Phytochemical Extract from Syzygium cumini Leaf: Maximization of Compound Extraction, Chemical Characterization, Antidiabetic and Antibacterial Activity, and Cell Viability
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Material
2.2. Solvents, Reagents, and Analytical Standards
2.3. Ultrasound-Assisted Extraction
2.4. Extract Characterization
2.5. Inhibition of Enzymes and Antibacterial Activity
2.6. Cell Viability Assay
3. Results and Discussion
3.1. Experimental Design: Establishment of Predictive Equations
3.2. Analysis of Effects
3.2.1. Effect of Temperature
3.2.2. Effect of Time
3.2.3. Effect of Solvent to Leaf Ratio (SLR)
3.3. Verification Experiments
3.4. Effect of Extractor Solvent Composition
3.4.1. Extraction Mass Yield
3.4.2. Composition of Dry Extracts
3.4.3. Inhibition of Enzymes
3.4.4. Antibacterial Activity
3.4.5. Cell Viability
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lima, L.A.; Siani, A.C.; Brito, F.A.; Sampaio, A.L.F.; Henriques, M.G.M.O.; Riehl, C.A.S. Correlation of anti-inflammatory activity with phenolic content in the leaves of Syzygium cumini (L.) skeels (myrtaceae). Quím. Nova 2007, 30, 860–864. [Google Scholar] [CrossRef]
- Da Rosa, A.C.S.; Costa, A.J.N.; Júnior, O.O.S.; Da Silva, C. Ultrasound-Assisted Extraction of Sunflower Seed Oil Enriched with Active Compounds from Jambolan Leaf. J. Braz. Chem. Soc. 2024, 36, e-20240116. [Google Scholar] [CrossRef]
- Smruthi, G.; Mahadevan, V.; Vadivel, V.; Brindha, P. Docking studies on antidiabetic molecular targets of phytochemical compounds of Syzygium cumini (L.) Skeels. Asian J. Pharm. Clin. Res. 2016, 9, 287–293. [Google Scholar] [CrossRef]
- Upasna, B.; Biswajit, S. Analysis of flux decline using sequential fouling mechanisms during concentration of Syzygium cumini (L.) leaf extract. Chem. Eng. Res. Des. 2018, 130, 167–183. [Google Scholar] [CrossRef]
- Veber, J.; Petrini, L.A.; Andrade, L.B.; Siviero, J. Determination of phenolic compounds and antioxidant capacity of aqueous and ethanolic extracts of Jambul (Syzygium cumini). Rev. Bras. Plant. Med. 2015, 17, 267–273. [Google Scholar] [CrossRef]
- Misrahanum, M.; Hira, H.; Narisa, C.; Sadli, S. Activity of Jamblang Leaf Extract (Syzygium cumini L. Skeels) with Various Solvents against Clinical Isolate Bacteria. AIP Conf. Proc. 2022, 2659, 060011. [Google Scholar] [CrossRef]
- Kaneria, M.; Chanda, S. Evaluation of antioxidant and antimicrobial capacity of Syzygium cumini L. Leaves extracted sequentially in different solvents. J. Food Biochem. 2013, 37, 168–176. [Google Scholar] [CrossRef]
- Rouhani, M. Modeling and optimization of ultrasound-assisted green extraction and rapid HPTLC analysis of stevioside from Stevia rebaudiana. Ind. Crops Prod. 2019, 132, 226–235. [Google Scholar] [CrossRef]
- Pradal, D.; Vauchel, P.; Decossin, S.P.; Dhulster, P.; Dimitrov, K. Kinetics of ultrasound-assisted extraction of antioxidant polyphenols from food by-products: Extraction and energy consumption optimization. Ultrason. Sonochem. 2016, 32, 137–146. [Google Scholar] [CrossRef]
- Mahindrakar, K.V.; Rathod, V.K. Ultrasound-assisted intensified aqueous extraction of phenolics from waste Syzygium cumini leaves: Kinetic studies and evaluation of antioxidant, antidiabetic and anticancer potential. Food Biosci. 2022, 46, 101547. [Google Scholar] [CrossRef]
