An Exfoliated Graphite-Based Electrochemical Immunosensor on a Dendrimer/Carbon Nanodot Platform for the Detection of Carcinoembryonic Antigen Cancer Biomarker
Abstract
:1. Introduction
2. Experimental
2.1. Materials and Instruments
2.2. Fabrication Procedure for the Exfoliated Graphite Electrode
2.3. Synthesis of the Carbon Nanodot
2.4. Preparation of the Immunosensor
2.5. Experimental Measurements
3. Results and Discussion
3.1. Characterization of the Nanomaterials
3.2. Electrochemical Characterization and Optimization
3.3. Analytical Application of the Immunosensor
3.4. Stability, Selectivity, and Repeatability of the Immunosensor
3.5. Application of the Immunosensor
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gu, X.; She, Z.; Ma, T. Electrochemical detection of carcinoembryonic antigen. Biosens. Bioelectron. 2018, 102, 610–616. [Google Scholar] [CrossRef] [PubMed]
- Farzin, L.; Shamsipur, M. Recent advances in design of electrochemical affinity biosensors for low level detection of cancer protein biomarkers using nanomaterial-assisted signal enhancement strategies. J. Pharm. Biomed. Anal. 2018, 147, 185–210. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Zhao, L.; Lei, W.; Wen, W.; Wang, Y.; Bao, T.; Xiong, H. A high-sensitivity electrochemical aptasensor of carcinoembryonic antigen based on graphene quantum dots-ionic liquid-nafion nanomatrix and DNAzyme-assisted signal amplification strategy. Biosens. Bioelectron. 2018, 99, 28–33. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Li, Y.; Feng, J.; Li, M.; Wang, P.; Chen, Z.; Dong, Y. A novel sandwich-type immunosensor for detection of carcino-embryonic antigen using silver hybrid multiwalled carbon nanotubes/manganese dioxide. J. Electroanal. Chem. 2017, 786, 112–119. [Google Scholar] [CrossRef]
- Pei, X.; Zhang, B.; Tang, J.; Liu, B.; Lai, W.; Tang, D. Sandwich-type immunosensors and immunoassays exploiting nanostructure labels: A review. Anal. Chim. Acta 2013, 758, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Guo, Y.; Wang, A. Luminol/antibody labeled gold nanoparticles for chemiluminescence immunoassay of carcinoembryonic antigen. Anal. Chim. Acta 2010, 666, 91–96. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Liu, C.; Cao, X.; Tan, L.; Lu, W. Multiplexing determination of cancer-associated biomarkers by surface-enhanced Raman scattering using ordered gold nanohoneycomb arrays. Bioanalysis 2017, 9, 1561–1572. [Google Scholar] [CrossRef] [Green Version]
- Quan, H.; Zuo, C.; Li, T.; Liu, Y.; Li, M.; Zhong, M.; Zhang, Y.; Qi, H.; Yang, M. Electrochemical detection of carcinoembryonic antigen based on silver nanocluster/horseradish peroxidase nanocomposite as signal probe. Electrochim. Acta 2015, 176, 893–897. [Google Scholar] [CrossRef]
- Huang, J.; Tian, J.; Zhao, Y.; Zhao, S. Ag/Au nanoparticles coated graphene electrochemical sensor for ultrasensitive analysis of carcinoembryonic antigen in clinical immunoassay. Sens. Actuators B Chem. 2015, 206, 570–576. [Google Scholar] [CrossRef]
- Fabiana, F.S.; Angnes, L. Electrochemical immunosensors—A powerful tool for analytical applications. Biosens. Bioelectron. 2018, 102, 470–478. [Google Scholar]
- Jayanthi, V.S.; Das, A.B.; Saxena, U. Recent advances in biosensor development for the detection of cancer biomarkers. Biosens. Bioelectron. 2017, 91, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Yang, X.; Yang, Y.; Yuan, Q. Aptamer-functionalized carbon nanomaterials electrochemical sensors for detecting cancer relevant biomolecules. Carbon 2018, 129, 380–395. [Google Scholar] [CrossRef]
