Next Issue
Volume 3, March
Previous Issue
Volume 2, September
 
 

Plants, Volume 2, Issue 4 (December 2013) – 11 articles , Pages 541-785

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
1644 KiB  
Article
Identification of Chimeric Repressors that Confer Salt and Osmotic Stress Tolerance in Arabidopsis
by Daisuke Kazama, Masateru Itakura, Takamitsu Kurusu, Nobutaka Mitsuda, Masaru Ohme-Takagi and Yuichi Tada
Plants 2013, 2(4), 769-785; https://doi.org/10.3390/plants2040769 - 5 Dec 2013
Cited by 18 | Viewed by 8774
Abstract
We produced transgenic Arabidopsis plants that express chimeric genes for transcription factors converted to dominant repressors, using Chimeric REpressor gene-Silencing Technology (CRES-T), and evaluated the salt tolerance of each line. The seeds of the CRES-T lines for ADA2b, Msantd, DDF1, DREB26, AtGeBP, and [...] Read more.
We produced transgenic Arabidopsis plants that express chimeric genes for transcription factors converted to dominant repressors, using Chimeric REpressor gene-Silencing Technology (CRES-T), and evaluated the salt tolerance of each line. The seeds of the CRES-T lines for ADA2b, Msantd, DDF1, DREB26, AtGeBP, and ATHB23 exhibited higher germination rates than Wild type (WT) and developed rosette plants under up to 200 mM NaCl or 400 mM mannitol. WT plants did not grow under these conditions. In these CRES-T lines, the expression patterns of stress-related genes such as RD29A, RD22, DREB1A, and P5CS differed from those in WT plants, suggesting the involvement of the six transcription factors identified here in the stress response pathways regulated by the products of these stress-related genes. Our results demonstrate additional proof that CRES-T is a superior tool for revealing the function of transcription factors. Full article
Show Figures

Figure 1

506 KiB  
Article
Experimental Measurements and Mathematical Modeling of Cytosolic Ca2+ Signatures upon Elicitation by Penta-N-acetylchitopentaose Oligosaccharides in Nicotiana tabacum Cell Cultures
by Kalina Mrozek, Karsten Niehaus and Petra Lutter
Plants 2013, 2(4), 750-768; https://doi.org/10.3390/plants2040750 - 27 Nov 2013
Cited by 4 | Viewed by 7646
Abstract
Plants have developed sophisticated recognition systems for different kinds of pathogens. Pathogen-associated molecular patterns (PAMPs) can induce various defense mechanisms, e.g., the production of reactive oxygen species (ROS) as an early event. Plant defense reactions are initiated by a signal transduction cascade involving [...] Read more.
Plants have developed sophisticated recognition systems for different kinds of pathogens. Pathogen-associated molecular patterns (PAMPs) can induce various defense mechanisms, e.g., the production of reactive oxygen species (ROS) as an early event. Plant defense reactions are initiated by a signal transduction cascade involving the release of calcium ions (Ca2+) from both external and internal stores to the plant cytoplasm. This work focuses on the analysis of cytosolic Ca2+ signatures, experimentally and theoretically. Cytosolic Ca2+ signals were measured in Nicotiana tabacum plant cell cultures after elicitation with penta-N-acetylchitopentaose oligosaccharides (Ch5). In order to allow a mathematical simulation of the elicitor-triggered Ca2+ release, the Li and Rinzel model was adapted to the situation in plants. The main features of the Ca2+ response, like the specific shape of the Ca2+ transient and the dose-response relationship, could be reproduced very well. Repeated elicitation of the same cell culture revealed a refractory behavior with respect to the Ca2+ transients for this condition. Detailed analysis of the obtained data resulted in further modifications of the mathematical model, allowing a predictive simulation of Ch5-induced Ca2+ transients. The promising results may contribute to a deeper understanding of the underlying mechanisms governing plant defense. Full article
(This article belongs to the Special Issue Calcium Signaling in Plants)
Show Figures