- Vilchis-Gómez, D.S.; Calderón-Santoyo, M.; Barros-Castillo, J.C.; Zamora-Gasga, V.M.; Ragazzo-Sánchez, J.A. Ultrasound assisted extraction of polyphenols from Randia monantha: Optimization, characterization and antifungal activity. Ind. Crops Prod. 2024, 209, 117932. [Google Scholar] [CrossRef]
- Saleh, I.A.; Vinatoru, M.; Mason, T.J.; Abdel-Azim, N.S.; Aboutabl, E.A.; Hammouda, F.M. A possible general mechanism for ultrasound-assisted extraction (UAE) suggested from the results of UAE of chlorogenic acid from Cynara scolymus L. (artichoke) leaves. Ultrason. Sonochem. 2016, 31, 330–336. [Google Scholar] [CrossRef]
- Celaya, L.S.; Kolb, E.; Kolb, N. Solubility of Stevioside and Rebaudioside A in water, ethanol and their binary mixtures. Int. J. Food Stud. 2016, 5, 158–166. [Google Scholar] [CrossRef]
- Afandi, A.; Sarijan, S.; Shaha, R.K. Optimization of rebaudioside a extraction from Stevia rebaudiana (bertoni) and quantification by high perfomance liquid chromatography analysis. J. Trop. Resour. Sustain. Sci. 2013, 1, 62–70. [Google Scholar] [CrossRef]
- Kerton, F.M. Introduction. In Alternative Solvents for Green Chemistry; Clark, J.H., Kraus, G.A., Eds.; Royal Society of Chemistry: London, UK, 2013; Volume 2, pp. 1–30. [Google Scholar] [CrossRef]
- Raspe, D.T.; Ciotta, S.R.; Zorzenon, M.R.T.; Dacome, A.S.; Silva, C.; Milani, P.G.; Costa, S.C. Ultrasound-assisted extraction of compounds from Stevia leaf pretreated with ethanol. Ind. Crops Prod. 2021, 172, 114035. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventos, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar] [CrossRef]
- Lin, J.Y.; Tang, C.Y. Determination of total phenolic and flavonoid contents in selected fruits and vegetables, as well as their stimulatory effects on mouse splenocyte proliferation. Food Chem. 2007, 101, 140–147. [Google Scholar] [CrossRef]
- Gu, L.B.; Zhang, G.J.; Du, L.; Du, J.; Qi, K.; Zhu, X.L.; Zhang, X.Y.; Jiang, Z.H. Comparative study on the extraction of Xanthoceras sorbifolia Bunge (yellow horn) seed oil using subcritical n-butane, supercritical CO2, and the Soxhlet method. LWT Food Sci. Technol. 2019, 111, 548–554. [Google Scholar] [CrossRef]
- Rufino, M.S.M.; Alves, R.E.; Brito, E.S.; Morais, S.M.; Sampaio, C.G.; Pérez-Jiménez, J.; Saura-Calixto, F.D. Fortaleza: Metologia Científica EMBRAPA: Determinação da Atividade Antioxidante Total em Frutas pela Captura do Radical Livre DPPH. Comunicado Técnico. 2007. Available online: https://ainfo.cnptia.embrapa.br/digital/bitstream/CNPAT/10224/1/Cot_127.pdf (accessed on 20 July 2024).
- Kim, Y.-M.; Wang, M.-H.; Rhee, H.-I. A novel α-glucosidase inhibitor from pine bark. Carbohydr. Res. 2004, 339, 715–717. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute (CLSI). Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically, 8th ed.; Approved Standard; CLSI Publication M07-A8; CLSI: Wayne, PA, USA, 2009; ISBN 1-56238-837-1. [Google Scholar]
- Pinc, M.M.; Dalmagro, M.; Cruz, E.A.P.; Donadel, G.; Thomaz, R.T.; da Silva, C.; Macruz, P.D.; Jacomassi, E.; Gasparotto Junior, A.; Hoscheid, J.; et al. Extraction Methods, Chemical Characterization, and In Vitro Biological Activities of Plinia cauliflora (Mart.) Kausel Peels. Pharmaceuticals 2023, 16, 1173. [Google Scholar] [CrossRef]
- Malich, G.; Markovic, B.; Winder, C. The sensitivity and specificity of the MTS tetrazolium assay for detecting the in vitro cytotoxicity of 20 chemicals using human cell lines. Toxicology 1997, 124, 179–192. [Google Scholar] [CrossRef]
