Titanium(III) Oxide Doped with meta-Aminophenol Formaldehyde Magnetic Microspheres: Enhancing Dye Adsorption toward Methyl Violet
Abstract
:1. Introduction
2. Experimental Method
2.1. Materials
2.2. Preparation of Titanium(III) Oxide Nanoparticles
2.3. Synthesis of Ti2O3/mAPF MMSs
3. Results and Discussion
3.1. Characterization
3.2. Adsorption Isotherm
3.3. Kinetics of Adsorption Study
3.4. Activation Parameters
3.5. Desorption Studies
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gupta, N.; Singh, H.P.; Sharma, R.K. Metal nanoparticles with high catalytic activity in degradation of methyl orange: An electron relay effect. J. Mol. Catal. A Chem. 2011, 335, 248–252. [Google Scholar] [CrossRef]
- Dong, Y.; Liu, T.; Sun, S.; Chang, X.; Guo, N. Preparation and characterization of SiO2/polydopamine/Ag nanocomposites with long-term antibacterial activity. Ceram. Int. 2014, 40, 5605–5609. [Google Scholar] [CrossRef]
- Yang, Y.; Ji, H.; Duan, H.; Fu, Y.; Xia, S.; Lu, C. Controllable synthesis of mussel-inspired catechol-formaldehyde resin microspheres and their silver-based nanohybrids for catalytic and antibacterial applications. Polym. Chem. 2019, 10, 4537–4550. [Google Scholar] [CrossRef]
- Greczynski, G.; Hultman, L. Reliable determination of chemical state in X-ray photoelectron spectroscopy based on sample-work-function referencing to adventitious carbon: Resolving the myth of apparent constant binding energy of the C 1s peak. Appl. Surf. Sci. 2018, 451, 99–103. [Google Scholar] [CrossRef]
- Gong, C.; Li, Q.; Zhou, H.; Liu, R. Tiny Au satellites decorated Fe3O4@3-aminophenol-formaldehyde core-shell nanoparticles: Easy synthesis and comparison in catalytic reduction for cationic and anionic dyes. Colloids. Surf. A Physicochem. Eng. Asp. 2018, 540, 67–72. [Google Scholar] [CrossRef]
- Gong, C.; Zhou, Z.; Li, J.; Zhou, H.; Liu, R. Facile synthesis of ultra stable Fe3O4@Carbon core-shell nanoparticles entrapped satellite au catalysts with enhanced 4-nitrophenol reduction property. J. Taiwan. Inst. Chem. Eng. 2018, 84, 229–235. [Google Scholar] [CrossRef]
- Alprol, A.; Heneash, A.; Ashour, M.; Abualnaja, K.; Alhashmialameer, D.; Mansour, A.; Sharawy, Z.; Abu-Saied, M.; Abomohra, A. Potential Applications of Arthrospira platensis Lipid-Free Biomass in Bioremediation of Organic Dye from Industrial Textile Effluents and Its Influence on Marine Rotifer (Brachionus plicatilis). Materials 2021, 14, 4446. [Google Scholar] [CrossRef]
- Gong, R.; Li, M.; Yang, C.; Sun, Y.; Chen, J. Removal of cationic dyes from aqueous solution by adsorption on peanut hull. J. Hazard. Mater. 2005, 121, 247–250. [Google Scholar] [CrossRef]
- Barka, N.; Abdennouri, M.; EL Makhfouk, M. Removal of Methylene Blue and Eriochrome Black T from aqueous solutions by biosorption on Scolymus hispanicus L.: Kinetics, equilibrium and thermodynamics. J. Taiwan Inst. Chem. Eng. 2011, 42, 320–326. [Google Scholar] [CrossRef]
- Islam, A.; Ahmad, A.; Laskar, M.A. Characterization of a Chelating Resin Functionalized via Azo Spacer and Its Analytical Applicability for the Determination of Trace Metal Ions in Real Matrices. J. Appl. Polym. Sci. 2011, 123, 3448–3458. [Google Scholar] [CrossRef]
- Ejhieh, N.; Khorsandi, M. Photodecolorization of Eriochrome Black T using NiS-P zeolite as a heterogeneous catalyst. J. Hazard. Mater. 2010, 176, 629–637. [Google Scholar] [CrossRef]
- Yaqoob, A.; Noor, N.H.M.; Serrà, A.; Ibrahim, M.N.M. Advances and challenges in developing efficient graphene oxide-based ZnO photocatalysts for dye photo-oxidation. Nanomaterials 2020, 10, 932. [Google Scholar] [CrossRef]