Graphical abstract

1503 KiB  
Article
The Clubroot Pathogen (Plasmodiophora brassicae) Influences Auxin Signaling to Regulate Auxin Homeostasis in Arabidopsis
by Linda Jahn, Stefanie Mucha, Sabine Bergmann, Cornelia Horn, Paul Staswick, Bianka Steffens, Johannes Siemens and Jutta Ludwig-Müller
Plants 2013, 2(4), 726-749; https://doi.org/10.3390/plants2040726 - 27 Nov 2013
Cited by 49 | Viewed by 12255
Abstract
The clubroot disease, caused by the obligate biotrophic protist Plasmodiophora brassicae, affects cruciferous crops worldwide. It is characterized by root swellings as symptoms, which are dependent on the alteration of auxin and cytokinin metabolism. Here, we describe that two different classes of [...] Read more.
The clubroot disease, caused by the obligate biotrophic protist Plasmodiophora brassicae, affects cruciferous crops worldwide. It is characterized by root swellings as symptoms, which are dependent on the alteration of auxin and cytokinin metabolism. Here, we describe that two different classes of auxin receptors, the TIR family and the auxin binding protein 1 (ABP1) in Arabidopsis thaliana are transcriptionally upregulated upon gall formation. Mutations in the TIR family resulted in more susceptible reactions to the root pathogen. As target genes for the different pathways we have investigated the transcriptional regulation of selected transcriptional repressors (Aux/IAA) and transcription factors (ARF). As the TIR pathway controls auxin homeostasis via the upregulation of some auxin conjugate synthetases (GH3), the expression of selected GH3 genes was also investigated, showing in most cases upregulation. A double gh3 mutant showed also slightly higher susceptibility to P. brassicae infection, while all tested single mutants did not show any alteration in the clubroot phenotype. As targets for the ABP1-induced cell elongation the effect of potassium channel blockers on clubroot formation was investigated. Treatment with tetraethylammonium (TEA) resulted in less severe clubroot symptoms. This research provides evidence for the involvement of two auxin signaling pathways in Arabidopsis needed for the establishment of the root galls by P. brassicae. Full article
(This article belongs to the Special Issue Auxin Signaling, Transport, and Metabolism)
Show Figures

Graphical abstract

668 KiB  
Article
Responses of African Grasses in the Genus Sporobolus to Defoliation and Sodium Stress: Tradeoffs, Cross-Tolerance, or Independent Responses?
by Daniel M. Griffith and T. Michael Anderson
Plants 2013, 2(4), 712-725; https://doi.org/10.3390/plants2040712 - 8 Nov 2013
Cited by 3 | Viewed by 6141
Abstract
In the Serengeti ecosystem of East Africa, grazing ungulates prefer areas with elevated grass Na, suggesting that some grasses tolerate both high soil Na and defoliation. We performed a factorial Na-by-defoliation greenhouse study with five abundant Sporobolus congeners to explore whether Serengeti grasses [...] Read more.
In the Serengeti ecosystem of East Africa, grazing ungulates prefer areas with elevated grass Na, suggesting that some grasses tolerate both high soil Na and defoliation. We performed a factorial Na-by-defoliation greenhouse study with five abundant Sporobolus congeners to explore whether Serengeti grasses possess traits which: (i) confer tolerance to both Na and defoliation (cross-tolerance); (ii) display a tradeoff; or (iii) act independently in their tolerances. Our expectation was that related grasses would exhibit cross-tolerance when simultaneously subjected to Na and defoliation. Instead, we found that physiological tolerances and growth responses to Na and defoliation did not correlate but instead acted independently: species characterized by intense grazing in the field showed no growth or photosynthetic compensation for combined Na and defoliation. Additionally, in all but the highest Na dosage, mortality was higher when species were exposed to both Na and defoliation together. Across species, mortality rates were greater in short-statured species which occur on sodic soils in heavily grazed areas. Mortality among species was positively correlated with specific leaf area, specific root length, and relative growth rate, suggesting that rapidly growing species which invest in low cost tissues have higher rates of mortality when exposed to multiple stressors. We speculate that the prevalence of these species in areas of high Na and disturbance is explained by alternative strategies, such as high fecundity, a wide range of germination conditions, or further dispersal, to compensate for the lack of additional tolerance mechanisms. Full article
(This article belongs to the Special Issue Interaction Between Abiotic and Biotic Stresses in Plants)
Show Figures