- Dzah, C.S.; Duan, Y.; Zhang, H.; Wen, C.; Zhang, J.; Chen, G.; Ma, H. The effects of ultrasound assisted extraction on yield, antioxidant, anticancer and antimicrobial activity of polyphenol extracts: A review. Food Biosci. 2020, 35, 100547. [Google Scholar] [CrossRef]
- Beaudor, M.; Vauchel, P.; Pradal, D.; Aljawish, A.; Phalip, V. Comparing the efficiency of extracting antioxidant polyphenols from spent coffee grounds using an innovative ultrasound-assisted extraction equipment versus conventional method. Chem. Eng. Process. 2023, 188, 109358. [Google Scholar] [CrossRef]
- Li, H.; Zhao, Q.-S.; Wang, L.W.; Chang, S.-L.; Wang, P.-D.; Zhao, B. Optimization of cyclodextrin-assisted green extraction of cannabidiol from industrial hemp leaves: Release behavior, permeability, bioactivity, and stability. Ind. Crops Prod. 2022, 188, 115709. [Google Scholar] [CrossRef]
- Jo, Y.J.; Kim, J.H. Diffusivity and Mass Transfer Coefficient during the Extraction of Paclitaxel from Taxus chinensis Using Methanol. Biotechnol. Bioprocess Eng. 2019, 24, 818–823. [Google Scholar] [CrossRef]
- Prasad, K.N.; Hassan, F.A.; Yang, B.; Kong, K.W.; Ramanam, R.N.; Azlan, A.; Ismail, A. Response surface optimisation for the extraction of phenolic compounds and antioxidant capacities of underutilized Mangifera pajang Kosterm. peels. Food Chem. 2011, 128, 1121–1127. [Google Scholar] [CrossRef]
- Ullah, S.; Anwar, F.; Rehman, F.; Qadir, R.; Akram, S. Response Surface Methodology-based Optimized Ultrasonic-assisted Extraction and Characterization of Selected High-Value Components from Gemlik Olive Fruit. Chem. Biodivers. 2023, 20, e202300107. [Google Scholar] [CrossRef]
- Sharma, M.; Dash, K.K. Microwave and ultrasound assisted extraction of phytocompounds from black jamun pulp: Kinetic and thermodynamics characteristics. Innov. Food Sci. Emerg. Technol. 2022, 75, 102913. [Google Scholar] [CrossRef]
- Raja, G.V.S.B.; Dash, K.K. Ultrasound-assisted extraction of phytocompounds from dragon fruit peel: Optimization, kinetics and thermodynamic studies. Ultrason. Sonochem. 2020, 68, 105180. [Google Scholar] [CrossRef]
- Shewale, S.; Rathod, V.K. Extraction of total phenolic content from Azadirachta indica or (neem) leaves: Kinetics study. Prep. Biochem. Biotechnol. 2018, 48, 4. [Google Scholar] [CrossRef]
- Albarri, R.; Şahin, S. Kinetics, thermodynamics, and mass transfer mechanism of the ultrasound-assisted extraction of bioactive molecules from Moringa oleifera leaves. Biomass. Convers. Biorefin. 2023, 13, 7919–7926. [Google Scholar] [CrossRef]
- Zhang, L.; Zhou, C.; Wang, B.; Yagoub, A.E.-G.A.; Ma, H.; Zhang, X.; Wu, M. Study of ultrasonic cavitation during extraction of the peanut oil at varying frequencies. Ultrason. Sonochem. 2017, 37, 106–113. [Google Scholar] [CrossRef]
- Frohlich, P.C.; Santos, K.A.; Hasan, S.D.M.; Silva, E.A. Evaluation of the ethanolic ultrasound-assisted extraction from clove (Syzygium aromaticum) leaves and chemical characterization of the extracts. Food Chem. 2022, 373, 131351. [Google Scholar] [CrossRef]
- Mohammadpour, H.; Sadrameli, S.M.; Eslami, F.; Asoodeh, A. Optimization of ultrasound-assisted extraction of Moringa peregrina oil with response surface methodology and comparison with Soxhlet method. Ind. Crops Prod. 2019, 131, 106–116. [Google Scholar] [CrossRef]
- Sahin, S.; Shamli, R. Optimization of olive leaf extract obtained by ultrasound-assisted extraction with response surface methodology. Ultrason. Sonochem. 2013, 20, 595–602. [Google Scholar] [CrossRef]