- Devi, R.V.; Doble, M.; Verma, R.S. Nanomaterials for early detection of cancer biomarker with special emphasis on gold nanoparticles in immunoassays/sensors. Biosens. Bioelectron. 2015, 68, 688–698. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Li, X.; Li, Y.; Wen, X.; Li, J.; Choi, M.M.F.; Dong, C.; Shuang, S. Naked oats-derived dual-emission carbon nanodots for ratiometric sensing and cellular imaging. Sens. Actuators B Chem. 2015, 210, 533–541. [Google Scholar] [CrossRef]
- García-mendiola, T.; Bravo, I.; López-moreno, J.M.; Pariente, F. Carbon nanodots based biosensors for gene mutation detection. Sens. Actuators B Chem. 2018, 256, 226–233. [Google Scholar] [CrossRef]
- Su, Z.C.; Ye, H.G.; Xiong, Z.; Lou, Q.; Zhang, Z.; Tang, F.; Tang, J.Y.; Dai Shan, C.X.; Xu, S.J. Understanding and manipulating luminescence in carbon nanodots. Carbon 2018, 126, 58–64. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, Y.; Ding, S. Facile and large-scale synthesis of green-emitting carbon nanodots from aspartame and the applications for ferric ions sensing and cell imaging. Sci. Bull. 2017, 62, 1256–1266. [Google Scholar] [CrossRef]
- Shi, L.; Li, L.; Li, X.; Zhang, G.; Zhang, Y.; Dong, C.; Shuang, S. Excitation-independent yellow-fluorescent nitrogen-doped carbon nanodots for biological imaging and paper-based sensing. Sens. Actuators B Chem. 2017, 251, 234–241. [Google Scholar] [CrossRef]
- Jiang, D.; Zhang, Y.; Huang, M.; Liu, J.; Wan, J.; Chu, H.; Chen, M. Carbon nanodots as reductant and stabilizer for one-pot sonochemical synthesis of amorphous carbon-supported silver nanoparticles for electrochemical nonenzymatic H2O2 sensing. J. Electroanal. Chem. 2014, 728, 26–33. [Google Scholar] [CrossRef]
- Qu, F.; Guo, X.; Liu, D.; Chen, G.; You, J. Dual-emission carbon nanodots as a ratiometric nanosensor for the detection of glucose and glucose oxidase. Sens. Actuators B Chem. 2016, 233, 320–327. [Google Scholar] [CrossRef]
- Yang, X.; Luo, Y.; Zhu, S.; Feng, Y.; Zhuo, Y.; Dou, Y. One-pot synthesis of high fl uorescent carbon nanoparticles and their applications as probes for detection of tetracyclines. Biosens. Bioelectron. 2014, 56, 6–11. [Google Scholar] [CrossRef]
- Chen, D.; Dougherty, C.A.; Zhu, K.; Hong, H. Theranostic applications of carbon nanomaterials in cancer: Focus on imaging and cargo delivery. J. Control. Release 2015, 210, 230–245. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Wang, Y.; Liu, P.; Li, Y.; Gui, H.; An, T.; Wong, P.; Wang, D. A fluorescent quenching performance enhancing principle for carbon nanodot-sensitized aqueous solar cells. Nano Energy 2015, 13, 124–130. [Google Scholar] [CrossRef] [Green Version]
- Ortega-liebana, M.C.; Hueso, J.L.; Ferdousi, S.; Yeung, K.L.; Santamaria, J. Diamond & Related Materials Nitrogen-doped luminescent carbon nanodots for optimal photo-generation of hydroxyl radicals and visible-light expanded photo-catalysis. Diam. Relat. Mater. 2016, 65, 176–182. [Google Scholar]
- Shih, Z.; Periasamy, A.P.; Hsu, P.; Chang, H. Synthesis and catalysis of copper sulfide/carbon nanodots for oxygen reduction in direct methanol fuel cells. Appl. Catal. B Environ. 2013, 132–133, 363–369. [Google Scholar] [CrossRef]
- Zhang, S.; Zang, L.; Zhang, X.; Dai, H.; Xu, G. Signal-on electrochemiluminescent immunosensor based on poly (amidoamine) dendrimer functionalized carbon nanodots amplification for ultrasensitive detection of a -fetoprotein. Electrochim. Acta 2016, 196, 67–74. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Z.; Rui, Y.; Li, M. Horseradish peroxidase immobilization on carbon nanodots/CoFe layered double hydroxides: Direct electrochemistry and hydrogen peroxide sensing. Biosens. Bioelectron. 2015, 64, 57–62. [Google Scholar] [CrossRef]