Figure 1

667 KiB  
Review
The Role of Temperature in the Growth and Flowering of Geophytes
by Nadezda V. Khodorova and Michèle Boitel-Conti
Plants 2013, 2(4), 699-711; https://doi.org/10.3390/plants2040699 - 1 Nov 2013
Cited by 97 | Viewed by 15838
Abstract
Among several naturally occurring environmental factors, temperature is considered to play a predominant role in controlling proper growth and flowering in geophytes. Most of them require a “warm-cold-warm” sequence to complete their annual cycle. The temperature optima for flower meristem induction and the [...] Read more.
Among several naturally occurring environmental factors, temperature is considered to play a predominant role in controlling proper growth and flowering in geophytes. Most of them require a “warm-cold-warm” sequence to complete their annual cycle. The temperature optima for flower meristem induction and the early stages of floral organogenesis vary between nine and 25 °C, followed, in the autumn, by a several-week period of lower temperature (4–9 °C), which enables stem elongation and anthesis. The absence of low temperature treatment leads to slow shoot growth in spring and severe flowering disorders. Numerous studies have shown that the effects of the temperature surrounding the underground organs during the autumn-winter period can lead to important physiological changes in plants, but the mechanism that underlies the relationship between cold treatment and growth is still unclear. In this mini-review, we describe experimental data concerning the temperature requirements for flower initiation and development, shoot elongation, aboveground growth and anthesis in bulbous plants. The physiological processes that occur during autumn-winter periods in bulbs (water status, hormonal balance, respiration, carbohydrate mobilization) and how these changes might provoke disorders in stem elongation and flowering are examined. A model describing the relationship between the cold requirement, auxin and gibberellin interactions and the growth response is proposed. Full article
(This article belongs to the Special Issue Developmental Biology and Biotechnology of Plant Sexual Reproduction)
Show Figures

Figure 1

1238 KiB  
Communication
Decrease in Available Soil Water Storage Capacity Reduces Vitality of Young Understorey European Beeches (Fagus sylvatica L.)—A Case Study from the Black Forest, Germany
by Tamalika Chakraborty, Somidh Saha and Albert Reif
Plants 2013, 2(4), 676-698; https://doi.org/10.3390/plants2040676 - 23 Oct 2013
Cited by 17 | Viewed by 7838
Abstract
Growth and survival of young European beech (Fagus sylvatica L.) is largely dependent on water availability. We quantified the influence of water stress (measured as Available Soil Water Storage Capacity or ASWSC) on vitality of young beech plants at a dry site. [...] Read more.
Growth and survival of young European beech (Fagus sylvatica L.) is largely dependent on water availability. We quantified the influence of water stress (measured as Available Soil Water Storage Capacity or ASWSC) on vitality of young beech plants at a dry site. The study site was located in a semi-natural sessile oak (Quercus petraea (Mattuschka) Liebl.) stand adjacent to beech stands on a rocky gneiss outcrop in southwestern Germany. Plant vitality was measured as crown dieback and estimated by the percentage of dead above ground biomass. The magnitude of crown dieback was recorded in different vertical parts of the crown. Biomass was calculated from the harvested plants following allometric regression equations specifically developed for our study site. Stem discs from harvested plants were used for growth analysis. We found that soil depth up to bedrock and skeleton content significantly influenced ASWSC at the study site. A significant negative correlation between ASWSC and crown dieback was found. Highest rates of crown dieback were noticed in the middle and lower crown. The threshold of crown dieback as a function of drought stress for young beech plants was calculated for the first time in this study. This threshold of crown dieback was found to be 40% of above ground biomass. Beyond 40% crown dieback, plants eventually experienced complete mortality. In addition, we found that the extremely dry year of 2003 significantly hampered growth (basal area increment) of plants in dry plots (ASWSC < 61 mm) in the study area. Recovery in the plants’ radial growth after that drought year was significantly higher in less dry plots (ASWSC > 61 mm) than in dry plots. We concluded that a decrease in ASWSC impeded the vitality of young beech causing partial up to complete crown dieback in the study site. Full article
Show Figures

