Scholar] [CrossRef]
- Mikheeva, E.V.; Martynyuk, O.A.; Slepchenko, G.B.; Anisimova, L.S. Study of the voltammetric behavior of vitamin B 2 and the development of a procedure for its determination in breast milk. J. Anal. Chem. 2009, 64, 731–734. [Google Scholar] [CrossRef]
- Mirceski, V.; Smarzewska, S.; Guziejewski, D. Measuring the Electrode Kinetics of Vitamin B2 at a Constant Time Window of a Square Wave Voltammetric Experiment. Electroanalysis 2016, 28, 385–393. [Google Scholar] [CrossRef]
- Nie, T.; Zhang, K.; Xu, J.; Lu, L.; Bai, L. A facile one-pot strategy for the electrochemical synthesis of poly [3, 4-ethylenedioxythiophene]/Zirconia nanocomposite as an effective sensing platform for vitamins B2, B6 and C. J. Electroanal. Chem. 2014, 717, 1–9. [Google Scholar] [CrossRef]
- Negut, C.C.; Stefanov, C.; Gugoasa, L.A.D.; van Staden, J.K.F. Rapidly renewable graphite paste electrode modified with 5,10,15,20-tetrakis[4-methoxyphenyl]-21H,23H-porphine cobalt[II] for electrochemical determination of nicotinic acid. J. Electroanal. Chem. 2020, 863, 114063. [Google Scholar] [CrossRef]
- Wang, X.; Yang, N.; Wan, Q. Cyclic voltammetric response of nicotinic acid and nicotinamide on a polycrystalline gold electrode. Electrochim. Acta 2006, 52, 361–368. [Google Scholar] [CrossRef]
- Yang, N.; Wang, X. Thin self-assembled monolayer for voltammetrically monitoring nicotinic acid in food. Colloids Surfaces B Biointerfaces 2008, 61, 277–281. [Google Scholar] [CrossRef]
- Brunetti, B.; Desimoni, E. Voltammetric determination of vitamin B6 in food samples and dietary supplements. J. Food Compos. Anal. 2014, 33, 155–160. [Google Scholar] [CrossRef]
- Gholivand, M.B.; Jalalvand, A.R.; Goicoechea, H.C.; Paimard, G.; Skov, T. Surface exploration of a room-temperature ionic liquid-chitin composite film decorated with electrochemically deposited PdFeNi trimetallic alloy nanoparticles by pattern recognition: An elegant approach to developing a novel biotin biosensor. Talanta 2015, 131, 249–258. [Google Scholar] [CrossRef]
- Buzid, A.; McGlacken, G.P.; Glennon, J.D.; Luong, J.H.T. Electrochemical Sensing of Biotin Using Nafion-Modified Boron-Doped Diamond Electrode. ACS Omega 2018, 3, 7776–7782. [Google Scholar] [CrossRef] [Green Version]
- Jamali, T.; Karimi-Maleh, H.; Khalilzadeh, M.A. A novel nanosensor based on Pt: Co nanoalloy ionic liquid carbon paste electrode for voltammetric determination of vitamin B 9 in food samples. LWT-Food Sci. Technol. 2014, 57, 679–685. [Google Scholar] [CrossRef]
- Karimi-Maleh, H.; Tahernejad-Javazmi, F.; Daryanavard, M.; Hadadzadeh, H.; Ensafi, A.A.; Abbasghorbani, M. Electrocatalytic and Simultaneous Determination of Ascorbic Acid, Nicotinamide Adenine Dinucleotide and Folic Acid at Ruthenium [II] Complex-ZnO/CNTs Nanocomposite Modified Carbon Paste Electrode. Electroanalysis 2014, 26, 962–970. [Google Scholar] [CrossRef]
- Kun, Z.; Ling, Z.; Yi, H.; Ying, C.; Dongmei, T.; Shuliang, Z.; Yuyang, Z. Electrochemical behavior of folic acid in neutral solution on the modified glassy carbon electrode: Platinum nanoparticles doped multi-walled carbon nanotubes with Nafion as adhesive. J. Electroanal. Chem. 2012, 677, 105–112. [Google Scholar] [CrossRef]