- Fang, D.; Gao, G.; Shen, J.; Yu, Y.; Zhi, J. A reagentless electrochemical biosensor based on thionine wrapped E. coli and chitosan-entrapped carbon nanodots fi lm modified glassy carbon electrode for wastewater toxicity assessment. Electrochim. Acta 2016, 222, 303–311. [Google Scholar] [CrossRef]
- Garg, B.; Bisht, T. Carbon Nanodots as Peroxidase Nanozymes for Biosensing. Molecules 2016, 21, 1653. [Google Scholar] [CrossRef]
- Selin, M.; Peltonen, L.; Hirvonen, J.; Bimbo, L.M. Dendrimers and their supramolecular nanostructures for biomedical applications. J. Drug Deliv. Sci. Technol. 2016, 34, 10–20. [Google Scholar] [CrossRef]
- Hu, J.; Hu, K.; Cheng, Y. Tailoring the dendrimer core for efficient gene delivery. Acta Biomater. 2016, 35, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Sikwal, D.R.; Kalhapure, R.S.; Govender, T. An emerging class of amphiphilic dendrimers for pharmaceutical and biomedical applications: Janus amphiphilic dendrimers. Eur. J. Pharm. Sci. 2017, 97, 113–134. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Xu, Z.; Yin, M. Perylenediimide-cored dendrimers and their bioimaging and gene delivery applications. Prog. Polym. Sci. 2015, 46, 25–54. [Google Scholar] [CrossRef]
- Caminade, A.; Ouali, A.; Laurent, R.; Turrin, C.; Majoral, J. Coordination chemistry with phosphorus dendrimers. Applications as catalysts, for materials, and in biology. Coord. Chem. Rev. 2016, 308, 478–497. [Google Scholar] [CrossRef]
- Shcharbin, D.; Shcharbina, N.; Dzmitruk, V.; Pedziwiatr-werbicka, E.; Ionov, M.; Mignani, S.; De, F.J.; Gómez, R.; Mu, M.A.; Majoral, J.; et al. Dendrimer-protein interactions versus dendrimer-based nanomedicine. Colloids Surf. B Biointerfaces 2017, 152, 414–422. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Mignani, S.; Shen, M.; Shi, X. Dendrimer-based magnetic iron oxide nanoparticles: Their synthesis and biomedical applications. Drug Discov. Today 2016, 21, 1873–1885. [Google Scholar] [CrossRef] [PubMed]
- Amariei, G.; Santiago-morales, J.; Boltes, K.; Letón, P.; Iriepa, I.; Moraleda, I.; Fernández-alba, A.R.; Rosal, R. Dendrimer-functionalized electrospun nano fibres as dual-action water treatment membranes. Sci. Total Environ. 2017, 601–602, 732–740. [Google Scholar] [CrossRef] [PubMed]
- Miodek, A.; Mejri-omrani, N.; Khoder, R.; Korri-youssou, H. Electrochemical functionalization of polypyrrole through amine oxidation of poly (amidoamine) dendrimers: Application to DNA biosensor. Talanta 2016, 154, 446–454. [Google Scholar] [CrossRef]
- John, S.V.; Rotherham, L.S.; Khati, M.; Mamba, B.B.; Arotiba, O.A. Towards HIV Detection: Novel Poly (propylene imine) Dendrimer-Streptavidin Platform for Electrochemical DNA and gp120 Aptamer Biosensors. Int. J. Electrochem. Sci. 2014, 9, 5425–5437. [Google Scholar]
- Tshikalaha, P.; Arotiba, O.A. Dendrimer Supported Electrochemical Immunosensor for the Detection of Cholera Toxin in Water. Int. J. Electrochem. Sci. 2015, 10, 10083–10092. [Google Scholar]
- Shukla, S.K.; Mishra, A.K.; Mamba, B.B.; Arotiba, O.A. Zirconia-poly(propylene imine) dendrimer nanocomposite based electrochemical urea biosensor. Enzym. Microb. Technol. 2014, 66, 48–55. [Google Scholar] [CrossRef]
- Idris, A.O.; Mabuba, N.; Arotiba, O.A. A Dendrimer Supported Electrochemical Immunosensor for the Detection of Alpha-feto protein—A Cancer Biomarker. Electroanalysis 2018, 30, 31–37. [Google Scholar] [CrossRef]
- Ndlovu, T.; Arotiba, O.A.; Sampath, S.; Krause, R.W.; Mamba, B.B. Electrochemical detection and removal of lead in water using poly(propylene imine) modified re-compressed exfoliated graphite electrodes. J. Appl. Electrochem. 2011, 41, 1389–1396. [Google Scholar] [CrossRef]
- Gwebu, S.S.; Nomngongo, P.N.; Mashazi, P.N.; Nyokong, T.; Maxakato, N.W. Platinum Nanoparticles Supported on Carbon Nanodots as Anode Catalysts for Direct Alcohol Fuel Cells. Int. J. Electrochem. Sci. 2017, 12, 1–14. [Google Scholar] [CrossRef]