Graphical abstract

654 KiB  
Review
Calcium: The Missing Link in Auxin Action
by Steffen Vanneste and Jiří Friml
Plants 2013, 2(4), 650-675; https://doi.org/10.3390/plants2040650 - 21 Oct 2013
Cited by 73 | Viewed by 14803
Abstract
Due to their sessile lifestyles, plants need to deal with the limitations and stresses imposed by the changing environment. Plants cope with these by a remarkable developmental flexibility, which is embedded in their strategy to survive. Plants can adjust their size, shape and [...] Read more.
Due to their sessile lifestyles, plants need to deal with the limitations and stresses imposed by the changing environment. Plants cope with these by a remarkable developmental flexibility, which is embedded in their strategy to survive. Plants can adjust their size, shape and number of organs, bend according to gravity and light, and regenerate tissues that were damaged, utilizing a coordinating, intercellular signal, the plant hormone, auxin. Another versatile signal is the cation, Ca2+, which is a crucial second messenger for many rapid cellular processes during responses to a wide range of endogenous and environmental signals, such as hormones, light, drought stress and others. Auxin is a good candidate for one of these Ca2+-activating signals. However, the role of auxin-induced Ca2+ signaling is poorly understood. Here, we will provide an overview of possible developmental and physiological roles, as well as mechanisms underlying the interconnection of Ca2+ and auxin signaling. Full article
(This article belongs to the Special Issue Calcium Signaling in Plants)
Show Figures

Figure 1

406 KiB  
Article
Verbesina alternifolia Tolerance to the Holoparasite Cuscuta gronovii and the Impact of Drought
by Bethany Evans and Victoria Borowicz
Plants 2013, 2(4), 635-649; https://doi.org/10.3390/plants2040635 - 18 Oct 2013
Cited by 6 | Viewed by 7145
Abstract
Holoparasites are nonphotosynthetic plants that acquire all resources from hosts. The holoparasite Cuscuta gronovii is native to much of the US with a broad host range including Verbesina alternifolia, an understory perennial. Both species grow in moderate to moist soils and occur [...] Read more.
Holoparasites are nonphotosynthetic plants that acquire all resources from hosts. The holoparasite Cuscuta gronovii is native to much of the US with a broad host range including Verbesina alternifolia, an understory perennial. Both species grow in moderate to moist soils and occur in habitats that may experience prolonged or episodic drought. We applied the Wise-Abrahamson Limiting Resource Model (LRM) developed for plant-herbivore relations to examine the effects of pattern of drought stress on tolerance of V. alternifolia to parasitism by C. gronovii. Individual plants were assigned one of six treatments that were combinations of parasite (none or addition of parasite) and drought stress (well-watered, continuously-stressed, or pulse-stressed). After pulse-stressed plants had experienced two wet-dry cycles all plants were harvested. Parasitism strongly reduced both shoot and root mass and well-watered hosts exhibited the greatest decline, indicating reduced tolerance to parasitism when water was readily available. This is consistent with the LRM if parasitism limits photosynthates available to the host. However, parasitism increased allocation to shoot and this effect did not differ between well-watered and drought-stressed plants, indicating equal tolerance. This outcome is in accord with an alternative prediction of the LRM if hosts are not carbon limited. Total pot productivity was reduced by parasitism and drought stress, and this effect was greater for pulse-stressed than for continuously-stressed hosts. We discuss the applicability of the LRM for understanding the effects of drought on tolerance to parasitism. Full article
(This article belongs to the Special Issue Interaction Between Abiotic and Biotic Stresses in Plants)
Show Figures