- Badawi, K.; Ismail, B.; Baaloudj, O.; Abdalla, K.Z. Advanced wastewater treatment process using algal photo-bioreactor associated with dissolved-air flotation system: A pilot-scale demonstration. J. Water Process. Eng. 2022, 46, 102565. [Google Scholar] [CrossRef]
- Ahmad, A.; Hameed, B. Fixed-bed Adsorption of Reactive Azo Dye onto Granular Activated Carbon Prepared from Waste. J. Hazard. Mater. 2009, 175, 298–303. [Google Scholar] [CrossRef]
- Idris, M.O.; Kim, H.C. Exploring the effectiveness of microbial fuel cell for the degradation of organic pollutants coupled with bio-energy generation. Sustain. Energy Technol. Assess. 2022, 52, 102183. [Google Scholar]
- Crini, G. Non-conventional low-cost adsorbents for dye removal: A review. Bioresour. Technol. 2006, 97, 1061–1085. [Google Scholar] [CrossRef]
- Yaqoob, A.A.; Parveen, T.; Umar, K.; Ibrahim, M.N.M. Role of Nanomaterials in the Treatment of Wastewater: A Review. Water 2020, 12, 495. [Google Scholar] [CrossRef]
- Yaqoob, A.; Noor, N.H.M.; Umar, K.; Adnan, R.; Rashid, M. Graphene oxide–ZnO nanocomposite: An efficient visible light photocatalyst for degradation of rhodamine B. Appl. Nanosci. 2021, 11, 1291–1302. [Google Scholar] [CrossRef]
- García-Montaño, J.; Ruiz, N.; Muñoz, I.; Domènech, X.; García-Hortal, J.A.; Torrades, F.; Peral, J. Environmental assessment of different photo-Fenton approaches for commercial reactive dye removal. J. Hazard. Mater. 2006, 138, 218–225. [Google Scholar] [CrossRef]
- Hussein, F.H. Comparison between solar and artificial photocatalytic decolorization of textile industrial wastewater. Int. J. Photoenergy 2012, 2012, 793648. [Google Scholar] [CrossRef]
- Chong, M.N.; Jin, B.; Chow, C.W.K.; Saint, C. Recent developments in photocatalytic water treatment technology: A review. Water Res. 2010, 44, 2997–3027. [Google Scholar] [CrossRef] [PubMed]
- Lachheb, H.; Puzenat, E.; Houasetal, A. Photocatalyticdegradation of various types of dyes (Alizarin S, Crocein Orange G, Methyl Red, Congo Red, Methylene Blue) in water by UV irradiated titania. Appl. Catal. B Environ. 2002, 39, 75–90. [Google Scholar] [CrossRef]
- Zhang, Q.; Jing, Y.H.; Shiue, A.; Chang, C.T.; Chen, B.Y.; Hsueh, C.C. Deciphering effects of chemical structure on azo dye decolorization/degradation characteristics: Bacterial vs. photocatalytic method. J. Taiwan Inst. Chem. Eng. 2012, 43, 760–766. [Google Scholar] [CrossRef]
- Hsueh, C.; Chen, B.Y. Comparative study on reaction selectivity of azo dye decolorization by Pseudomonas luteola. J. Hazard. Mater. 2007, 141, 842–849. [Google Scholar] [CrossRef] [PubMed]
- McCullagh, C.; Skillen, N.; Adams, M.; Robertson, P.K. Photocatalytic reactors for environmental remediation: A review. J. Chem. Technol. Biotechnol. 2011, 86, 1002–1017. [Google Scholar] [CrossRef]
- Chan, S.H.S.; Wu, T.Y.; Juan, J.C.; Teh, C.Y. Recent developments of metal oxide semiconductors as photocatalysts in advanced oxidation processes (AOPs) for treatment of dye waste-water. J. Chem. Technol. Biotechnol. 2011, 86, 1130–1158. [Google Scholar] [CrossRef]
- Guo, M.Y.; Ng, A.M.C.; Liu, F.; Djurisic, A.B.; Chan, W.K. Photocatalytic activity of metal oxides-the role of holes and OH radicals. Appl. Catal. B Environ. 2011, 107, 150–157. [Google Scholar] [CrossRef]
- Fenoll, J.; Hellin, P.; Mart, C.M.; Flores, P.; Navarro, S. Semiconductor oxides-sensitized photodegradation of fenamiphos in leaching water under natural sun light. Appl. Catal. B Environ. 2012, 115–116, 31–37. [Google Scholar] [CrossRef]