- Babakhanian, A.; Kaki, S.; Ahmadi, M.; Ehzari, H.; Pashabadi, A. Development of α-polyoxometalate–polypyrrole–Au nanoparticles modified sensor applied for detection of folic acid. Biosens. Bioelectron. 2014, 60, 185–190. [Google Scholar] [CrossRef]
- Kalimuthu, P.; John, S.A. Selective electrochemical sensor for folic acid at physiological pH using ultrathin electropolymerized film of functionalized thiadiazole modified glassy carbon electrode. Biosens. Bioelectron. 2009, 24, 3575–3580. [Google Scholar] [CrossRef] [PubMed]
- Ardakani, M.; Sheikhmohseni, M.A.; Beitollahi, H.; Benvidi, A.; Naeimi, H. Simultaneous determination of dopamine, uric acid, and folic acid by a modified TiO2 nanoparticles carbon paste electrode. Turkish J. Chem. 2011, 35, 573–585. [Google Scholar] [CrossRef]
- Kingsley, M.P.; Desai, P.B.; Srivastava, A.K. Simultaneous electro-catalytic oxidative determination of ascorbic acid and folic acid using Fe3O4 nanoparticles modified carbon paste electrode. J. Electroanal. Chem. 2015, 741, 71–79. [Google Scholar] [CrossRef]
- Bandžuchová, L.; Šelešovská, R. Voltammetric determination of folic Acid using liquid mercury free silver amalgam electrode. Acta Chim. Slov. 2011, 58, 2411–2419. [Google Scholar] [CrossRef]
- Xiao, F.; Ruan, C.; Liu, L.; Yan, R.; Zhao, F.; Zeng, B. Single-walled carbon nanotube-ionic liquid paste electrode for the sensitive voltammetric determination of folic acid. Sens. Actuat B Chem. 2008, 134, 895–901. [Google Scholar] [CrossRef]
- Rutyna, I. Determination of Folic Acid at a Bismuth Film Electrode by Adsorptive Stripping Voltammetry. Anal. Lett. 2015, 48, 1593–1603. [Google Scholar] [CrossRef]
- Farias, P.A.M.; Rezende, M.; Moreira, J.C. Folic acid determination in neutral pH electrolyte by adsorptive stripping voltammetry at the mercury film electrode, IOSR. J. Pharm. 2012, 2, 302–311. [Google Scholar] [CrossRef]
- Santhy, A.; Beena, S.; Veena; Shahina, S. Electrochemical quantification of vitamin B9 on poly tyrosine modified pencil graphite electrode. IOP Conf. Ser. Mater. Sci. Eng. 2020, 872, 12128. [Google Scholar] [CrossRef]
- Villamil, M.J.F.; Miranda Ordieres, A.J.; Costa García, A.; TuñÓn Blanco, P. Simultaneous adsorptive stripping voltammetric determination of riboflavin and folic acid in multivitamin preparations. Anal. Chim. Acta 1993, 273, 377–382. [Google Scholar] [CrossRef]
- Korolczuk, M.; Tyszczuk, K. Determination of folic acid by adsorptive stripping voltammetry at a lead film electrode. Electroanalysis 2007, 19, 1959–1962. [Google Scholar] [CrossRef]
- Akshaya, K.B.; Anitha, V.; Nidhin, M.; Sudhakar, Y.N.; Louis, G. Electrochemical sensing of vitamin B12 deficiency marker methylmalonic acid using PdAu-PPy tailored carbon fiber paper electrode. Talanta 2020, 217, 121028. [Google Scholar] [CrossRef]
- Gong, F.; Zou, W.; Wang, Q.; Deng, R.; Cao, Z.; Gu, T. Polymer nanoparticles integrated with excited-state intramolecular proton transferfluorescent modules as sensors for the detection of vitamin B1. Microchem. J. 2019, 148, 767–773. [Google Scholar] [CrossRef]