Figure 1

376 KiB  
Review
Interaction between Calcium and Actin in Guard Cell and Pollen Signaling Networks
by Dong-Hua Chen, Biswa R. Acharya, Wei Liu and Wei Zhang
Plants 2013, 2(4), 615-634; https://doi.org/10.3390/plants2040615 - 15 Oct 2013
Cited by 12 | Viewed by 8595
Abstract
Calcium (Ca2+) plays important roles in plant growth, development, and signal transduction. It is a vital nutrient for plant physical design, such as cell wall and membrane, and also serves as a counter-cation for biochemical, inorganic, and organic anions, and more [...] Read more.
Calcium (Ca2+) plays important roles in plant growth, development, and signal transduction. It is a vital nutrient for plant physical design, such as cell wall and membrane, and also serves as a counter-cation for biochemical, inorganic, and organic anions, and more particularly, its concentration change in cytosol is a ubiquitous second messenger in plant physiological signaling in responses to developmental and environmental stimuli. Actin cytoskeleton is well known for its importance in cellular architecture maintenance and its significance in cytoplasmic streaming and cell division. In plant cell system, the actin dynamics is a process of polymerization and de-polymerization of globular actin and filamentous actin and that acts as an active regulator for calcium signaling by controlling calcium evoked physiological responses. The elucidation of the interaction between calcium and actin dynamics will be helpful for further investigation of plant cell signaling networks at molecular level. This review mainly focuses on the recent advances in understanding the interaction between the two aforementioned signaling components in two well-established model systems of plant, guard cell, and pollen. Full article
(This article belongs to the Special Issue Calcium Signaling in Plants)
551 KiB  
Review
Calcium Signals from the Vacuole
by Gerald Schönknecht
Plants 2013, 2(4), 589-614; https://doi.org/10.3390/plants2040589 - 14 Oct 2013
Cited by 51 | Viewed by 9885
Abstract
The vacuole is by far the largest intracellular Ca2+ store in most plant cells. Here, the current knowledge about the molecular mechanisms of vacuolar Ca2+ release and Ca2+ uptake is summarized, and how different vacuolar Ca2+ channels and Ca [...] Read more.
The vacuole is by far the largest intracellular Ca2+ store in most plant cells. Here, the current knowledge about the molecular mechanisms of vacuolar Ca2+ release and Ca2+ uptake is summarized, and how different vacuolar Ca2+ channels and Ca2+ pumps may contribute to Ca2+ signaling in plant cells is discussed. To provide a phylogenetic perspective, the distribution of potential vacuolar Ca2+ transporters is compared for different clades of photosynthetic eukaryotes. There are several candidates for vacuolar Ca2+ channels that could elicit cytosolic [Ca2+] transients. Typical second messengers, such as InsP3 and cADPR, seem to trigger vacuolar Ca2+ release, but the molecular mechanism of this Ca2+ release still awaits elucidation. Some vacuolar Ca2+ channels have been identified on a molecular level, the voltage-dependent SV/TPC1 channel, and recently two cyclic-nucleotide-gated cation channels. However, their function in Ca2+ signaling still has to be demonstrated. Ca2+ pumps in addition to establishing long-term Ca2+ homeostasis can shape cytosolic [Ca2+] transients by limiting their amplitude and duration, and may thus affect Ca2+ signaling. Full article
(This article belongs to the Special Issue Calcium Signaling in Plants)
Show Figures

Figure 1

1483 KiB  
Review
Towards the Physics of Calcium Signalling in Plants
by Teresa Vaz Martins, Matthew J. Evans, Hugh C. Woolfenden and Richard J. Morris
Plants 2013, 2(4), 541-588; https://doi.org/10.3390/plants2040541 - 27 Sep 2013
Cited by 31 | Viewed by 12015
Abstract
Calcium is an abundant element with a wide variety of important roles within cells. Calcium ions are inter- and intra-cellular messengers that are involved in numerous signalling pathways. Fluctuating compartment-specific calcium ion concentrations can lead to localised and even plant-wide oscillations that can [...] Read more.
Calcium is an abundant element with a wide variety of important roles within cells. Calcium ions are inter- and intra-cellular messengers that are involved in numerous signalling pathways. Fluctuating compartment-specific calcium ion concentrations can lead to localised and even plant-wide oscillations that can regulate downstream events. Understanding the mechanisms that give rise to these complex patterns that vary both in space and time can be challenging, even in cases for which individual components have been identified. Taking a systems biology approach, mathematical and computational techniques can be employed to produce models that recapitulate experimental observations and capture our current understanding of the system. Useful models make novel predictions that can be investigated and falsified experimentally. This review brings together recent work on the modelling of calcium signalling in plants, from the scale of ion channels through to plant-wide responses to external stimuli. Some in silico results that have informed later experiments are highlighted. Full article
(This article belongs to the Special Issue Calcium Signaling in Plants)
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop