Tiny Particles, Big Problems: The Threat of Microplastics to Marine Life and Human Health
Abstract
:1. Introduction
1.1. Sources of Microplastics
1.2. Microplastics in Fish Species
1.3. Microplastics Detected in Different Regions and Different Fish Species
1.4. Microplastics Detected in Different Body Parts of Fishes
1.5. Microplastics in Human Body
2. Conclusions and Future Outlook
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Saha, S.C.; Saha, G. Effect of microplastics deposition on human lung airways: A review with computational benefits and challenges. Heliyon 2024, 10, e24355. [Google Scholar] [CrossRef]
- Huang, X.; Saha, S.C.; Saha, G.; Francis, I.; Luo, Z. Transport and deposition of microplastics and nanoplastics in the human respiratory tract. Environ. Adv. 2024, 16, 100525. [Google Scholar] [CrossRef]
- Miller, M.E.; Hamann, M.; Kroon, F.J. Bioaccumulation and biomagnification of microplastics in marine organisms: A review and meta-analysis of current data. PLoS ONE 2020, 15, e0240792. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Wang, J. The chemical behaviors of microplastics in marine environment: A review. Mar. Pollut. Bull. 2019, 142, 1–14. [Google Scholar] [CrossRef] [PubMed]
- De Falco, F.; Di Pace, E.; Cocca, M.; Avella, M. The contribution of washing processes of synthetic clothes to microplastic pollution. Sci. Rep. 2019, 9, 6633. [Google Scholar] [CrossRef] [PubMed]
- Weis, J.S. Most Microplastics Come from Clothes. Bioscience 2021, 71, 321. [Google Scholar] [CrossRef]
- Sobhani, Z.; Lei, Y.; Tang, Y.; Wu, L.; Zhang, X.; Naidu, R.; Megharaj, M.; Fang, C. Microplastics generated when opening plastic packaging. Sci. Rep. 2020, 10, 4841. [Google Scholar] [CrossRef]
- Bashir, S.M.; Kimiko, S.; Mak, C.W.; Fang, J.K.H.; Gonçalves, D. Personal Care and Cosmetic Products as a Potential Source of Environmental Contamination by Microplastics in a Densely Populated Asian City. Front. Mar. Sci. 2021, 8, 683482. [Google Scholar] [CrossRef]
- Dąbrowska, A.; Mielańczuk, M.; Syczewski, M. The Raman spectroscopy and SEM/EDS investigation of the primary sources of microplastics from cosmetics available in Poland. Chemosphere 2022, 308, 136407. [Google Scholar] [CrossRef]
- Jan Kole, P.; Löhr, A.J.; Van Belleghem, F.G.A.J.; Ragas, A.M.J. Wear and tear of tyres: A stealthy source of microplastics in the environment. Int. J. Environ. Res. Public Health 2017, 14, 1265. [Google Scholar] [CrossRef]
- Wright, L.S.; Napper, I.E.; Thompson, R.C. Potential microplastic release from beached fishing gear in Great Britain’s region of highest fishing litter density. Mar. Pollut. Bull. 2021, 173 Pt B, 113115. [Google Scholar] [CrossRef]
- Syversen, T.; Lilleng, G. Microplastics Derived from Commercial Fishing Activities; IntechOpen: London, UK, 2023. [Google Scholar] [CrossRef]
- Luo, Y.; Naidu, R.; Fang, C. Toy building bricks as a potential source of microplastics and nanoplastics. J. Hazard. Mater. 2024, 471, 134424. [Google Scholar] [CrossRef] [PubMed]
- Yuk, H.; Jo, H.H.; Nam, J.; Kim, Y.U.; Kim, S. Microplastic: A particulate matter (PM) generated by deterioration of building materials. J. Hazard. Mater. 2022, 437, 129290. [Google Scholar] [CrossRef]
- Luo, Y.; Naidu, R.; Fang, C. Accelerated transformation of plastic furniture into microplastics and nanoplastics by fire. Environ. Pollut. 2023, 317, 120737. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Awoyemi, O.S.; Naidu, R.; Fang, C. Detection of microplastics and nanoplastics released from a kitchen blender using Raman imaging. J. Hazard. Mater. 2023, 453, 131403. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Naidu, R.; Fang, C. Raman imaging to capture microplastics and nanoplastics carried by smartphones. Sci. Total Environ. 2023, 864, 160959. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Zhang, Z.; Naidu, R.; Zhang, X.; Fang, C. Raman imaging of microplastics and nanoplastics released from the printed toner powders burned by a mimicked bushfire. Sci. Total Environ. 2022, 849, 157686. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Chuah, C.; Amin Md, A.; Khoshyan, A.; Gibson, C.T.; Tang, Y.; Naidu, R.; Fang, C. Assessment of microplastics and nanoplastics released from a chopping board using Raman imaging in combination with three algorithms. J. Hazard. Mater. 2022, 431, 128636. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Al Amin, M.; Gibson, C.T.; Chuah, C.; Tang, Y.; Naidu, R.; Fang, C. Raman imaging of microplastics and nanoplastics generated by cutting PVC pipe. Environ. Pollut. 2022, 298, 118857. [Google Scholar] [CrossRef]