- Karastogianni, S.; Girousi, S. Square Wave Voltammetric [SWV] Determination of Cyanocobalamin [Vitamin B12] in Pharmaceuticals and Supplements on a Carbon Paste Electrode [CPE] Modified by a Manganese[II] Polymeric Film. Anal. Lett. 2022, 55, 399–410. [Google Scholar] [CrossRef]
- Dimitropoulou, G.; Karastogianni, S.; Girousi, S. Development of an electrochemical DNA biosensor for the detection of vitamin B12 [cyanocobalamin] at a carbon paste modified electrode with a manganese[II] complex. J. Appl. Bioanal. 2017, 3, 70–80. [Google Scholar] [CrossRef]
- Yang, N.; Wan, Q.; Wang, X. Voltammetry of Vitamin B 12 on a thin self-assembled monolayer modified electrode. Electrochim. Acta 2005, 50, 2175–2180. [Google Scholar] [CrossRef]
- Michopoulos, A.; Florou, A.B.; Prodromidis, M.I. Ultrasensitive Determination of Vitamin B12 Using Disposable Graphite Screen-Printed Electrodes and Anodic Adsorptive Voltammetry. Electroanalysis 2015, 27, 1876–1882. [Google Scholar] [CrossRef]
- Pala, B.B.; Vural, T.; Kuralay, F.; Çırak, T.; Bolat, G.; Abacı, S.; Denkbaş, E.B. Disposable pencil graphite electrode modified with peptide nanotubes for Vitamin B 12 analysis. Appl. Surf. Sci. 2014, 303, 37–45. [Google Scholar] [CrossRef]
- Kuralay, F.; Vural, T.; Bayram, C.; Denkbas, E.B.; Abaci, S. Carbon nanotube– chitosan modified disposable pencil graphite electrode for Vitamin B 12 analysis. Colloids Surf. B Biointerfaces 2011, 87, 18–22. [Google Scholar] [CrossRef]
- Pereira, D.F.; Santana, E.R.; Piovesan, J.V.; Spinelli, A. A novel electrochemical strategy for determination of vitamin B12 by Co[I/II] redox pair monitoring with boron-doped diamond electrode. Diam. Relat. Mater. 2020, 105, 107793. [Google Scholar] [CrossRef]
- Murugan, N.; Jerome, R.M.; Preethika, A.; Sundaramurthy, A. Sundaramurthy. 2D-titanium carbide (MXene) based selective electrochemical sensor for simultaneous detection of ascorbic acid, dopamine and uric acid. J. Mater. Sci. Technol. 2021, 72, 122–131. [Google Scholar] [CrossRef]
Fat-Soluble Vitamins | |||
Groups | Vitamers | Dietary Sources | Biological Functions or Reactions |
Vitamin A | Retinol Retinal Retinoic acid Provitamins: (β-carotene, cryptoxanthin) | Green, yellow, orange plant tissues (fruits and vegetables; carotenoids), milk, red meat, eggs, poultry meat, fatty fish and shellfish, margarine, breast milk, production from intestine-adapted mutant strain E. Coli [1] | Regulation of epithelial cell differentiation Photosensitive retinal pigment |
Vitamin D | Cholecalciferol (D3) Ergocalciferol (D2) | Ergocalciferol: plants, fungi, molds, lichens, brates (snails, worms), mushrooms. Cholecalciferol: animal tissues, fish liver and oils, fatty fishes, eggs, chicken, beef, pork, plants of the family Solaneceae, enriched food oils [1] | Calcium homeostasis Bone metabolism (calcium mobilization) Transcription factor |
Vitamin Ε | α-Tocopherol β-Tocopherol γ-Tocopherol | Green plants, plant oils, wheat germ oil, rice bran oil, sunflower oil, corn oil, mayonnaise, almonds, milk and milk products [1] | Antioxidant protector for membranes |