- Abualnaja, K.M.; Alprol, A.E.; Abu-Saied, M.A.; Ashour, M.; Mansour, A.T. Removing of anionic dye from aqueous solutions by adsorption using of multiwalled carbon nanotubes and poly (Acrylonitrile-styrene) impregnated with activated carbon. Sustainability 2021, 13, 7077. [Google Scholar] [CrossRef]
- Krifka, S.; Spagnuolo, G.; Schmalz, G.; Schweikl, H. A review of adaptive mechanisms in cell responses towards oxidative stress caused by dental resin monomers. Biomaterials 2013, 34, 4555–4563. [Google Scholar] [CrossRef]
- Liu, J.; Qiao, S.; Liu, H.; Chen, J.; Orpe, A.; Zhao, D.; Lu, G. Extension of the Stober Method to the Preparation of Monodisperse Resorcinol-Formaldehyde Resin Polymer and Carbon Spheres. Angew. Chem. Int. Ed. 2011, 50, 5947–5951. [Google Scholar] [CrossRef]
- Yang, P.; Xu, Q.; Jin, S.; Zhao, Y.; Lu, Y.; Xu, X.; Yu, S. Synthesis of Multifunctional Ag@Au@Phenol Formaldehyde Resin Particles Loaded with Folic Acids for Photothermal Therapy. Chem. Eur. J. 2012, 18, 9294–9299. [Google Scholar] [CrossRef]
- Deng, S.; Lei, J.; Yao, X.; Huang, Y.; Lin, D.; Ju, H. Electrocatalytic reduction of coreactant by highly loaded dendrimer-encapsulated palladium nanoparticles for sensitive electrochemiluminescent immunoassay. Chem. Commun. 2012, 48, 9159–9161. [Google Scholar] [CrossRef]
- Ma, C.; Song, Y.; Shi, J.; Zhang, D.; Guo, Q.; Liu, L. Preparation and electrochemical performance of heteroatom-enriched electrospun carbon nanofibers from melamine formaldehyde resin. J. Colloid Interface Sci. 2013, 395, 217–223. [Google Scholar] [CrossRef]
- Muylaert, I.; Borgers, M.; Bruneel, E.; Schaubroeck, J.; Verpoort, F.; Voort, P.V.D. Ultra stable ordered mesoporous phenol/formaldehyde polymers as a heterogeneous support for vanadium oxide. Chem. Commun. 2008, 37, 4475–4477. [Google Scholar] [CrossRef]
- Zhao, M.; Song, H. Catalytic Graphitization of Phenolic Resin. J. Mater. Sci. Technol. 2011, 27, 266–270. [Google Scholar] [CrossRef]
- Zhao, J.; Niu, W.; Zhang, L.; Cai, H.; Han, M.; Yuan, Y.; Majeed, S.; Anjum, S.; Xu, G. A Template-Free and Surfactant-Free Method for High-Yield Synthesis of Highly Monodisperse 3-Aminophenol-Formaldehyde Resin and Carbon Nano/Microspheres. Macromolecules 2013, 46, 140–145. [Google Scholar] [CrossRef]
- Mori, K.; Dojo, M.; Yamashita, H. Pd and Pd-Ag Nanoparticles within a Macroreticular Basic Resin: An Efficient Catalyst for Hydrogen Production from Formic Acid Decomposition. ACS Catal. 2013, 3, 1114–1119. [Google Scholar] [CrossRef]
- Wu, Y.; Li, Y.; Qin, L.; Yang, F.; Wu, D. Monodispersed or narrow-dispersed melamine–formaldehyde resin polymer colloidal spheres: Preparation, size-control, modification, bioconjugation and particle formation mechanism. J. Mater. Chem. B 2013, 1, 204–212. [Google Scholar] [CrossRef]
- He, X.H.; Wu, X.M.; Cai, X.; Lin, S.L.; Xie, M.R.; Zhu, X.Y.; Yan, D.Y. Functionalization of Magnetic Nanoparticles with Dendritic–Linear–Brush-Like Triblock Copolymers and Their Drug Release Properties. Langmuir 2012, 28, 11929–11938. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Zou, B.F.; Gao, T.; Wu, X.P.; Lou, S.Y.; Zhou, S.M. Constructing carbon-coated Fe3O4 hierarchical microstructures with a porous structure and their excellent Cr(VI) ion removal properties. J. Mater. Chem. 2012, 22, 9034–9040. [Google Scholar] [CrossRef]
- Matsuno, R.; Yamamoto, K.; Otsuka, H.; Takahara, A. Polystyrene-Grafted Magnetite Nanoparticles Prepared through Surface-Initiated Nitroxyl-Mediated Radical Polymerization. Chem. Mater. 2003, 15, 3–5. [Google Scholar] [CrossRef]