- Gisela, L.G.; Marcela, B.M.; Andrés, L.R. Kinetic modelling of total phenolic compounds from Ilex paraguariensis (St. Hil.) leaves: Conventional and ultrasound assisted extraction. Food Bioprod. Process. 2023, 139, 75–88. [Google Scholar] [CrossRef]
- Hefied, F.; Ahmed, Z.B.; Yousfi, M. Optimization of ultrasonic-assisted extraction of phenolic compounds and antioxidant activities from Pistacia atlantica Desf. galls using response surface methodology. J. Appl. Res. Med. Aromat. Plants 2023, 32, 100449. [Google Scholar] [CrossRef]
- Wang, S.; Lin, A.H.-M.; Han, Q.; Xu, Q. Evaluation of Direct Ultrasound-Assisted Extraction of Phenolic Compounds from Potato Peels. Process 2020, 8, 1665. [Google Scholar] [CrossRef]
- Bodoira, R.; Rossi, Y.; Montenegro, M.; Maestri, D.; Velez, A. Extraction of antioxidant polyphenolic compounds from peanut skin using water-ethanol at high pressure and temperature conditions. J. Supercrit. Fluids 2017, 128, 57–65. [Google Scholar] [CrossRef]
- Athanasiadis, V.; Pappas, V.M.; Palaiogiannis, D.; Chatzimitakos, T.; Bozinou, E.; Makris, D.P.; Lalas, S.I. Pulsed Electric Field-Based Extraction of Total Polyphenols from Sideritis raiser Using Hydroethanolic Mixtures. Oxygen 2022, 2, 91–98. [Google Scholar] [CrossRef]
- Pimentel-Moral, S.; Borrás-Linares, I.; Lozano-Sánchez, J.; Alañón, M.E.; Arráez-Román, D.; Segura-Carretero, A. Pressurized GRAS solvents for the green extraction of phenolic compounds from hibiscus sabdariffa calyces. Food Res. Int. 2020, 137, 109466. [Google Scholar] [CrossRef]
- Mokaizh, A.A.B.; Nour, A.H.; Kerboua, K. Ultrasonic-assisted extraction to enhance the recovery of bioactive phenolic compounds from Commiphora gileadensis leaves. Ultrason. Sonochem. 2024, 105, 106852. [Google Scholar] [CrossRef]
- Ruan, Z.P.; Zhang, L.L.; Lin, Y.M. Evaluation of the Antioxidant Activity of Syzygium cumini Leaves. Molecules 2008, 13, 2545–2556. [Google Scholar] [CrossRef]
- Bentoulla, T.; Kotsou, K.; Kalompatsios, D.; Alibade, A.; Athanasiadis, V.; Bozinou, E.; Lalas, S.I. Investigation and Enhancement of the Antioxidant Compound Recovery of Pyrus communis Peel. Waste 2024, 2, 382–396. [Google Scholar] [CrossRef]
- Zaluski, D.; Olech, M.; Kuźniewski, R.; Verpoorte, R.; Nowak, R.; Smolarz, H.D. LC-ESI-MS/MS profiling of phenolics from Eleutherococcus spp. inflorescences, structure-activity relationship as antioxidants, inhibitors of hyaluronidase and acetylcholinesterase. Saudi Pharm. J. 2017, 25, 734–743. [Google Scholar] [CrossRef]
- Nithya, R.; Subramanian, S. Antioxidant properties of sinapic acid: In vitro and in vivo approach. Asian J. Pharm. Clin. Res. 2017, 10, 255–262. [Google Scholar] [CrossRef]
- Tai, A.; Sawano, T.; Yazama, F.; Ito, H. Evaluation of antioxidant activity of vanillin by using multiple antioxidant assays. Biochim. Biophys. Acta BBA Gen. Subj. 2011, 1810, 170–177. [Google Scholar] [CrossRef]
- Karaman, M.; Tesanovic, K.; Gorjanovic, S.; Pastor, F.T.; Simonovic, M.; Glumac, M.; Pejin, B. Polarography as a technique of choice for the evaluation of total antioxidant activity: The case study of selected coprinus comatus extracts and quinic acid, their antidiabetic ingredient. Nat. Prod. Res. 2021, 35, 1711–1716. [Google Scholar] [CrossRef]
- Ball, E. Liposomas En: Dermatología. Dermat. Venez. 1995, 33, 15–23. [Google Scholar]
- Fernandes, D.C.; Martins, B.P.; Medeiros, D.L.F.; Santos, S.V.M.; Gayer, C.R.M.; Velozo, L.S.M.; Coelho, M.G.P. Antinociceptive and anti-inflammatory activities of the hexanic extract of Echinodorus macrophyllus (Kunth) Micheli in mice. Braz. J. Biomed. Sci. 2019, 18, 25–32. [Google Scholar] [CrossRef]