Vitamin Κ | Phylloquinones (Κ1) Menaquinones (Κ2) Menadione (Κ3) | Green leafy vegetables (e.g., spinach, kale, broccoli, Brussels sprouts), vegetable oils, margarine, bacterially fermented foods (e.g., cheese, sauerkraut), poultry and pork products [1] | Blood clotting Calcium metabolism |
Water-Soluble Vitamins | |||
Vitamin C | Ascorbic acid Dehydroascorbic acid | Fruits, vegetables, organ meats (liver, kidney), fresh tea leaves, berries, citrus [1] | Reductant in hydroxylations in the formation of collagen and carnitine and in the metabolism of drugs and steroids |
Vitamin Β1 | Thiamin | Yeasts, liver (especially pork liver), cereal grains, pork, cured ham [1] | Coenzyme for oxidative decarboxylation of 2-keto acids (e.g., pyruvate, 2-keto-glutarate) and for pyruvate decarboxylase and transketolase |
Vitamin Β2 | Riboflavin | Green leafy vegetables (broccoli, cabbage, carrots, spinach], fruits, meat, eggs, dairy products (milk, yogurt, cheese), cereals (wheat, rice, oats) [1] | Coenzyme in redox reactions of fatty acids and the tricarboxylic acid (TCA) cycle |
Vitamin Β3 | Niacin Nicotinic acid Nicotinamide | Brewer’s yeast, beans, spinach, tomato, fruit, nuts, eggs, mushrooms, meat, milk [1] | Coenzyme for several dehydrogenases, significant role in the oxygenation of tissues, participates in the metabolism of proteins, fatty acids, and carbohydrates. A component of hydrogen-carrying coenzymes (NAD, NADP) involved in glycolysis, the Krebs cycle, the synthesis of fatty acids |
Vitamin B5 | Pantothenic acid | Meat (liver, heart), mushrooms, avocado, eggs, nuts, broccoli, yeast, rice, peanut flour, molasses, concentrated soluble fish [1] | Coenzyme in fatty acid |
Vitamin B6 | Pyridoxine Pyridoxal Pyridoxamine | Meats, whole grain products (wheat), vegetables (asparagus, beans, cabbage), nuts, cereals, fish [1] | Coenzyme in amino acid |
Vitamin Β7 | Biotin | Royal jelly, brewer’s yeast, milk, liver, egg yolk, vegetables (broccoli, spinach asparagus, carrots, potatoes), fruit, beans, milk, cheese [1] | Coenzyme for carboxylations (e.g., acetyl CoA/malonyl CoA conversion) |
Vitamin B9 | Folate Pteroylglutamic acid Pteroylpolyglutamates | Liver, mushrooms, green leafy vegetables, soybean meal, milk and milk products, yeast, beans, fruits [1] | Coenzyme in single-carbon |
Vitamin B12 | Cyanocobalamin | Fermented foods, liver, dairy products, meat, egg, fish, shellfish, edible algae, mushrooms, fermented soy products, fruits, tea leaves, spinach, broccoli, asparagus, cyanobacteria (spirulina) [1] | Coenzyme in the metabolism of propionate, amino acids, and single-carbon units |
Vitamin | Voltammetric Technique [ab.] | Working Electrode | Sample | Reference |
---|---|---|---|---|
Vitamin A | CV | Glassy carbon | Retinol/Vitamin Ε | [60] |
SWV | Carbon paste modified with Pt: Co nanoalloy | Foods | [101] | |
DPV | Carbon paste modified with surfactant sodium dodecyl sulfate [CPE/SDS] | - | [102] | |
Vitamin D | SWV | Boron Doped Diamond Electrode | - | [62] |
CV | Glassy carbon | - | [55,61,66,67] | |
