Polyethylenes and Polystyrenes with Carbazole Fluorescent Tags
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Measurements
2.3. Synthesis of the Monomers N-Pentenyl-Carbazole and 4-(N-Carbazolyl)methyl Styrene
2.4. Ethylene-N-Pentenyl-Carbazole Copolymerizations
2.5. Styrene4-(N-Carbazolyl)methyl Styrene Copolymerizations
2.6. Polymerization of Ethylene
2.7. Polymerization of Styrene
2.8. Preparation of PE/P(E-co-PK) and PS/P(S-co-SK) Polymer Blends
3. Results and Discussion
3.1. (P(E-co-PK)s and (P(S-co-SK)s Synthesis and Microstructural Characterization
3.2. WAXD, Thermal, and Optical Characterization
3.3. Fluorescence Study of P(E-co-PK)/PE and P(S-co-SK)/PS Polymer Blends
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Global Plastics Market Research Review 2021–2022: An Analysis of Developments by Key Plastics Manufacturers. Available online: https://www.globenewswire.com/en/news-release/2022/04/26/2428757/28124/en/Global-Plastics-Market-Research-Review-2021-2022-An-Analysis-of-Developments-by-Key-Plastics-Manufacturers.html (accessed on 26 April 2022).
- Colnik, M.; Kotnik, P.; Knez, Ž.; Škerget, M. Chemical Recycling of Polyolefins Waste Materials Using Supercritical Water. Polymers 2022, 14, 4415. [Google Scholar] [CrossRef] [PubMed]
- Geyer, R. Chapter 2—Production, use, and fate of synthetic polymers. In Plastic Waste and Recycling; Letcher, T.M., Ed.; Academic Press: Cambridge, UK, 2020; pp. 13–32. [Google Scholar] [CrossRef]
- European Commission. Closing the Loop—An EU Action Plan for the Circular Economy; Communication from the Commission (COM(2015) 614 Final); European Commission: Brussels, Belgium, 2015.
- European Commission. A European Strategy for Plastics in a Circular Economy; Communication from the Commission to the European parliament (COM (2018) 28 Final); European Commission: Brussels, Belgium, 2018.
- Johnson, H.; Chambers, L.C.; Holloway, J.O.; Bousgas, A.; Akhtar-Khavari, A.; Blinco, J.; Barner-Kowollik, C. Using precision polymer chemistry for plastics traceability and governance. Polym. Chem. 2022, 13, 6082–6090. [Google Scholar] [CrossRef]
- Henriksen, M.L.; Karlsen, C.B.; Klarskov, P.; Hinge, M. Plastic classification via in-line hyperspectral camera analysis and unsupervised machine learning. Vib. Spectrosc. 2022, 118, 103329. [Google Scholar] [CrossRef]
- Schmidt, F.; Christiansen, N.; Lovrincic, R. The Laboratory at Hand: Plastic Sorting Made Easy. Photonics Views 2020, 17, 56–59. [Google Scholar] [CrossRef]
- Beigbeder, J.; Perrin, D.; Mascaro, J.F.; Lopez-Cuesta, J.M. Study of the physico-chemical properties of recycled polymers from waste electrical and electronic equipment (WEEE) sorted by high resolution near infrared devices. Resour. Conserv. Recycl. 2013, 78, 105–114. [Google Scholar] [CrossRef]
- Wu, X.; Li, J.; Yao, L.; Xu, Z. Auto-sorting commonly recovered plastics from waste household appliances and electronics using near-infrared spectroscopy. J. Clean. Prod. 2020, 246, 118732. [Google Scholar] [CrossRef]
- Brunner, S.; Fomin, P.; Kargel, C. Automated sorting of polymer flakes: Fluorescence labeling and development of a measurement system prototype. Waste Manag. 2015, 38, 49–60. [Google Scholar] [CrossRef]
- Serranti, A.; Gargiulo, G.; Bonifazi, G. Hyperspectral imaging for process and quality control in recycling plants of polyolefin flakes. J. Near Infrared Spectrosc. 2012, 20, 573–581. [Google Scholar] [CrossRef]
- Serranti, S.; Fraunholcz, N.; Di Maio, F.; Bonifazi, G. Recycling-oriented characterization of polyolefin packaging waste. Waste Manag. 2013, 33, 574–584. [Google Scholar] [CrossRef]
- Maris, E.; Aoussat, A.; Naffrechoux, E.; Froelich, D. Polymer tracer detection systems with {UV} fluorescence spectrometry to improve product recyclability. Miner. Eng. 2012, 29, 77–88. [Google Scholar] [CrossRef]