- Milovanovic, S.; Grzegorczyk, A.; Świątek, L.; Boguszewska, A.; Kowalski, R.; Tyśkiewicz, K.; Konkol, M. Phenolic, tocopherol, and essential fatty acid-rich extracts from dandelion seeds: Chemical composition and biological activity. Food Biop. Process 2023, 142, 70–81. [Google Scholar] [CrossRef]
- Ravi, L.; Girish, S.; D’Souza, S.R.; Sreenivas, B.K.A.; Kumari, G.R.S.; Archana, O.; Kumar, A.K.; Manjunathan, R. β-Sitosterol, a phytocompound from Parthenium hysterophorus, reveals anti-diabetic properties through α-Amylase inhibition: An in-silico and in-vitro analysis. J. Biom. Struct. Dynam. 2023, 41, 15033–15044. [Google Scholar] [CrossRef]
- Vieira, P.G.; Melo, M.M.R.; Seen, A.; Simões, M.M.Q.; Portugal, I.; Pereira, H.; Silva, C.M. Quercus cerris extracts obtained by distinct separation methods and solvents: Total and friedelin extraction yields, and chemical similarity analysis by multidimensional scaling. Sep. Purif. Technol. 2020, 232, 115924. [Google Scholar] [CrossRef]
- Kwon, Y.I.; Jang, H.D.; Shetty, K. Evaluation of Rhodiola crenulata and Rhodiola rosea for management of type II diabetes and hypertension. Asian Pac. J. Clin. Nutr. 2006, 15, 425–432. [Google Scholar]
- Han, Z.; Wang, L.; Sun, P.; Huang, M.; Yu, F.; Liu, J.; Wu, Y.; He, P.; Tu, Y.; Li, B. Quinic acid as an inhibitor of α-glucosidase activity, nonenzymatic glycosylation, and glucose transport in Caco-2 cells. Food Front. 2024, 1–11. [Google Scholar] [CrossRef]
- Aleixandre, A.; Gil, J.V.; Sineiro, J.; Rosell, C.M. Understanding phenolic acids inhibition of α-amylase and α-glucosidase and influence of reaction conditions. Food Chem. 2022, 372, 131231. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, D.; Sahu, M.; Maurya, N.S.; Mani, A.; Govindasamy, C.; Kumar, N. An in vitro and in silico antidiabetic approach of GC–MS detected friedelin of Bridelia retusa. J. King Saud Univ. Sci. 2024, 36, 103411. [Google Scholar] [CrossRef]
- Jassim, M.I.; Al-Amery, S.M.H.; Jassim, Y.A. Anti-bacterial activity of Syzygium cumini (L.) Skeels leaves extract. Euph. J. Agricult. Sci. 2024, 16, 207–217. [Google Scholar]
- Oliveira, G.F.; Furtado, N.A.J.C.; Filho, A.A.S.; Martins, C.H.G.; Bastos, J.K.; Cunha, W.R.; Silva, M.L.A. Antimicrobial activity of Syzygium cumini (Myrtaceae) leaves extract. Braz. J. Microbiol. 2007, 38, 2. [Google Scholar] [CrossRef]
- Engels, C.; Schieber, A.; Ganzle, M.G. Sinapic acid derivatives in defatted Oriental mustard (Brassica juncea L.) seed meal extracts using UHPLC-DAD-ESI-MS and identification of compounds with antibacterial activity. Eur. Food Res. Technol. 2012, 234, 535–542. [Google Scholar] [CrossRef]
- Bai, J.; Wu, Y.; Bu, Q.; Zhong, K.; Gao, H. Comparative study on antibacterial mechanism of shikimic acid and quinic acid against staphylococcus aureus through transcriptomic and metabolomic approaches. LWT Food Sci. Technol. 2022, 153, 112441. [Google Scholar] [CrossRef]
- Marzouk, B.; Marzouk, Z.; Fenina, N.; Bouraoui, A.; Aouni, M. Anti-inflammatory and analgesic activities of Tunisian Citrullus colocynthis Schrad. immature fruit and seed organic extracts. Eur. Rev. Med. Pharmacol. Sci. 2011, 15, 665–672. [Google Scholar]
- ABNT NBR ISO 10993-5; Biological Evaluation of Medical Devices—Part 5: Tests for In Vitro Cytotoxicity. International Organization for Standardization: Geneva, Switzerland, 2009; Volume 34.