- Zhang, H.; Zhong, X.; Xu, J.J.; Chen, H.Y. Fe3O4/Polypyrrole/Au Nanocomposites with Core/Shell/Shell Structure: Synthesis, Characterization, and Their Electrochemical Properties. Langmuir 2008, 24, 13748–13752. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Wang, Y.; Zhang, X.; Guo, H. Fe78Si9B13 amorphous alloys for the decolorization process of azo dye aqueous solutions with different initial concentrations at different reaction temperatures. Vacuum 2020, 176, 109301. [Google Scholar] [CrossRef]
- Qiao, J.-H.; Chen, K.; Li, S.-J.; Liu, Y.-C.; Cao, H.-W.; Wei, G.; Kong, L.-P.; Zhang, X.; Liu, H.-T. Plasma spray-chemical vapor deposition of nanotextured film with α/β Bi2O3 heterostructure and photocatalytic degradation performance. Vacuum 2021, 188, 110206. [Google Scholar] [CrossRef]
- Parida, D.; Moreau, E.; Nazir, R.; Salmeia, K.A.; Friston, R.; Zhao, R.; Lehner, S.; Jovic, M.; Gann, S. Smart hydrogel-microsphere embedded silver nanoparticle catalyst with high activity and selectivity for the reduction of 4-nitrophenol and azo dyes. J. Hazard. Mat. 2021, 416, 126237. [Google Scholar] [CrossRef]
- Kong, L.R.; Lu, X.F.; Jin, E.; Jiang, S.; Bian, X.J.; Zhang, W.J.; Wang, C. Accurately Tuning the Dispersity and Size of Palladium Particles on Carbon Spheres and Using Carbon Spheres/Palladium Composite as Support for Polyaniline in H2O2 Electrochemical Sensing. Langmuir 2010, 26, 5985–5990. [Google Scholar] [CrossRef]
- Xuan, S.H.; Wang, Y.X.J.; Leung, K.C.F.; Shu, K.Y. Synthesis of Fe3O4@Polyaniline Core/Shell Microspheres with Well-Defined Blackberry-Like Morphology. J. Phys. Chem. C 2008, 112, 18804–18889. [Google Scholar] [CrossRef]
- Milyutin, V.V.; Mikheev, S.V.; Gelis, V.M.; Kozlitin, E.A. Sorption of Cesium on Ferrocyanide Sorbents from Highly Saline Solutions. Radiochemistry 2009, 51, 298–300. [Google Scholar] [CrossRef]
- Zicman, L.R.; Neacsu, E.; Done, L.; Tugulan, L.; Dragolici, F.; Obreja, B.T.; Dobre, T. Removal of 137Cs ions from aqueous radioactive waste using nickel ferrocyanide, precipitated on silica gel. Bull. Rom. Chem. Eng. Soc. 2015, 2, 84–99. [Google Scholar]
- Nilchi, A.; Atashi, H.; Javid, A.H.; Saberi, R. Preparations of PAN-Based Adsorbers for Separation of Cesium and Cobalt from Radioactive Wastes. Appl. Radiat. Isot. 2007, 65, 482–487. [Google Scholar] [CrossRef] [PubMed]
- Kozlov, P.V.; Kazadaev, A.A.; Makarovskii, R.A.; Remizov, M.B.; Verbitskii, K.V.; Logunov, M.V. Development of a Process for Cesium Recovery from the Clarified Phase of High-Level Waste Storage Tanks of the Mayak Production Association with a Ferrocyanide Sorbent. Radiochemistry 2016, 58, 295–301. [Google Scholar] [CrossRef]
- Milyutin, V.V.; Gelis, V.M.; Ershov, B.G.; Seliverstov, A.F. Effect of Complexing Agents and Surfactants on Coprecipitation of Cesium Radionuclides with Nickel Ferrocyanide. Radiochemistry 2011, 50, 67–69. [Google Scholar] [CrossRef]
- Milyutin, V.V.; Zelenin, P.G.; Kozlov, P.V.; Remizov, M.B.; Kondrutskii, D.A. Sorption of Cesium from Alkaline Solutions onto Resorcinol-Formaldehyde Sorbents. Radiochemistry 2019, 61, 714–718. [Google Scholar] [CrossRef]
- Brown, G.N.; Russell, R.L.; Peterson, R.A. Small-Column Cesium Ion Exchange Elution Testing of Spherical Resorcinol-Formaldehyde; Pacific Northwest National Laboratory: Richland, WA, USA, 2011. [Google Scholar]
- Hubler, T.L.; Franz, J.A.; Shaw, W.J.; Bryan, S.; Hallen, R.; Brown, G.N.; Bray, L.A.; Linehan, J.C. Synthesis, Structural Characterization, and Performance Evaluation of Resorcinol-Formaldehyde (RF) Ion-Exchange Resin; Pacific Northwest Laboratory: Richland, WA, USA, 1995. [Google Scholar]