CV, DPV | Glassy carbon modified thin synthetic indium-titanium oxide | D2 | [103] | |
DPV | Glassy carbon modified with PANnFs and NPsFe3O4 | D3 | [104] | |
DPV | Glassy carbon ΙTO, modified with Asp-Gd2O3NRs sensor | D3 | [61] | |
CV, DPV | Glassy carbon modified with Ni[OH]2 particles in SiO2/ graphene oxide organic-inorganic matrix | Pharmaceutical | [105] | |
CV | Glassy carbon modified with nanosensor employing fullerene-C60 and bimetallic nanoparticles composite film | Blood | [106] | |
AdSV | Screen-printed carbon coated with MIP and p-phenylenediamine-resorcinol | Real samples | [107] | |
CV, DPV | nCeO2/CC immunosensor | Biological samples | [108] | |
Vitamin Ε | DPV | Planar Pt | Vegetable oils and fats | [55] |
CV, DPV | Au modified with Pan/c-Al2O3 | Food supplements | [109] | |
SWAdSV | Glassy carbon | Vitamins Ε και Κ | [110] | |
SWV | CF disk UME in Bz/EtOH [1:2] | α-, β-, γ-, δ-tocopherols in oil samples | [111] | |
SWAdSV | Glassy carbon | Vitamins Ε and Κ in food supplements | [115] | |
Vitamin Κ | CV | Glassy carbon | - | [115] |
SWAdSV | Glassy carbon | Plant based foods | [116] | |
CV | Glassy carbon | Pharmaceutical Products and Foods | [115,117] | |
CV | Pencil graphite modified with silver nanoparticles and 2-amino-5-chloro benzophenone | Blood plasma | [118] | |
CV, LSV | Glassy carbon modified with PEDOT | Poultry drugs | [119] | |
SWAdSV | Glassy carbon | Vitamins A, D, E, K | [120] | |
Vitamin C | SWV | Carbon paste modified with Fe[III]-Y | - | [88] |
CV | Carbon paste modified with p-tert-butylcalix [4] arene | Commercial Samples | [130] | |
CV, DPV | Carbon paste coated with NPsZnO-Pd | Fruit Juices, creams | [121] | |
CV, DPV | Printed carbon electrode bare and modified with ZnO/Al2O3 | Real samples | [83] | |
DPV | Carbon paste modified with graphene | Pharmaceutical Products | [122] | |
DPV | Carbon paste modified with porphyrins | Pharmaceutical Products | [123] | |
CV | Glassy carbon modified with poly[bromocresol purple] film | - | [124] | |
CV | Glassy carbon modified with poly [3-[5-chloro-2-hydroxyphenylazo]-4, 5-dihydroxynaphthalene-2, 7-disulfonic acid] film | Ascorbic acid in a mixture of substances | [125] | |
CV | Pt coated with iodine | MultiVitamins [B1, B6, B9, B12, C] | [128] | |
CV, DPV | Carbon paste modified with multi-wall carbon nanotubes and graphite | Pharmaceutical formulations και Foods | [129] | |
CV | Carbon paste modified with 2,2′-[1,8-octanediylbisnitriloethylidine]-bis-hydroquinone and tetrabromo-p-benzoquinone | Mixture of ascorbic acid, uric acid and dopamine | [131,132] | |
CV | Glassy carbon modified with H2SO4 | - | [133] | |
CV | Glassy carbon modified with LaFeO3 nanoparticles | - | [134] | |
CV, DPV | Glassy carbon modified with graphene/Pt nanoparticles | - | [135] | |
SWV | Glassy carbon modified with Ni-poly [1,5-diaminonapthalene] nanoparticles | - | [137] | |
DPV | Glassy carbon modified with helical carbon nanotubes | Ascorbic acid, uric acid and dopamine in a bovine foetal serum sample | [136] | |
SWV | Carbon paste modified with multi-wall carbon nanotube | Ascorbic acid, tryptophan, paracetamol | [138] | |