- Bezati, F.; Froelich, D.; Massardier, V.; Maris, E. Addition of X-ray fluorescent tracers into polymers, new technology for automatic sorting of plastics: Proposal for selecting some relevant tracers. Resour. Conserv. Recycl. 2011, 55, 1214–1221. [Google Scholar] [CrossRef]
- Langhals, H.; Zgela, D.; Schlücker, T. High performance recycling of polymers by means of their fluorescence lifetimes. Green Sustainable Chem. 2014, 4, 144–150. [Google Scholar] [CrossRef]
- Langhals, H.; Schmid, T.; Herman, M.; Zwiener, M.; Hofer, A. Binary fluorescence labeling for the recovery of polymeric materials for recycling. Int. J. Environ. Eng. Sci. Technol. Res. 2013, 1, 124–132. [Google Scholar] [CrossRef]
- Massardier, V.; Louizi, M.; Maris, E.; Froelich, D. High shear dispersion of tracers in polyolefins for improving their detection. Polímeros 2015, 25, 466–476. [Google Scholar] [CrossRef]
- Ahmad, S.R. A new technology for automatic identification and sorting of plastics for recycling. Environ. Technol. 2004, 25, 1143–1149. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.; Hui, D.; Singh, R.; Ahuja, I.P.S.; Feo, L.; Fraternali, F. Recycling of plastic solid waste: A state of art review and future applications. Compos. Part B 2017, 115, 409–422. [Google Scholar] [CrossRef]
- Harris, P.G.; Fern, G.R.; Silver, J. Method and Apparatus for Identifying Articles with a Luminescent Marker for Recycling. U.S. Patent No. 11,318,500, 3 May 2022. [Google Scholar]
- Arenas, A.; Beltrán, F.R.; Alcázar, V.; de la Orden, M.U.; MartínezUrreaga, J. Fluorescence labeling of high density polyethylene for identification and separation of selected containers in plastics waste streams. Comparison of thermal and photochemical stability of different fluorescent tracers. Mater. Today Commun. 2017, 12, 125–132. [Google Scholar] [CrossRef]
- Pilon, L.; Stewart, A.; Bahia, R.; Hintschich, S.; Willner, C.; Eder, H. Removable Identification Technology to Differentiate Food Contact PET in Mixed Waste Streams: Interim Report. Polymark 2015, 1–23. Available online: https://www.semanticscholar.org/paper/Removable-Identification-Technology-to-Food-Contact-Pilon-Stewart/8735a984209e3f5ec506da9148cbe44a64c19e1f (accessed on 26 April 2022).
- Pragliola, S.; Grisi, F.; Vitale, V.; Sacco, O.; Venditto, V.; Izzo, L.; Grimaldi, A.; Baranzini, N. New fluorescence labeling isotactic polypropylenes as a tracer: A proof of concept. Polym. Chem. 2022, 13, 2685–2693. [Google Scholar] [CrossRef]
- Botta, A.; Pragliola, S.; Capacchione, C.; Rubino, A.; Liguori, R.; De Girolamo Del Mauro, A.; Venditto, V. Synthesis of poly(4-(N-carbazolyl)methyl styrene)s: Tailoring optical properties through stereoregularity. Eur. Polym. J. 2017, 88, 246–256. [Google Scholar] [CrossRef]
- Venditto, V.; Guerra, G.; Corradini, P.; Fusco, R. Mechanism of monomer insertion for heterogeneous isospecific Ziegler Natta catalytic models. Eur. Polym. J. 1991, 27, 45–54. [Google Scholar] [CrossRef]
- Doddrell, D.M.; Pegg, D.T.; Bendall, M.R. Distortionless enhancement of NMR signals by polarization transfer. J. Magn. Res. 1982, 48, 323–327. [Google Scholar] [CrossRef]
- Aubert, P.; Sledz, J.; Schue, F.; Brevard, C. Etude structurale du polypentadiene-1,3 par spectrometrie de RMN du 13C. J. Polym. Sci. Polym. Chem. Ed. 1981, 19, 955–972. [Google Scholar] [CrossRef]
- Botta, A.; Pragliola, S.; Venditto, V.; Rubino, A.; Aprano, S.; Del Mauro De Girolamo, A.; Maglione, M.G.; Minarini, C. Synthesis, characterization, and use as emissive layer of white organic light emitting diodes of the highly isotactic poly(N-pentenyl-carbazole). Polym. Compos. 2015, 36, 1110–1117. [Google Scholar] [CrossRef]
- Cho, Y.S.; Kim, S.W.; Ihn, C.S.; Lee, J.-S. Anionic Polymerisation of 4-(9-Carbazolyl)Methylstyrene. Polymer 2001, 42, 7611–7616. [Google Scholar] [CrossRef]