- Luo, Y.; Gibson, C.T.; Chuah, C.; Tang, Y.; Naidu, R.; Fang, C. Raman imaging for the identification of Teflon microplastics and nanoplastics released from non-stick cookware. Sci. Total Environ. 2022, 851, 158293. [Google Scholar] [CrossRef]
- Luo, Y.; Qi, F.; Gibson, C.T.; Lei, Y.; Fang, C. Investigating kitchen sponge-derived microplastics and nanoplastics with Raman imaging and multivariate analysis. Sci. Total Environ. 2022, 824, 153963. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Gibson, C.T.; Chuah, C.; Tang, Y.; Ruan, Y.; Naidu, R.; Fang, C. Fire releases micro- and nanoplastics: Raman imaging on burned disposable gloves. Environ. Pollut. 2022, 312, 120073. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Naidu, R.; Zhang, X.; Fang, C. Microplastics and nanoplastics released from a PPE mask under a simulated bushfire condition. J. Hazard. Mater. 2022, 439, 129621. [Google Scholar] [CrossRef] [PubMed]
- Fang, C.; Awoyemi, O.S.; Luo, Y.; Naidu, R. Investigating Microplastics and Nanoplastics Released from a Rubber Band Used for Orthodontic Treatment with Improved Raman Imaging Algorithms. Environ. Health 2023, 1, 63–71. [Google Scholar] [CrossRef]
- Passos, R.S.; Davenport, A.; Busquets, R.; Selden, C.; Silva, L.B.; Baptista, J.S.; Barceló, D.; Campos, L.C. Microplastics and nanoplastics in haemodialysis waters: Emerging threats to be in our radar. Environ. Toxicol. Pharmacol. 2023, 102, 104253. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.B.; Yu, J.; Banik, P.; Noman, M.A.; Nur, A.A.U.; Haque, M.R.; Rahman, M.M.; Albeshr, M.F.; Arai, T. First evidence of microplastics and their characterization in bottled drinking water from a developing country. Front. Environ. Sci. 2023, 11, 1232931. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, H.; Luo, Y.; Ding, Y.; Huang, J.; Wu, H.; Han, J.; Du, L.; Kang, A.; Jia, M.; et al. Plastic bottles for chilled carbonated beverages as a source of microplastics and nanoplastics. Water Res. 2023, 242, 120243. [Google Scholar] [CrossRef] [PubMed]
- Cole, M.; Gomiero, A.; Jaén-Gil, A.; Haave, M.; Lusher, A. Microplastic and PTFE contamination of food from cookware. Sci. Total Environ. 2024, 929, 172577. [Google Scholar] [CrossRef]
- Li, J.; Qu, X.; Su, L.; Zhang, W.; Yang, D.; Kolandhasamy, P.; Li, D.; Shi, H. Microplastics in mussels along the coastal waters of China. Environ. Pollut. (1987) 2016, 214, 177–184. [Google Scholar] [CrossRef]
- Tanaka, K.; Takada, H. Microplastic fragments and microbeads in digestive tracts of planktivorous fish from urban coastal waters. Sci. Rep. 2016, 6, 34351. [Google Scholar] [CrossRef]
- Gray, A.D.; Weinstein, J.E. Size- and shape-dependent effects of microplastic particles on adult daggerblade grass shrimp (Palaemonetes pugio): Uptake and retention of microplastics in grass shrimp. Environ. Toxicol. Chem. 2017, 36, 3074–3080. [Google Scholar] [CrossRef] [PubMed]
- Hermsen, E.; Pompe, R.; Besseling, E.; Koelmans, A.A. Detection of low numbers of microplastics in North Sea fish using strict quality assurance criteria. Mar. Pollut. Bull. 2017, 122, 253–258. [Google Scholar] [CrossRef] [PubMed]
- Collard, F.; Gilbert, B.; Compère, P.; Eppe, G.; Das, K.; Jauniaux, T.; Parmentier, E. Microplastics in livers of European anchovies (Engraulis encrasicolus, L.). Environ. Pollut. 2017, 229, 1000–1005. [Google Scholar] [CrossRef] [PubMed]
- Andrades, R.; Santos, R.G.; Joyeux, J.C.; Chelazzi, D.; Cincinelli, A.; Giarrizzo, T. Marine debris in Trindade Island, a remote island of the South Atlantic. Mar. Pollut. Bull. 2018, 137, 180–184. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Green, C.; Reynolds, A.; Shi, H.; Rotchell, J.M. Microplastics in mussels sampled from coastal waters and supermarkets in the United Kingdom. Environ. Pollut. 2018, 241, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, S.; Soltani, N.; Keshavarzi, B.; Moore, F.; Turner, A.; Hassanaghaei, M. Microplastics in different tissues of fish and prawn from the Musa Estuary, Persian Gulf. Chemosphere 2018, 205, 80–87. [Google Scholar] [CrossRef] [PubMed]