SWV | Carbon paste modified with multi-walled carbon nanotubes–chitosan composite film | Ascorbic acid-Rutin | [139] | |
CV | Glassy carbon modified with poly [caffeic acid] | Ascorbic acid and dopamine in Pharmaceutical Products | [140] | |
DPV | Glassy carbon modified with carbon nanotubes | Ascorbic acid, paracetamol | [141] | |
DPV | Carbon paste modified with cetosan-cetylpyridinium bromide | Ascorbic acid and uric acid | [142] | |
LSV | Au modified with dimercaptothiadiazole | - | [143] | |
CV | Carbon paste modified with novel bicopper complex | Ascorbic acid and dpamine in Pharmaceutical Products και Foods | [144] | |
DPV | Au modified with self-assembled Au nanoparticles | Ascorbic acid abd dopamine | [145] | |
DPV, CV | Glassy carbon modified with multiwall carbon nanotubes with nafion | Ascorbic acid, uric acid, epinephrine | [146] | |
DPV, CV | Carbon coated with SiO2/Nb2O5 | - | [147] | |
CV | Carbon paste | Juices | [148] | |
CV | Graphite modified with Manganese dioxide | Juices | [148] | |
LSV | Gold | Juices | [148] | |
DPV | Glassy carbon | Juices and wines | [144,145,146,147,148,149,150,151] | |
DPV | Pt microelectrodes modified with polyvinyl sulfonium and polystyrene sulfonium film | Juices and wines | [149,150,151] | |
DPV, SWV | Glassy carbon | Plants of the Rosa family | [152] | |
SWV | Graphene oxide paste modified with manganese[II] complex | Rosa canina | [153] | |
CV | Carbon paste modified with PM/AuNPs | - | [154] | |
CV, SWV | Microelectrode made from pyrolytic graphite sheet [PGS] | Real samples | [155] | |
DPV | Glassy carbon modified with MXene powder (titanium carbide) | Human urine samples | [193] | |
Vitamin Β1 | AdSV | Carbon paste | - | [89] |
CV | Carbon paste modified with MnPC | - | [89] | |
CV | Platinum | Thiamine Pyrophosphate | [48] | |
AdSV | Glassy carbon modified with Pb2+ film | Pharmaceutical Products and Juices | [156] | |
SWV | Au modified with Cys/SAM | Pharmaceutical formulations | [157] | |
AdSV | Glassy carbon modified with AgLAF-AgSAE | Mixture vitamins B1, B2, C | [44] | |
AdSV | Carbon paste modified with DNA/MWCNT | - | [158] | |
Vitamin Β2 | CV | Optical sensor made of cyclodextrin | Pharmaceutical formulations | [159] |
AdSv | Hg/Bare glassy carbon | Real samples | [160] | |
AdSV | Bare Glassy carbon | Breast milk | [161] | |
ASV | Glassy carbon modified with nanomaterials | - | [162] | |
DPV | Carbon paste modified with Co zeolites | - | [94] | |
CV, DPV, LSV | Glassy carbon modified with ZnO-MnO/CSNs | - | [91] | |
Vitamin Β3 | DPV | Glassy carbon | - | [55] |
CV | Hg/Dropping Hg/Pt | - | [55] | |
CV | Microelectrode graphite paste modified with CoTMPP/Nafion | Syrup | [164] | |
CV | Gold | Pharmaceutical Products | [165,166] | |
ASV | Au modified with thioglycolic acid | Foods | [165,166] | |
Vitamin Β5 | CV, DPV, LSV | Carbon paste modified with cobalt[II]oxide catalyst | D-panthenol | [55] |
SWV | Glassy carbon | Urine | [91] | |
Vitamin Β6 | SWV | Carbon paste modified with ZnO/Cuo | Mixture of vitamins C and Β6 | [93] |
DPV | Au modified with carbon nanotubes | - | [93] | |
DPV | Glassy carbon modified with dsDNA | - | [93] | |