- Santos, M.M.; Souza Prestes, A.; Macedo, G.T.; Ferreira, S.A.; Vargas, J.L.S.; Schüler, L.C.; Vargas Barbosa, N. Syzygium cumini leaf extract protects macrophages against the oxidized LDL-induced toxicity: A promising atheroprotective effect. Biomed. Pharmacother. 2021, 142, 111196. [Google Scholar] [CrossRef]
Run | Variable 1 | EMY (wt%) | PCY 2 (mg GAE g−1 Leaf) | ||
---|---|---|---|---|---|
T | ET | SLR | |||
1 | −1 (30) | −1 (10) | 0 (10) | 6.03 | 4.19 ± 0.07 |
2 | 1 (60) | −1 (10) | 0 (10) | 8.04 | 7.27 ± 0.07 |
3 | −1 (30) | 1 (30) | 0 (10) | 7.39 | 5.64 ± 0.04 |
4 | 1 (60) | 1 (30) | 0 (10) | 9.44 | 10.41 ± 0.12 |
5 | −1 (30) | 0 (20) | −1 (5) | 5.88 | 3.48 ± 0.15 |
6 | 1 (60) | 0 (20) | −1 (5) | 7.52 | 7.22 ± 0.59 |
7 | −1 (30) | 0 (20) | 1 (15) | 8.25 | 6.25 ± 0.67 |
8 | 1 (60) | 0 (20) | 1 (15) | 9.99 | 13.37 ± 0.16 |
9 | 0 (45) | −1 (10) | −1 (5) | 4.68 | 4.12 ± 0.02 |
10 | 0 (45) | 1 (30) | −1 (5) | 6.55 | 6.55 ± 0.05 |
11 | 0 (45) | −1 (10) | 1 (15) | 8.58 | 5.17 ± 0.05 |
12 | 0 (45) | 1 (30) | 1 (15) | 8.92 | 9.31 ± 0.08 |
13–16 3 | 0 (45) | 0 (20) | 0 (10) | 8.53 ± 0.43 | 8.72 ± 0.47 |
EMY | PCY | |||||||
---|---|---|---|---|---|---|---|---|
Factor | Sum of Squares | Mean Square | F | p a | Sum of Squares | Mean Square | F | p a |
(T) (L) | 6.94 | 6.94 | 37.96 | <0.01 | 45.19 | 45.19 | 207.70 | <0.001 |
(T) (Q) | 0.02 | 0.02 | 0.12 | 0.76 | 0.30 | 0.30 | 1.39 | 0.323 |
(ET) (L) | 3.09 | 3.09 | 16.91 | 0.03 | 15.58 | 15.58 | 71.59 | 0.003 |
(ET) (Q) | 2.58 | 2.58 | 14.10 | 0.03 | 10.77 | 10.77 | 49.52 | 0.006 |
(SLR) (L) | 15.44 | 15.44 | 84.47 | <0.01 | 21.24 | 21.24 | 97.62 | 0.002 |
(SLR) (Q) | 1.52 | 1.52 | 8.34 | 0.06 | 2.98 | 2.98 | 13.71 | 0.034 |
TxET | <0.01 | <0.01 | <0.01 | 0.96 | 0.71 | 0.71 | 3.28 | 0.168 |
TxSLR | 0.003 | <0.01 | 0.01 | 0.91 | 3.39 | 3.39 | 15.57 | 0.030 |
ETxSLR | 0.57 | 0.58 | 3.16 | 0.17 | 0.73 | 0.73 | 3.35 | 0.164 |
Lack of fit | 0.35 | 0.12 | 0.64 | 0.64 | 5.53 | 1.84 | 8.47 | 0.056 |
Pure Error | 0.55 | 0.18 | 0.65 | 0.22 | ||||
Total | 31.06 | 107.07 |
Property | AE | Hydroethanolic Solvent | ||
---|---|---|---|---|
75E | 50E | |||
Phenolic compounds (mg GAE g−1 extract) | 55.81 ± 1.6 a | 136.86 ± 1.61 b | 196.27 ± 1.48 c | |
Flavonoids (mg QE g−1 extract) | 112.02 ± 0.90 a | 190.35 ± 2.75 b | 204.80 ± 1.99 c | |
Compounds identified by UPLCLC-MS/MS (Intensity per sample concentration)/109 | Gallic acid | 7.64 | 5.54 | 5.70 |
Sinapic acid | 26.58 | 26.77 | 45.05 | |
trans-caffeic acid | 4.40 | 6.67 | 12.95 | |
p-Coumaric acid | 2.33 | 3.00 | 3.24 | |
Vanillic acid | 7.64 | 13.23 | 15.30 | |
Syringic acid | 1.57 | 1.31 | 1.98 | |