- Ates, M.; Uludag, N.; Sarac, A.S. Synthesis of 2-(9H-carbazole-9-yl)ethyl methacrylate: Electrochemical impedance spectroscopic study of poly(2-(9H-carbazole-9-yl)ethyl methacrylate) on carbon fiber. J. Appl. Polym. Sci. 2011, 121, 3475–3482. [Google Scholar] [CrossRef]
- Lessard, B.H.; Ling, E.J.Y.; Maric, M. Fluorescent, Thermoresponsive Oligo(ethylene glycol) Methacrylate/9-(4-Vinylbenzyl)-9H-carbazole Copolymers Designed with Multiple LCSTs via Nitroxide Mediated Controlled Radical Polymerization. Macromolecules 2012, 45, 1879–1891. [Google Scholar] [CrossRef]
- Liguori, R.; Botta, A.; Rubino, A.; Pragliola, S.; Venditto, V. Stereoregular polymers with pendant carbazolyl groups: Synthesis, properties and optoelectronic applications. Synth. Met. 2018, 246, 185–194. [Google Scholar] [CrossRef]
- Pragliola, S.; De Vita, R.; Longo, P. Aqueous emulsion polymerization of styrene and substituted styrenes using titanocene compounds. Polymer 2013, 54, 1583–1587. [Google Scholar] [CrossRef]
- Grant, D.M.; Paul, E.G. Carbon-13 Magnetic Resonance. II. Chemical Shift Data for the Alkanes. J. Am. Chem. Soc. 1964, 86, 2984–2990. [Google Scholar] [CrossRef]
- Caminiti, R.; Pandolfi, L.; Ballirano, P. Structure of Polyethylene from X-Ray Powder Diffraction: Influence of the Amorphous Fraction on Data Analysis. J. Macromol. Sci.-Phys. B 2000, 39, 481–492. [Google Scholar] [CrossRef]
- Ayyagari, C.; Bedrov, D.; Smith, G.D. Structure of Atactic Polystyrene: A Molecular Dynamics Simulation Study. Macromolecules 2000, 33, 6194–6199. [Google Scholar] [CrossRef]
- Berlman, I.B. Handbook of Fluorescence Spectra of Aromatic Molecules Academic; Elsevier: New York, NY, USA, 1971. [Google Scholar]
- Johnson, P.C.; Offen, H.W. Excimer Fluorescence of Poly(N-vinylcarbazole). J. Chem. Phys. 1971, 55, 2945–2949. [Google Scholar] [CrossRef]
- Botta, A.; Costabile, C.; Venditto, V.; Pragliola, S.; Liguori, R.; Rubino, A.; Alberga, D.; Savarese, M.; Adamo, C. Optoeletronic properties of poly(N-alkenyl-carbazole)s driven by polymer stereoregularity. J. Pol. Sci. Pol. Chem. 2018, 59, 242–251. [Google Scholar] [CrossRef]
- Izzo, L.; Lisa, P.; Sacco, O.; Pragliola, S. Synthesis of Di-Block Copolymers Poly (Propylene oxide)-block-Poly (9-(2,3-epoxypropyl) Carbazole) via Sequential Addition of Monomers in One Pot. Polymers 2021, 13, 763. [Google Scholar] [CrossRef]
Run a | E c (atm) | PK c (mmol) | Yield (g) | PK d (%) | Mn e (kDa) | Ð e | Tf g (°C) | Td h (°C) |
1 | 1 | 0.32 | 0.60 | 1.5 | 145 | 3.3 | 127.5 | 385 |
2 | 1 | 0.64 | 1.0 | 3.0 | 83 | 3.1 | 127.9 | 415 |
Run b | S c (mmol) | SK c (mmol) | Yield (g) | SK d (%) | Mn f (kDa) | Ð f | Tg g (°C) | Td h (°C) |
3 | 44 | 0.88 | 2.2 | 1.9 | 35 | 2.2 | 105.4 | 346 |
4 | 44 | 1.76 | 2.5 | 3.8 | 22 | 2.8 | 109.0 | 317 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tufano, F.; Grisi, F.; Costabile, C.; Mazzeo, M.; Venditto, V.; Boccia, A.C.; Fittipaldi, R.; Izzo, L.; Pragliola, S. Polyethylenes and Polystyrenes with Carbazole Fluorescent Tags. Processes 2023, 11, 515. https://doi.org/10.3390/pr11020515
Tufano F, Grisi F, Costabile C, Mazzeo M, Venditto V, Boccia AC, Fittipaldi R, Izzo L, Pragliola S. Polyethylenes and Polystyrenes with Carbazole Fluorescent Tags. Processes. 2023; 11(2):515. https://doi.org/10.3390/pr11020515
Chicago/Turabian StyleTufano, Federica, Fabia Grisi, Chiara Costabile, Mina Mazzeo, Vincenzo Venditto, Antonella Caterina Boccia, Rosalba Fittipaldi, Lorella Izzo, and Stefania Pragliola. 2023. "Polyethylenes and Polystyrenes with Carbazole Fluorescent Tags" Processes 11, no. 2: 515. https://doi.org/10.3390/pr11020515
APA StyleTufano, F., Grisi, F., Costabile, C., Mazzeo, M., Venditto, V., Boccia, A. C., Fittipaldi, R., Izzo, L., & Pragliola, S. (2023). Polyethylenes and Polystyrenes with Carbazole Fluorescent Tags. Processes, 11(2), 515. https://doi.org/10.3390/pr11020515