- Akhbarizadeh, R.; Moore, F.; Keshavarzi, B. Investigating a probable relationship between microplastics and potentially toxic elements in fish muscles from northeast of Persian Gulf. Environ. Pollut. 2018, 232, 154–163. [Google Scholar] [CrossRef] [PubMed]
- Baalkhuyur, F.M.; Bin Dohaish, E.-J.A.; Elhalwagy, M.E.A.; Alikunhi, N.M.; AlSuwailem, A.M.; Røstad, A.; Coker, D.J.; Berumen, M.L.; Duarte, C.M. Microplastic in the gastrointestinal tract of fishes along the Saudi Arabian Red Sea coast. Mar. Pollut. Bull. 2018, 131 Pt A, 407–415. [Google Scholar] [CrossRef]
- Ory, N.; Chagnon, C.; Felix, F.; Fernández, C.; Ferreira, J.L.; Gallardo, C.; Ordóñez, O.G.; Henostroza, A.; Laaz, E.; Mizraji, R.; et al. Low prevalence of microplastic contamination in planktivorous fish species from the southeast Pacific Ocean. Mar. Pollut. Bull. 2018, 127, 211–216. [Google Scholar] [CrossRef]
- Guerrini, F.; Mari, L.; Casagrandi, R. Modeling plastics exposure for the marine biota: Risk maps for fin whales in the Pelagos Sanctuary (North-Western Mediterranean). Front. Mar. Sci. 2019, 6, 1–10. [Google Scholar] [CrossRef]
- Karbalaei, S.; Golieskardi, A.; Hamzah, H.B.; Abdulwahid, S.; Hanachi, P.; Walker, T.R.; Karami, A. Abundance and characteristics of microplastics in commercial marine fish from Malaysia. Mar. Pollut. Bull. 2019, 148, 5–15. [Google Scholar] [CrossRef] [PubMed]
- Feng, Z.; Zhang, T.; Li, Y.; He, X.; Wang, R.; Xu, J.; Gao, G. The accumulation of microplastics in fish from an important fish farm and mariculture area, Haizhou Bay, China. Sci. Total Environ. 2019, 696, 133948. [Google Scholar] [CrossRef] [PubMed]
- Morais, L.M.S.; Sarti, F.; Chelazzi, D.; Cincinelli, A.; Giarrizzo, T.; Martinelli Filho, J.E. The sea anemone Bunodosoma cangicum as a potential biomonitor for microplastics contamination on the Brazilian Amazon coast. Environ. Pollut. 2020, 265, 114817. [Google Scholar] [CrossRef] [PubMed]
- Koongolla, J.B.; Lin, L.; Pan, Y.-F.; Yang, C.-P.; Sun, D.-R.; Liu, S.; Xu, X.-R.; Maharana, D.; Huang, J.-S.; Heng-Xiang Li, H.-X. Occurrence of microplastics in gastrointestinal tracts and gills of fish from Beibu Gulf, South China Sea. Environ. Pollut. (1987) 2020, 258, 113734. [Google Scholar] [CrossRef] [PubMed]
- Sathish, M.N.; Jeyasanta, I.; Patterson, J. Occurrence of microplastics in epipelagic and mesopelagic fishes from Tuticorin, Southeast coast of India. Sci. Total Environ. 2020, 720, 137614. [Google Scholar] [CrossRef] [PubMed]
- Barboza, L.G.A.; Lopes, C.; Oliveira, P.; Bessa, F.; Otero, V.; Henriques, B.; Raimundo, J.; Caetano, M.; Vale, C.; Guilhermino, L. Microplastics in wild fish from North East Atlantic Ocean and its potential for causing neurotoxic effects, lipid oxidative damage, and human health risks associated with ingestion exposure. Sci. Total Environ. 2020, 717, 134625. [Google Scholar] [CrossRef] [PubMed]
- Park, T.-J.; Lee, S.-H.; Lee, M.-S.; Lee, J.-K.; Lee, S.-H.; Zoh, K.-D. Occurrence of microplastics in the Han River and riverine fish in South Korea. Sci. Total Environ. 2020, 708, 134535. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.S.; Rahman, M.S.; Uddin, M.N.; Sharifuzzaman, S.M.; Chowdhury, S.R.; Sarker, S.; Chowdhury, M.S.N. Microplastic contamination in Penaeid shrimp from the Northern Bay of Bengal. Chemosphere 2020, 238, 124688. [Google Scholar] [CrossRef]
- Bucol, L.A.; Romano, E.F.; Cabcaban, S.M.; Siplon, L.M.D.; Madrid, G.C.; Bucol, A.A.; Polidoro, B. Microplastics in marine sediments and rabbitfish (Siganus fuscescens) from selected coastal areas of Negros Oriental, Philippines. Mar. Pollut. Bull. 2020, 150, 110685. [Google Scholar] [CrossRef]
- Pegado, T.; Brabo, L.; Schmid, K.; Sarti, F.; Gava, T.T.; Nunes, J.; Chelazzi, D.; Cincinelli, A.; Giarrizzo, T. Ingestion of microplastics by Hypanus guttatus stingrays in the Western Atlantic Ocean (Brazilian Amazon Coast). Mar. Pollut. Bull. 2021, 162, 111799. [Google Scholar] [CrossRef]