- Hubler, T.L.; Shaw, W.J.; Brown, G.N.; Linehan, J.C.; Franz, J.A.; Hart, T.R.; Hogan, M.O. Chemical Derivation to Enhance the Chemical/Oxidative Stability of Resorcinol-Formaldehyde (R-F) Resin; Pacific Northwest National Lab.: Richland, WA, USA, 1996. [Google Scholar]
- Taguchi, S.; Nakatani, T.; Saeki, H.; Tayakout-Fayolle, M.; Itoh, K.; Yamamoto, T. Characterization of Resorcinol–Formaldehyde Hydrogel as Adsorbent for Cesium Ion. Adsorption 2021, 27, 81–90. [Google Scholar] [CrossRef]
- Aquino, C.M.; Costero, A.M.; Gil, S.; Gavina, P. Resorcinol Functionalized Gold Nanoparticles for Formaldehyde Colorimetric Detection. Nanomaterials 2019, 9, 302. [Google Scholar] [CrossRef]
- Gupta, V.K. Suhas Application of low-cost adsorbents for dye removal—A review. J. Environ. Manag. 2009, 90, 2313–2342. [Google Scholar] [CrossRef]
- Alkan, M.; Demirbas, O.; Celikcapa, S.; Dogan, M. Sorption of Acid Red 57 from Aqueous Solutions onto Sepiolite. J. Hazard. Mater. 2004, 116, 135–145. [Google Scholar] [CrossRef]
- Turhan, K.; Ozturkcan, S.A. Decolorization and Degradation of Reactive Dye in Aqueous Solution by Ozonation in a Semi-Batch Bubble Column Reactor. Water Air Soil Pollut. 2012, 224, 1353. [Google Scholar] [CrossRef]
- Abdallah, R.; Taha, S. Biosorption of methylene blue from aqueous solution by nonviable Aspergillus fumigates. Chem. Eng. J. 2012, 195, 69–76. [Google Scholar] [CrossRef]
- Wang, B.E.; Hu, Y.Y. Comparison of four supports for adsorption of reactive dyes by immobilized Aspergillus fumigatus beads. J. Environ. Sci. 2007, 19, 451–457. [Google Scholar] [CrossRef]
- Wainwright, M.; Crossley, K.B. Methylene Blue-a therapeutic dye for all seasons? J. Chemother. 2002, 14, 431–443. [Google Scholar] [CrossRef]
- Frankenburg, F.R.; Baldessarini, R.J. Neurosyphilis, Malaria, and the Discovery of Antipsychotic Agents. Harv. Rev. Psychiatry 2008, 16, 299–307. [Google Scholar] [CrossRef]
- Chung, K.T.; Stevens, S.E. Degradation azo dyes by environmental microorganisms and helminths. Environ. Toxicol. Chem. 1993, 12, 2121–2132. [Google Scholar] [CrossRef]
- Aksu, Z.; Tezer, S. Equilibrium and Kinetic Modelling of Biosorption of Remazol Black B by Rhizopus arrhizus in a Batch System: Effect of Temperature. Process Biochem. 2000, 36, 431–439. [Google Scholar] [CrossRef]
- Lucas, M.S.; Peres, J.A. Decolorization of the Azo Dye Reactive Black 5 by Fenton and Photo Fenton Oxidatio. Dyes Pigm. 2006, 71, 236–244. [Google Scholar] [CrossRef]
- Albert, M.; Lessin, M.S.; Gilchrist, B.F. Methylene blue: Dangerous dye for neonates. J. Pediatr. Surg. 2003, 38, 1244–1245. [Google Scholar] [CrossRef]
- Srinivasan, M.; White, T. Degradation of Methylene Blue by Three-Dimensionally Ordered Macroporous Titania. Environ. Sci. Technol. 2007, 41, 4405–4409. [Google Scholar] [CrossRef]
- Zhang, Y.G.; Ma, L.L.; Li, J.L.; Yu, Y. In Situ Fenton Reagent Generated from TiO2/Cu2O Composite Film: A New Way to Utilize TiO2 under Visible Light Irradiation. Environ. Sci. Technol. 2007, 41, 6264–6269. [Google Scholar] [CrossRef]
- Bielska, M.; Szymanowski, J. Removal of methylene blue from waste water using micellar enhanced ultrafiltration. Water Res. 2006, 40, 1027–1033. [Google Scholar] [CrossRef]
- Hameed, B.H.; Ahmad, A.L.; Latiff, K.N.A. Adsorption of basic dye (methylene blue) onto activated carbon prepared from rattan sawdust. Dyes Pigm. 2007, 75, 143–149. [Google Scholar] [CrossRef]