DPV | Disposable printed silk | Foods (Energy drinks, cereals), multivitamins | [167] | |
Vitamin Β7 | SWV | Film biosensor modified with Pd-Fe-Ni NPs | Foods | [168] |
CV, DPV | Diamond with mixture of boron/Nafion | Blood plasma | [169] | |
Vitamin Β9 | CV | Au modified with MBT/SAM film | - | [55] |
CV | Dropping Hg | - | [55] | |
CV | Au modified. with multi-wall carbon nanotube Au/NPs, | - | [97] | |
CV, AdSV | Hg electrode | Folic acid, riboflavin | [182] | |
ASV | Glassy carbon modified. with Pb2+ film | Mixture of ascorbic acid and riboflavin | [183] | |
SWV | Carbon paste modified. with Pt:Co nanomaterials | Pharmaceutical Products, Foods | [170] | |
SWV, CV | Carbon paste modified. with Ru[II]ZnO complex carbon nanotubes | Pharmaceutical Products, Foods | [171] | |
SWV, DPV | Carbon paste modified. with nanomaterials | Pharmaceutical Products, Foods | [172,173] | |
DPV | Carbon paste modified. with polymeric film, TiO2 nanomaterials, magnetite nanoparticles/Au modified with nanomaterials | Pharmaceutical Products, Foods | [174,175,176,177] | |
DPV, CV | Carbon paste modified with carbon nanotubes | Pharmaceutical Products, Foods | [178] | |
ASV | Au modified. with Bi-film, Ag or Hg amalgams | Foods | [177,179,180] | |
CV, DPV | Polymerized tyrosine film on graphite substrate | Pharmaceutical tablets | [181] | |
Vitamin Β12 | DPV | Electrochemical sensor modified. with polypyrrole and PdAu NPs | Blood plasma, Urine | [184] |
CV, DPV | Ferromagnetic nanoparticles from triazine dendrimers [FMNPs@TD] | Foods | [109] | |
CV | Glassy carbon | Injectable Drugs | [185] | |
SWV | Carbon paste modified. with Mg complex film with thiophene-2-carboxylic acid and triethanolamine substituents | Pharmaceutical tablets, Food supplements | [186] | |
AdSV | Carbon paste modified. with [Mn [thiophenyl-2-carboxylic acid]-2 [triethylonamine] polymer and DNA biosensor | Urine samples | [187] | |
CV | Au modified. with mercaptoacetic acid | Pharmaceutical Products | [188] | |
ASV | Disposable carbon mesh modified with bismuth film | Pharmaceutical Products | [189] | |
SWV | Graphite modified with peptide nanotubes | Pharmaceutical Products | [190] | |
SWV | Pencil Graphite modified with carbon nanotube-chitosan | Pharmaceutical Products | [191] | |
CV | Diamond with boron admixture | Food supplements | [192] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kiamiloglou, D.; Girousi, S. Different Aspects of the Voltammetric Detection of Vitamins: A Review. Biosensors 2023, 13, 651. https://doi.org/10.3390/bios13060651
Kiamiloglou D, Girousi S. Different Aspects of the Voltammetric Detection of Vitamins: A Review. Biosensors. 2023; 13(6):651. https://doi.org/10.3390/bios13060651
Chicago/Turabian StyleKiamiloglou, Denise, and Stella Girousi. 2023. "Different Aspects of the Voltammetric Detection of Vitamins: A Review" Biosensors 13, no. 6: 651. https://doi.org/10.3390/bios13060651
APA StyleKiamiloglou, D., & Girousi, S. (2023). Different Aspects of the Voltammetric Detection of Vitamins: A Review. Biosensors, 13(6), 651. https://doi.org/10.3390/bios13060651