- Saha, M.; Naik, A.; Desai, A.; Nanajkar, M.; Rathore, C.; Kumar, M.; Gupta, P. Microplastics in seafood as an emerging threat to marine environment: A case study in Goa, west coast of India. Chemosphere 2021, 270, 129359. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Zhu, X.; Hou, C.; Wu, Y.; Teng, J.; Zhang, C.; Tan, H.; Shan, E.; Zhang, W.; Zhao, J. Microplastic uptake in commercial fishes from the Bohai Sea, China. Chemosphere 2021, 263, 127962. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Pan, Z.; Xu, J.; Liu, Q.; Zou, Q.; Lin, H.; Wu, L.; Huang, H. Microplastics in a pelagic dolphinfish (Coryphaena hippurus) from the Eastern Pacific Ocean and the implications for fish health. Sci. Total Environ. 2022, 809, 151126. [Google Scholar] [CrossRef] [PubMed]
- Piyawardhana, N.; Weerathunga, V.; Chen, H.-S.; Guo, L.; Huang, P.-J.; Ranatunga, R.R.M.K.P.; Hung, C.-C. Occurrence of microplastics in commercial marine dried fish in Asian countries. J. Hazard. Mater. 2022, 423 Pt B, 127093. [Google Scholar] [CrossRef]
- Hasan, J.; Islam, S.M.M.; Alam, M.S.; Johnson, D.; Belton, B.; Hossain, M.A.R.; Shahjahan, M. Presence of microplastics in two common dried marine fish species from Bangladesh. Mar. Pollut. Bull. 2022, 176, 113430. [Google Scholar] [CrossRef] [PubMed]
- Gurjar, U.R.; Xavier, K.A.M.; Shukla, S.P.; Jaiswar, A.K.; Deshmukhe, G.; Nayak, B.B. Microplastic pollution in coastal ecosystem off Mumbai coast, India. Chemosphere 2022, 288 Pt 1, 132484. [Google Scholar] [CrossRef]
- Mistri, M.; Sfriso, A.A.; Casoni, E.; Nicoli, M.; Vaccaro, C.; Munari, C. Microplastic accumulation in commercial fish from the Adriatic Sea. Mar. Pollut. Bull. 2022, 174, 113279. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Li, Z.; Wang, N.; Lu, Y.; Zhang, S. Microplastics in different tissues of caught fish in the artificial reef area and adjacent waters of Haizhou Bay. Mar. Pollut. Bull. 2022, 174, 113112. [Google Scholar] [CrossRef] [PubMed]
- da Costa, I.D.; Costa, L.L.; da Silva Oliveira, A.; de Carvalho, C.E.V.; Zalmon, I.R. Microplastics in fishes in amazon riverine beaches: Influence of feeding mode and distance to urban settlements. Sci. Total Environ. 2023, 863, 160934. [Google Scholar] [CrossRef]
- Hasan, J.; Dristy, E.Y.; Mondal, P.; Hoque, M.S.; Sumon, K.A.; Hossain, M.A.R.; Shahjahan, M. Dried fish more prone to microplastics contamination over fresh fish—Higher potential of trophic transfer to human body. Ecotoxicol. Environ. Saf. 2023, 250, 114510. [Google Scholar] [CrossRef]
- Pandey, N.; Verma, R.; Patnaik, S.; Anbumani, S. Abundance, characteristics, and risk assessment of microplastics in indigenous freshwater fishes of India. Environ. Res. 2023, 218, 115011. [Google Scholar] [CrossRef] [PubMed]
- Espiritu, E.Q.; Rodolfo, R.S.; Evangelista, S.M.J.; Feliciano, J.J.G.; Sumaway, A.M.N.; Pauco, J.L.R.; Alvarez, K.V.N.; Enriquez, E.P. Microplastics contamination in the fishes of selected sites in Pasig River and Marikina River in the Philippines. Mar. Pollut. Bull. 2023, 187, 114573. [Google Scholar] [CrossRef] [PubMed]
- Nawar, N.; Rahman, M.M.; Chowdhury, F.N.; Marzia, S.; Ali, M.M.; Akbor, M.A.; Siddique, M.A.B.; Khatun, M.A.; Shahjalal, M.; Huque, R.; et al. Characterization of microplastic pollution in the Pasur river of the Sundarbans ecosystem (Bangladesh) with emphasis on water, sediments, and fish. Sci. Total Environ. 2023, 868, 161704. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Yang, D.; Li, L.; Jabeen, K.; Shi, H. Microplastics in commercial bivalves from China. Environ. Pollut. (1987) 2015, 207, 190–195. [Google Scholar] [CrossRef] [PubMed]
- Squillante, J.; Scivicco, M.; Ariano, A.; Nolasco, A.; Esposito, F.; Cacciola, N.A.; Severino, L.; Cirillo, T. Occurrence of phthalate esters and preliminary data on microplastics in fish from the Tyrrhenian sea (Italy) and impact on human health. Environ. Pollut. (1987) 2023, 316 Pt 1, 120664. [Google Scholar] [CrossRef] [PubMed]
- FishBase. Psenopsis Anomala Summary Page. 2019. Available online: https://www.fishbase.se/summary/497 (accessed on 1 April 2024).