- Zhang, S.; Fan, Q.; Gao, H.; Huang, Y.; Liu, X.; Li, J.; Xu, X.; Wang, X. Formation of Fe3O4@MnO2 ballin-ball hollow spheres as a high performance catalyst with enhanced catalytic performances. J. Mater. Chem. A 2016, 4, 1414–1422. [Google Scholar] [CrossRef]
- Wang, Y.; Pan, F.; Dong, W.; Xu, L.; Wu, K.; Xu, G.; Chen, W. Recyclable silver-decorated magnetic titania nanocomposite with enhanced visible-light photocatalytic activity. Appl. Catal. B Environ. 2016, 189, 192–198. [Google Scholar] [CrossRef]
- Gawande, M.B.; Branco, P.S.; Varma, R.S. Nano-magnetite (Fe3O4) as support for recyclable nanocatalysts in the development of sustainable methodologies. Chem. Soc. Rev. 2013, 42, 3371–3393. [Google Scholar] [CrossRef]
- Varma, R.S. Journey on greener pathways: From the use of alternate energy inputs and benign reaction media to sustainable applications of nano-catalysts in synthesis and environmental remediation. Green Chem. 2014, 16, 2027–2041. [Google Scholar] [CrossRef]
- Sharma, V.K. Festschrift in Honor of Rajender S. Varma. ACS Sustain. Chem. Eng. 2016, 4, 640–642. [Google Scholar] [CrossRef]
- Baig, R.B.N.; Varma, R.S. Organic synthesis via magnetic attraction: Benign and sustainable protocols using magnetic nanoferrites. Green Chem. 2013, 15, 398–417. [Google Scholar] [CrossRef]
- Atarod, M.; Nasrollahzadeh, M.; Sajadi, S.M. Green synthesis of Pd/RGO/Fe3O4 nanocomposite using Withania coagulans leaf extract and its application as magnetically separable and reusable catalyst for the reduction of 4-nitrophenol. J. Colloid Interface Sci. 2016, 465, 249–258. [Google Scholar] [CrossRef]
- Sajadi, S.M.; Nasrollahzadeh, M.; Maham, M. Aqueous extract from seeds of Silybum marianum L. as a green material for preparation of the Cu/Fe3O4 nanoparticles: A magnetically recoverable and reusable catalyst for the reduction of nitroarenes. J. Colloid Interface Sci. 2016, 469, 93–98. [Google Scholar] [CrossRef]
- Veremchuk, I.; Antonyshyn, I.; Candolfi, C.; Feng, X.; Burkhardt, U.; Baitinger, M.; Zhao, J.-T.; Grin, Y. Diffusion-Controlled Formation of Ti2O3 during Spark-Plasma Synthesis. Inorg. Chem. 2013, 52, 4458–4463. [Google Scholar]
- Yang, K.; Peng, H.B.; Wen, Y.H.; Li, N. Re-examination of characteristic FTIR spectrum of secondary layer in bilayer oleic acid-coated Fe3O4 nanoparticles. Appl. Surf. Sci. 2010, 256, 3093–3097. [Google Scholar] [CrossRef]
- Lasperas, M.; Llorett, T.; Chaves, L.; Rodriguez, I.; Cauvel, A.; Brunel, D. Amine functions linked to MCM-41-type silicas as a new class of solid base catalysts for condensation reactions. Stud. Surf. Sci. Catal. 1997, 108, 75–82. [Google Scholar] [CrossRef]
- Allen, D.J.; Ishida, H. Synthesis and properties of polybenzoxazines containing pyridyl group. Polymer 2007, 48, 6763–6772. [Google Scholar] [CrossRef]
- Chernykh, I.; Liu, J.P.; Ishida, H. Synthesis and properties of a new crosslinkable polymer containing benzoxazine moiety in the main chain. Polymer 2006, 47, 7664–7669. [Google Scholar] [CrossRef]
- Ma, Z.Y.; Guan, Y.P.; Liu, H.Z. synthesis and characterization of micron-sized monodisperse superparamagnetic polymer particles with amino groups. J. Polym. Sci. Part A Polym. Chem. 2005, 43, 3433–3439. [Google Scholar] [CrossRef]
- Ramanathan, T.; Fisher, F.T.; Ruoff, R.S.; Brinson, L.C. Amino-functionalized carbon nanotubes for binding to polymers and biological systems. Chem. Mater. 2005, 17, 1290–1295. [Google Scholar] [CrossRef]
- Morlieras, J.; Chezal, J.-M.; Miot-Noirault, E.; Roux, A.; Heinrich-Balard, L.; Cohen, R.; Tarrit, S. Development of gadolinium based nanoparticles having an affinity towards melanin. Nanoscale 2013, 5, 1603–1615. [Google Scholar] [CrossRef]