- Han, L.; Ghosh, D.; Chen, W.; Pradhan, S.; Chang, X.; Chen, S. Nanosized carbon particles from natural gas soot. Chem. Mater. 2009, 21, 2803–2809. [Google Scholar]
- Raj, C.J.; Kim, B.C.; Cho, B.; Cho, W.; Kim, S.; Park, S.Y.; Yu, K.H. Electrochemical supercapacitor behaviour of functionalized candle flame carbon soot. Bull. Mater. Sci. 2016, 39, 241–248. [Google Scholar] [CrossRef]
- Shu, H.; Wen, W.; Xiong, H.; Zhang, X.; Wang, S. Novel electrochemical aptamer biosensor based on gold nanoparticles signal amplification for the detection of carcinoembryonic antigen. Electrochem. Commun. 2013, 37, 15–19. [Google Scholar] [CrossRef]
- Zhao, L.; Li, C.; Qi, H.; Gao, Q.; Zhang, C. Electrochemical lectin-based biosensor array for detection and discrimination of carcinoembryonic antigen using dual amplification of gold nanoparticles and horseradish peroxidase. Sens. Actuators B Chem. 2016, 235, 575–582. [Google Scholar] [CrossRef]
- Li, X.; Yu, M.; Chen, Z.; Lin, X.; Wu, Q. A sensor for detection of carcinoembryonic antigen based on the polyaniline-Au nanoparticles and gap-based interdigitated electrode. Sens. Actuators B Chem. 2017, 239, 874–882. [Google Scholar] [CrossRef]
- Cao, X.; Wang, N.; Jia, S.; Guo, L.; Li, K. Bimetallic AuPt nanochains: Synthesis and their application in electrochemical immunosensor for the detection of carcinoembryonic antigen. Biosens. Bioelectron. 2013, 39, 226–230. [Google Scholar] [CrossRef]
Circuit Element | EG | EG/CNDTs | EG/PPI | EG/CNDTs@PPI | EG/CNDTs@PPI Antibody | EG/CNDTs@PPI Antibody | EG/CNDTs@PPI Antibody + CEA |
---|---|---|---|---|---|---|---|
Rs (Ω | 95.5 | 92.7 | 93.1 | 90.2 | 91.8 | 92.7 | 89.5 |
Rct (Ω) | 964.8 | 385.8 | 523.0 | 293.9 | 519.5 | 658.4 | 972.6 |
Immunosensor Fabrication | Linear Range (ng/mL) | Detection Limit (ng/mL) | References |
---|---|---|---|
AuNPs | 1–200 | 0.5 | [47] |
AuNPs-HRP | 0.5–7 | 0.01 | [48] |
Polyaniline-AuNPs | 0.1–1000 | 0.007 | [49] |
Au/Pt | 0.01–200 | 0.00011 | [50] |
NH2-G/Thi/AuNPs | 0.02–80 | 0.008 | [9] |
AuNPs/FCN | 0.05–20 | 0.01 | [1] |
CNDTs/PPI | 0.005–300 | 0.00145 | Present work |
Serum Sample (ng/mL) | The Addition Content (ng/mL) | The Detection Content (ng/mL) | RSD (%, n = 6) | Recovery (%) | Confidence Intervals |
---|---|---|---|---|---|
0.00 | 5.0 | 5.01,5.00,4.99, 5.02, 4.97 | 0.0192 | 99.96 | 4.98–5.01 |
50.0 | 49.94, 49.97, 50.02, 50.06, 50.03 | 0.0482 | 100.01 | 49.95–50.04 | |
100.0 | 100.06, 99.97, 100.03, 100.08, 99.99 | 0.1313 | 100.03 | 99.93–100.06 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Idris, A.O.; Mabuba, N.; Arotiba, O.A. An Exfoliated Graphite-Based Electrochemical Immunosensor on a Dendrimer/Carbon Nanodot Platform for the Detection of Carcinoembryonic Antigen Cancer Biomarker. Biosensors 2019, 9, 39. https://doi.org/10.3390/bios9010039
Idris AO, Mabuba N, Arotiba OA. An Exfoliated Graphite-Based Electrochemical Immunosensor on a Dendrimer/Carbon Nanodot Platform for the Detection of Carcinoembryonic Antigen Cancer Biomarker. Biosensors. 2019; 9(1):39. https://doi.org/10.3390/bios9010039
Chicago/Turabian StyleIdris, Azeez O., Nonhlangabezo Mabuba, and Omotayo A. Arotiba. 2019. "An Exfoliated Graphite-Based Electrochemical Immunosensor on a Dendrimer/Carbon Nanodot Platform for the Detection of Carcinoembryonic Antigen Cancer Biomarker" Biosensors 9, no. 1: 39. https://doi.org/10.3390/bios9010039
APA StyleIdris, A. O., Mabuba, N., & Arotiba, O. A. (2019). An Exfoliated Graphite-Based Electrochemical Immunosensor on a Dendrimer/Carbon Nanodot Platform for the Detection of Carcinoembryonic Antigen Cancer Biomarker. Biosensors, 9(1), 39. https://doi.org/10.3390/bios9010039