- Silva-Cavalcanti, J.S.; Silva, J.D.B.; de França, E.J.; de Araújo, M.C.B.; Gusmão, F. Microplastics ingestion by a common tropical freshwater fishing resource. Environ. Pollut. (1987) 2017, 221, 218–226. [Google Scholar] [CrossRef] [PubMed]
- Rukmangada, R.; Naidu, B.C.; Nayak, B.B.; Balange, A.; Chouksey, M.K.; Xavier, K.A.M. Microplastic contamination in salted and sun dried fish and implications for food security—A study on the effect of location, style and constituents of dried fish on microplastics load. Mar. Pollut. Bull. 2023, 191, 114909. [Google Scholar] [CrossRef] [PubMed]
- Afzal, Z.; Basit, A.; Habib, U.; Aman, M.; Azim, M.; Cao, H. Emerging risks of Microplastics and Nanoplastics (MNPs): Is a silent threat for cardiovascular disease? Int. J. Cardiol. Cardiovasc. Risk Prev. 2024, 21, 200280. [Google Scholar] [CrossRef]
- Liu, S.; Wang, C.; Yang, Y.; Du, Z.; Li, L.; Zhang, M.; Ni, S.; Yue, Z.; Yang, K.; Wang, Y.; et al. Microplastics in three types of human arteries detected by pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS). J. Hazard. Mater. 2024, 469, 133855. [Google Scholar] [CrossRef]
- Guan, Q.; Jiang, J.; Huang, Y.; Wang, Q.; Liu, Z.; Ma, X.; Yang, X.; Li, Y.; Wang, S.; Cui, W.; et al. The landscape of micron-scale particles including microplastics in human enclosed body fluids. J. Hazard. Mater. 2023, 442, 130138. [Google Scholar] [CrossRef]
- Sun, J.; Sui, M.; Wang, T.; Teng, X.; Sun, J.; Chen, M. Detection and quantification of various microplastics in human endometrium based on laser direct infrared spectroscopy. Sci. Total Environ. 2024, 906, 167760. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Wu, C.; Liu, Y.; Li, W.; Li, S.; Peng, L.; Kang, L.; Ullah, S.; Gong, Z.; Li, Z.; et al. Microplastics are detected in human gallstones and have the ability to form large cholesterol-microplastic heteroaggregates. J. Hazard. Mater. 2024, 467, 133631. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Zhu, J.; Zuo, R.; Xu, Q.; Qian, Y.; Lihui, A.N. Identification of microplastics in human placenta using laser direct infrared spectroscopy. Sci. Total Environ. 2023, 856, 159060. [Google Scholar] [CrossRef] [PubMed]
- Halfar, J.; Čabanová, K.; Vávra, K.; Delongová, P.; Motyka, O.; Špaček, R.; Kukutschová, J.; Šimetka, O.; Heviánková, S. Microplastics and additives in patients with preterm birth: The first evidence of their presence in both human amniotic fluid and placenta. Chemosphere 2023, 343, 140301. [Google Scholar] [CrossRef] [PubMed]
- Massardo, S.; Verzola, D.; Alberti, S.; Caboni, C.; Santostefano, M.; Eugenio Verrina, E.; Angeletti, A.; Lugani, F.; Ghiggeri, G.M.; Bruschi, M.; et al. MicroRaman spectroscopy detects the presence of microplastics in human urine and kidney tissue. Environ. Int. 2024, 184, 108444. [Google Scholar] [CrossRef] [PubMed]
- Rotchell, J.M.; Austin, C.; Chapman, E.; Atherall, C.A.; Liddle, C.R.; Dunstan, T.S.; Ben Blackburn, B.; Mead, A.; Filart, K.; Beeby, E.; et al. Microplastics in human urine: Characterisation using μFTIR and sampling challenges using healthy donors and endometriosis participants. Ecotoxicol. Environ. Saf. 2024, 274, 116208. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Zheng, Y.; Maimaiti, Z.; Fu, J.; Yang, F.; Li, Z.-Y.; Shi, Y.; Hao, L.-B.; Chen, J.-Y.; Xu, C. Identification and analysis of microplastics in human lower limb joints. J. Hazard. Mater. 2024, 461, 132640. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Y.; Yang, Y.; Zhang, L.; Ma, D.; Wen, K.; Cai, J.; Cai, Z.; Wang, C.; Chai, X.; Zhong, J.; et al. Revealing new insights: Two-center evidence of microplastics in human vitreous humor and their implications for ocular health. Sci. Total Environ. 2024, 921, 171109. [Google Scholar] [CrossRef] [PubMed]