- Jahagirdar, S.S.; Shrihari, S.; Manu, B. Reuse of incinerated textile mill sludge as adsorbent for dye removal. KSCE J. Civ. Eng. 2015, 19, 1982–1986. [Google Scholar] [CrossRef]
- Rehman, M.S.U.; Kim, I.; Rashid, N.; Umer, M.A.; Sajid, M.; Han, J.I. Adsorption of Brilliant Green Dye on Biochar Prepared From Lignocellulosic Bioethanol Plant Waste. Clean Soil Air Water 2016, 44, 55–62. [Google Scholar] [CrossRef]
- Laskar, N.; Kumar, U. Removal of Brilliant Green dye from water by modified Bambusa Tulda: Adsorption isotherm, kinetics and thermodynamics study. Int. J. Environ. Sci. Technol. 2018, 16, 1649–1662. [Google Scholar] [CrossRef]
- Moeinpour, F.; Alimoradi, A.; Kazemi, M. Efficient removal of Eriochrome black-T from aqueous solution using NiFe2O4 magnetic nanoparticles. J. Environ. Health Sci. Eng. 2014, 12, 112. [Google Scholar] [CrossRef] [PubMed]
- Khalid, A.; Zubair, M.; Ihsanullah, A. A Comparative Study on the Adsorption of Eriochrome Black T Dye from Aqueous Solution on Graphene and Acid-Modified Graphene. Arab. J. Sci. Eng. 2018, 43, 2167–2179. [Google Scholar] [CrossRef]
- Fayoud, N.; Tahiri, S.; Younssi, S.A.; Albizane, A.; Gallart-Mateu, D.; Cervera, M.L.; De la Guardia, M. Kinetic, isotherm and thermodynamic studies of the adsorption of methylene blue dye onto agro-based cellulosic materials. Desalination Water Treat. 2016, 57, 16611–16625. [Google Scholar] [CrossRef]
- Baidya, K.S.; Kumar, U. Adsorption of brilliant green dye from aqueous solution onto chemically modified areca nut husk. Afr. J. Chem. Eng. 2021, 35, 33–43. [Google Scholar] [CrossRef]
- Salman, S.M.; Ali, A.; Khan, B.; Iqbal, M.; Alamzeb, M. Thermodynamic and kinetic insights into plant-mediated detoxification of lead, cadmium, and chromium from aqueous solutions by chemically modified Salvia moorcroftiana leaves. Environ. Sci. Pollut. Res. Int. 2019, 26, 14339–14349. [Google Scholar] [CrossRef]
- Mane, V.S.; Babu, P.V.V. Studies on the adsorption of Brilliant Green dye from aqueous solution onto low-cost NaOH treated saw dust. Desalination 2011, 273, 321–329. [Google Scholar] [CrossRef]
- Auta, M.; Hameed, B.H. Modified mesoporous clay adsorbent for adsorption isotherm and kinetics of methylene blue. Chem. Eng. J. 2012, 198–199, 219–227. [Google Scholar] [CrossRef]
- Mattson, J.S.M.H.B. Activated Carbon: Surface Chemistry and Adsorption from Solution; M. Dekker: New York, NY, USA, 1971. [Google Scholar]
- Rashidi, R.; Khaniabadi, Y.O.; Ghaderpoori, M. Adsorption of Eriochrome black-T from aqueous environment by raw Montmorillonite. Int. J. Environ. Anal. Chem. 2021, 1–15. [Google Scholar] [CrossRef]
Isotherm | Ti2O3/mAPF MMS | Ti2O3 |
---|---|---|
−x/m = k.P1/n | ||
Slope (1/n) | 0.096 | 0.506 |
Intercept (log k) | 1.973 | 0.350 |
Correlation coefficient (r) | 0.939 | 0.990 |
Langmuir (xm = aP1 + bP) | ||
Intercept (1/ Q0b) | 0.006 | 0.613 |
Correlation coefficient (r) | 0.999 | 0.994 |
Q0 (mg g−1) | 132.62 | 13.94 |
b (L mg−1) | 0.795 | 8.571 |
RL | 0.003 | 0.007 |
S. No | Adsorbent | Dyes | Q0 (mg g−1) |
---|---|---|---|
1 | Sodium carbonate—Treated B Vulgaris | BG | 40.12 |
2 | Hydrochloric acid—Treated Bambusa | BG | 32.15 |
3 | Dialectical Behavior Therapy—Treated B Vulgaris | BG | 31.02 |
4 | Coconut fiber | Congo Red | 2.80 |
5 | Musa sapientum | BB9 | 19.90 |
6 | orange zest | Acid Violet | 19.50 |
7 | stalks of grasses | BB9 | 19.80 |
8 | Sugarcane megass | Acid Orange 10 | 5.97 |
9 | Phoenix dactylifera (kernels) | BB9 | 16.80 |
10 | Coconut fiber | Direct red 28 | 6.70 |