Quercetin | 3.61 | 2.90 | 2.66 | |
Quinic acid | 9.35 | 16.00 | 13.75 | |
Ellagic acid | 2.83 | 2.61 | 2.43 | |
Compounds quantified by GC-FID (mg 100 g−1 extract) | Squalene | 161.38 ± 0.36 a | 45.82 ± 0.12 b | 5.12 ± 0.10 c |
α-tocopherol | 124.28 ± 4.72 a | 40.36 ± 0.50 b | 8.32 ± 0.64 c | |
β-sitosterol | 480.83 ± 14.61 a | 196.60 ± 0.53 b | 42.47 ± 5.20 c | |
Friedelin | 311.68 ± 9.39 a | 72.00 ± 0.74 b | 10.08 ± 0.18 c | |
Antioxidant potential (µmol TEAC g−1 extract) | DPPH• | 531.97 ± 4.83 a | 708.67 ± 9.43 b | 832.82 ± 14.50 c |
FRAP | 479.32 ± 9.05 a | 619.00 ± 9.43 b | 724.00 ± 7.07 c |
Solvent | (% Inhibition) | |
---|---|---|
α-Amylase | α-Glucosidase | |
AE | 26.90 ± 3.42 a | 99.76 ± 0.09 a |
75E | 39.04 ± 3.01 b | 99.65 ± 0.12 a |
50E | 37.52 ± 2.33 b | 99.47 ± 0.25 a |
Microorganisms | AE | Hydroethanolic Solvent | ||
---|---|---|---|---|
75E | 50E | |||
MIC/MBC (µg mL−1) | Escherichia coli | 31.25 ± 0.00/>500 | 31.25 ± 0.00/>500 | 31.25 ± 0.00/>500 |
Staphylococcus aureus | 31.25 ± 0.00/125 | 31.25 ± 0.00/>500 | 7.81 ± 0.00/125 | |
Pseudomonas aeruginosa | 62.50 ± 0.00/125 | 31.25 ± 0.00/>500 | 31.25 ± 0.00/125 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
da Rosa, A.C.S.; Hoscheid, J.; Garcia, V.A.d.S.; de Oliveira Santos Junior, O.; da Silva, C. Phytochemical Extract from Syzygium cumini Leaf: Maximization of Compound Extraction, Chemical Characterization, Antidiabetic and Antibacterial Activity, and Cell Viability. Processes 2024, 12, 2270. https://doi.org/10.3390/pr12102270
da Rosa ACS, Hoscheid J, Garcia VAdS, de Oliveira Santos Junior O, da Silva C. Phytochemical Extract from Syzygium cumini Leaf: Maximization of Compound Extraction, Chemical Characterization, Antidiabetic and Antibacterial Activity, and Cell Viability. Processes. 2024; 12(10):2270. https://doi.org/10.3390/pr12102270
Chicago/Turabian Styleda Rosa, Ana Claudia Santos, Jaqueline Hoscheid, Vitor Augusto dos Santos Garcia, Oscar de Oliveira Santos Junior, and Camila da Silva. 2024. "Phytochemical Extract from Syzygium cumini Leaf: Maximization of Compound Extraction, Chemical Characterization, Antidiabetic and Antibacterial Activity, and Cell Viability" Processes 12, no. 10: 2270. https://doi.org/10.3390/pr12102270
APA Styleda Rosa, A. C. S., Hoscheid, J., Garcia, V. A. d. S., de Oliveira Santos Junior, O., & da Silva, C. (2024). Phytochemical Extract from Syzygium cumini Leaf: Maximization of Compound Extraction, Chemical Characterization, Antidiabetic and Antibacterial Activity, and Cell Viability. Processes, 12(10), 2270. https://doi.org/10.3390/pr12102270