- Jenner, L.C.; Rotchell, J.M.; Bennett, R.T.; Cowen, M.; Tentzeris, V.; Sadofsky, L.R. Detection of microplastics in human lung tissue using μFTIR spectroscopy. Sci. Total Environ. 2022, 831, 154907. [Google Scholar] [CrossRef]
- Zhao, Q.; Zhu, L.; Weng, J.; Jin, Z.; Cao, Y.; Jiang, H.; Zhang, Z. Detection and characterization of microplastics in the human testis and semen. Sci. Total Environ. 2023, 877, 162713. [Google Scholar] [CrossRef]
- Montano, L.; Giorgini, E.; Notarstefano, V.; Notari, T.; Ricciardi, M.; Piscopo, M.; Motta, O. Raman Microspectroscopy evidence of microplastics in human semen. Sci. Total Environ. 2023, 901, 165922. [Google Scholar] [CrossRef] [PubMed]
- Leslie, H.A.; van Velzen, M.J.M.; Brandsma, S.H.; Vethaak, A.D.; Garcia-Vallejo, J.J.; Lamoree, M.H. Discovery and quantification of plastic particle pollution in human blood. Environ. Int. 2022, 163, 107199. [Google Scholar] [CrossRef] [PubMed]
- Schwabl, P.; Koppel, S.; Konigshofer, P.; Bucsics, T.; Trauner, M.; Reiberger, T.; Liebmann, B. Detection of various microplastics in human stool: A prospective case series. Ann. Intern. Med. 2019, 171, 453–457. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Xie, E.; Du, Z.; Peng, Z.; Han, Z.; Li, L.; Zhao, R.; Qin, Y.; Xue, M.; Li, F.; et al. Detection of Various Microplastics in Patients Undergoing Cardiac Surgery. Environ. Sci. Technol. 2023, 57, 10911. [Google Scholar] [CrossRef] [PubMed]
Ref. | Region | Fish Species |
---|---|---|
[52] | Goa, India | Gray mullet, Catfish, Whipfin silver-biddy, Pearlspot |
[37] | Persian Gulf | Mackerel, Longfin lizardfish, Barramundi, Tongue sole |
[66] | Tyrrhenian Sea, Italy | Gray mullet, Annular seabream, Red mullet |
[67] | Western Pacific Ocean | Highfin seabream, Flying gurnard |
[61] | Bay of Bengal | Bombay duck, Ribbon fish, Hairfin anchovy |
[46] | Tuticorin, India | Bombay duck, Goldspot herring, White sardine, Indian mackerel, Skipjack tuna, Sailfish |
[47] | Northeast Atlantic Ocean | European seabass, Atlantic horse mackerel, Atlantic chub mackerel |
[48] | Han River, South Korea | Carp, Crucian carp, Bluegill, Bass, Catfish, Snakehead |
[57] | Mumbai coast, India | White sardine, Shrimp, Belanger croaker, Bombay duck, Malabar sole fish |
[49] | Northern Bay of Bengal, Bangladesh | Brown shrimp, Tiger shrimp |
[68] | South America | Brown hoplo |
[62] | India | Spotted snakehead, Rohu, Bata labeo, Spotted mahseer, Amphibious barb |
[63] | Pasig and Marikina Rivers, Philippines | Nile tilapia, Manila Sea catfish, Armored catfish |
[58] | Adriatic Sea, Italy | European pilchard or sardine, European anchovy, European hake, Spotted flounder, Striped red mullet, Rock goby |
[33] | North Sea, Netherlands | Atlantic herring, Sprat, Common dab, Whiting |
[38] | Persian Gulf | Shrimp scad, Orange-spotted Grouper, Pickhandle barracuda, Bartail flathead |
[64] | Mongla port, Bangladesh | Ilish, Bhetki, Poa, Tengra, Payra, Loitta, Chemo, Bele |
[43,59] | Haizhou Bay, China | Kamala River sprat, Red-finned mudskipper, Half-smooth tongue sole, Blackbarred sandperch, Chinese silver pomfret |
[50] | Central Philippines | Rabbitfish |
Ref. | Observed Parts | Region of Collection | Microscope | Data Analysis Approach and Software |
---|---|---|---|---|
[36] | Mussel tissues | United Kingdom | Olympus SZX10 (Tokyo, Japan) | Statistical |
[54] | Gills, stomachs, intestinal tracts, and muscles | Eastern Pacific Ocean | Leica M205A, OPUS 7.8 (Wetzlar, Germany) | Statistical |
[52] | Gastrointestinal tracts | Goa, west coast of India | AIM-3800, Olympus SX10 | Statistical, PAST |