11 | Citrullus lanatus | Crystal Violet | 11.90 |
12 | Coal-based adsorbent | Direct brown 1 | 5.90 |
13 | Rice hull | BB9 | 19.50 |
14 | Cobnuts or filberts | BB9 | 8.80 |
15 | Live oaks | BG | 2.08 |
16 | Rice hull ash | BG | 24.13 |
17 | Saraca asoca | BG | 123.0 |
18 | Rice straw | BG | 113.10 |
19 | SCBA | BG | 118.17 |
20 | Native Allium sativum | EBT | 100.22 |
21 | Washed Allium sativum | EBT | 89.40 |
22 | Ti2O3/mAPF MMSs (this Study) | Methyl Violet | 132.62 |
S. No | Adsorbent Detail | Q0 (mg g−1) |
---|---|---|
1 | Graphite | 101.02 |
2 | Acid-modified Graphite | 69.39 |
3 | Native pyrena | 6.8 |
4 | Cold plasma treated-pyrena shells | 19.08 |
5 | Microwave treated-pyrena shells | 30.38 |
5 | Magnetite/silica/pectinNPs | 66.28 |
6 | Ponded ash | 95.87 |
7 | Phosphoric acid -modified berry cultivation | 132.04 |
8 | Nickel ferrite@NPs | 82.41 |
9 | Nickel ferrite magnetic NPs | 48.2 |
10 | C12H20N2O5 (Hydrophobic cross-linked) | 16.3 |
11 | β-CD | 21.4 |
12 | Nickel–iron alloy-hydroxides | 132.4 |
13 | Sweet lime-activated carbon | 47.43 |
14 | Smectite clay composite | 3.50 |
15 | China clay/polymer | 0.56 |
16 | Steatite or soapstone | 2.15 |
17 | Hydrochloric acid modified clay | 17.18 |
18 | Sulfuric acid modified clay | 17.48 |
19 | Al2H2O12Si4 (Gelwhite L. Bentolite.) | 100.5 |
20 | Stringybark | 53.25 |
21 | Native Allium sativum | 99.52 |
22 | Washed Allium sativum | 89.40 |
23 | Ti2O3/mAPF MMS (This Study) | 132.62 |
Time (min) | Log (Ci/Ct) | 5 + Log [1 − U (t)] | 2 + Log (qe − qt) |
---|---|---|---|
10 | 0.61 | 4.32 | 2.29 |
20 | 0.64 | 4.27 | 2.24 |
30 | 0.83 | 4.00 | 1.98 |
40 | 0.85 | 3.95 | 1.96 |
50 | 1.02 | 3.69 | 1.66 |
60 | 1.07 | 3.27 | 1.23 |
Adsorbent | Temp (K) | KL | ΔG° KJ mol−1 | ΔG° KJ mol−1 | ΔS° JK−1 mol−1 | R2 |
---|---|---|---|---|---|---|
Ti2O3/mAPF MMS | 293 | 2.380 | −2.112 | 2.433 | 15.480 | 0.989 |
298 | 2.412 | −2.180 | ||||
303 | 2.445 | −2.247 | ||||
308 | 2.483 | −2.326 | ||||
313 | 2.536 | −2.415 | ||||
318 | 2.565 | −2.485 | ||||
Ti2O3 | 293 | 2.031 | −1.716 | 2.272 | 13.665 | 0.944 |
298 | 2.052 | −1.780 | ||||
303 | 2.130 | −1.904 | ||||
308 | 2.155 | −1.936 | ||||
313 | 2.187 | −1.998 | ||||
318 | 2.218 | −2.068 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Radha, S.; Christygnanatheeba, P.; Nagaraj, K.; Prasad, S.; AlSalhi, M.S.; Kumar, J.V.; Arunachalam, P.; Karuppiah, C. Titanium(III) Oxide Doped with meta-Aminophenol Formaldehyde Magnetic Microspheres: Enhancing Dye Adsorption toward Methyl Violet. Processes 2023, 11, 1250. https://doi.org/10.3390/pr11041250
Radha S, Christygnanatheeba P, Nagaraj K, Prasad S, AlSalhi MS, Kumar JV, Arunachalam P, Karuppiah C. Titanium(III) Oxide Doped with meta-Aminophenol Formaldehyde Magnetic Microspheres: Enhancing Dye Adsorption toward Methyl Violet. Processes. 2023; 11(4):1250. https://doi.org/10.3390/pr11041250
Chicago/Turabian StyleRadha, Suriyan, Paul Christygnanatheeba, Karuppiah Nagaraj, Saradh Prasad, Mohamad Saleh AlSalhi, Jeyaraj Vinoth Kumar, Prabhakarn Arunachalam, and Chelladurai Karuppiah. 2023. "Titanium(III) Oxide Doped with meta-Aminophenol Formaldehyde Magnetic Microspheres: Enhancing Dye Adsorption toward Methyl Violet" Processes 11, no. 4: 1250. https://doi.org/10.3390/pr11041250
APA StyleRadha, S., Christygnanatheeba, P., Nagaraj, K., Prasad, S., AlSalhi, M. S., Kumar, J. V., Arunachalam, P., & Karuppiah, C. (2023). Titanium(III) Oxide Doped with meta-Aminophenol Formaldehyde Magnetic Microspheres: Enhancing Dye Adsorption toward Methyl Violet. Processes, 11(4), 1250. https://doi.org/10.3390/pr11041250