[45] | Gastrointestinal tracts, and gills | Beibu Gulf, South China Sea | Olympus SZX10, Nicolet iN 10 | Experimental |
[53] | Gastrointestinal tracts | Bohai Sea, China | Olympus, SZX10, Nicolet™ iN10 | Statistical, SPSS v. 20 |
[55] | Gastrointestinal tracts, muscles and gills | Taiwan, Thailand, Japan, China, South Korea, Vietnam, Sri Lanka | Olympus SZX16, JobinYvon LabRAM HR800 | Statistical |
[56] | - | Cox’s Bazar and Kuakata, Bay of Bengal, Bangladesh | Daffodil MCX100 (Gurgaon, India), Nicolet iS5 FT-IR (Green Bay, WI, USA) | Statistical, SPSS v. 22 |
[66] | Muscles and gills | Tyrrhenian sea, Italy | Nicolet™ iN10, Omnic™ Picta™ | Statistical |
[61] | Muscles and gills | Chattogram and Kuakata, Bay of Bengal, Bangladesh | Daffodil MCX100, Nicolet iS5 FT-IR | Statistical |
[46] | Gastrointestinal tracts | Tuticorin, Southeast coast of India | Thermo Nicolet model iS5 (Waltham, MA, USA) | Statistical |
[47] | Gastrointestinal tracts, muscles and gills | Northeast Atlantic Ocean | LEICA S9i | Statistical, SPSS v. 24 |
[48] | Gastrointestinal tract, gills, and fillets | Han River, South Korea | FTIR Microscope, NicoletTM iN10TM MX | Experimental |
[57] | Gastrointestinal tracts | Mumbai coast, India | SZX16 Model | Statistical, SPSS v. 20 |
[49] | Gastrointestinal tracts | Northern Bay of Bengal, Bangladesh | XSZ-107BN, IR Affinity-1, Model-8900 | Statistical, R software |
[68] | Gastrointestinal tracts, and Stomachs | Pajeú river, Northeast of Brazil | dissecting microscope (45×) | Statistical, R v. 3.2.1 |
[62] | Gastrointestinal tracts, muscles and gills | Lucknow, Uttar Pradesh, India | Leica, EZ4, Witec Alpha 300RA | Statistical, GraphPad PRISM v. 8.4.0 |
[63] | - | Pasig River, Marikina River, Philippines | Olympus Microscope BX41, Origin-Prov2021 | Experimental |
[58] | - | Adriatic Sea | Nikon SMZ745T, LabSpec 6 (Tokyo, Japan ) | Experimental |
[42] | Viscera and gills | Malaysia | Motic SMZ-140 (Hong Kong), Horiba LabRam HR (Tokyo, Japan) | Statistical, SPSS v. 24 |
[33] | Digestive tract | Coasts of the Netherlands, Belgium, France and Great Britain | Scimitar 1000 FT-IR | Experimental |
[38] | Muscles | Northeast of Persian Gulf, Iran | Inductively coupled plasma mass spectrometry | Statistical |
[34] | Livers | Mediterranean Sea, Europe | Olympus Provis AX-70, LabRam 300 | Experimental |
[64] | Gastrointestinal tracts, and muscles | Pasur river, Mongla, Bangladesh | Motic B410E, Stemi 508 | Statistical |
[43] | Gut, skin and gills | Haizhou Bay, China | Nikon SMZ 1500N, Thermo Nicolet iN10 MX | Statistical, SPSS v. 23 |
[59] | Gills and guts | Haizhou Bay, China | Olympus SZX2-FOF | Statistical, SPSS v. 25 |
[39] | - | Saudi Arabian coast of the Red Sea | Stemi 2000 Zeiss (Oberkochen, Germany) | Statistical, RStudio v. 1.1.419 |
[40] | Digestive tract | Coasts of Panama, Colombia, Ecuador, Peru, and Chile | Agilent Handheld 4300 FTIR (Santa Clara, CA, USA) | Experimental |
[69] | - | West coast of India | Olympus DSX 110, LUMOS II | Statistical, SPSS v. 22 |
References | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Types of Polymers (Microplastics) | [54] | [45] | [53] | [55] | [61] | [46] | [63] | [43] | [39] | [69] |
PE | 0.7 | 6 | 0.5 | 36 | 38 | 54 | 30.95 | 13 | 42 | 33 |
PET | 38.1 | 0 | 16.9 | 26 | 0 | 0 | 2.38 | 4.5 | 0 | 4 |
PS | 5 | 0 | 0.4 | 18 | 22 | 7 | 2.38 | 0 | 4 | 14.5 |
PVC | 0 | 0 | 0 | 12 | 16 | 0 | 0 | 0 | 8 | 11.5 |
PP | 7.9 | 6 | 2.5 | 8 | 0 | 7 | 57.14 | 15 | 42 | 21.5 |
PES | 46.8 | 44 | 0 | 0 | 0 | 14 | 0 | 0 | 0 | 0 |
PMMA | 0 | 6 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 |
PA | 0 | 38 | 0.4 | 0 | 13 | 15 | 0 | 8 | 0 | 0 |
EVA | 0 | 0 | 0 | 0 | 9 | 0 | 0 | 0 | 0 | 0 |
Polyethylene-polypropylene copolymer | 1.4 | 0 | 0 | 0 | 0 | 0 | 7.14 | 0 | 0 | 0 |
PAN | 0 | 0 | 0.9 | 0 | 0 | 0 | 0 | 0 | 4 | 0 |
PVAc | 0 | 0 | 0.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
PB | 0 | 0 | 0.2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
PC | 0 | 0 | 0.2 | 0 | 0 | 0 | 0 | 0 | 0 | 6.5 |
PMMA | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 |
PVA | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 5 |
Unidentified | 0.1 | 0 | 0 | 0 | 2 | 0 | 0.01 | 19.5 | 0 | 0 |
Non-plastic particles | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 6.5 | 0 | 0 |
CP | 0 | 0 | 77.5 | 0 | 0 | 0 | 0 | 33.5 | 0 | 0 |
Ref. | Sample Type | Detection Method | Type of Microplastics | Average Concentrations |
---|---|---|---|---|
[71] | Arteries | Pyrolysis–Gas Chromatography–Mass Spectrometry | PET (73.70%), PA-66 (15.54%), PVC (9.69%), PE (1.07%) | 118.66 ± 53.87 μg/g tissue |
[72] | Bodily fluids | Raman Microspectroscopy | PP (13.04%), PS (43.48%), PTFE (4.35%), PVB (8.70%), PA-6 (8.70%), LDPE (8.70%), PEAA (4.35%), PSAN (4.35%), PVA (4.35%) | - |
[73] | Endometrium | Laser Direct Infrared Spectroscopy | EAA (34.58%), FR (14.87%), CPE (11.47%), PE (9.95%), ACR (7.76%), PET (6.63%), PP (6.68%), PS (0.85%), PVC (0.98%), EVA (0.41%), PU (2.09%), BR (2.61%) | 0 to 117 particles/100 mg |
[74] | Gallstones | Pyrolysis–Gas Chromatography–Mass Spectrometry and Laser Direct Infrared Spectroscopy | PS, PE, PP, PET, EVA | - |
[75] | Placenta | Laser Direct Infrared Spectroscopy | PVC (43.27%), PP (14.55%), PBS (10.90%), PET (7.27%), PC (6.91%), PS (5.82%), PA (5.45%), polyester fibre (2.91%), PE (1.45%), PAM (0.73%), PSF (0.73%) | 2.70 ± 2.65 particles/g |
[78] | Urine | Micro-Fourier Transform Infrared Spectroscopy | Healthy donors: PE (27%), PS (16%), PP (12%), Endometriosis participants: PTFE (59%), PE (16%) | - |
[79] | Lower limb joints | Micro-Fourier Transform Infrared Spectroscopy | PET (27.1%), PE (21.9%), RA (12.0%), PES (11.1%), PP (9.3%), PA (8.5%), PVC (4.7%), PS (4.4%), PC (2.0%) | 5.24 ± 2.07 particles/g |
[80] | Vitreous humor | Pyrolysis–Gas Chromatography–Mass Spectrometry and Laser Direct Infrared Spectroscopy | PA (74.8%), PVC (7.3%) | - |
[81] | Lung tissue | Micro-Fourier Transform Infrared Spectroscopy | PP (23%), PET (18%), RA (15%), PE (10%), PTFE (10%), PS (8%), PAN (2%), PES (2%), PMMA (3%), PUR (3%) | 1.42 ± 1.50 MP/g of tissue |
[82] | Testes and semen | Pyrolysis–gas Chromatography–Mass Spectrometry | Semen: PVC (25%), PE (25%), PA (17%), PS (13%), PP (13%), PET (7%) Testis: PS (67.7%), PVC (12.9%), PE (12.9%), PP (6.5%) | Semen: 0.23 ± 0.45 particles/mL, Testis: 11.60 ± 15.52 particles/g |
[84] | Blood | Pyrolysis–gas Chromatography–Mass Spectrometry | PE, PS, PET, PMMA | 1.6 µg/mL |
[85] | Stool | Fourier-Transform Infrared Microspectroscopy | PP (62.8%), PET (17.0%), PS (11.2%), PE (4.8%), PVC (0.54%), PU (0.40%), PA (0.54%), PC (0.67%) | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saha, G.; Saha, S.C. Tiny Particles, Big Problems: The Threat of Microplastics to Marine Life and Human Health. Processes 2024, 12, 1401. https://doi.org/10.3390/pr12071401
Saha G, Saha SC. Tiny Particles, Big Problems: The Threat of Microplastics to Marine Life and Human Health. Processes. 2024; 12(7):1401. https://doi.org/10.3390/pr12071401
Chicago/Turabian StyleSaha, Goutam, and Suvash C. Saha. 2024. "Tiny Particles, Big Problems: The Threat of Microplastics to Marine Life and Human Health" Processes 12, no. 7: 1401. https://doi.org/10.3390/pr12071401
APA StyleSaha, G., & Saha, S. C. (2024). Tiny Particles, Big Problems: The Threat of Microplastics to Marine Life and Human Health. Processes, 12(7), 1401. https://doi.org/10.3390/pr12071401