Chloride Binding Properties of a Macrocyclic Receptor Equipped with an Acetylide Gold(I) Complex: Synthesis, Characterization, Reactivity, and Cytotoxicity Studies
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis
2.2. Binding Studies of “Two Wall” Calix[4]Pyrrole Receptors 2, 3, and 2Au with TBACl. Study of the Upper Rim Substituent Effect on Chloride Binding
2.2.1. Dichloromethane Solution
2.2.2. Acetone Solution
2.3. 1H NMR Spectroscopy Analysis of the Addition of Incremental Amounts of TBACl to an Acetone Solution of 6Au
2.4. Isothermal Titration Calorimetry (ITC) Experiments
2.5. Competitive Pair-Wise Binding Experiments
2.6. Theoretical Calculations
2.7. Studies of the Cytotoxicity of 2Au and the Reference Compound 6Au Using Human Cancer Cell Lines
3. Materials and Methods
3.1. 1H NMR Titration Experiments
3.2. ITC Experiments
3.3. Pair-Wise NMR Competitive Experiments
3.4. Cell Culture
3.5. Cytotoxic Assay
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References and Notes
- Herrera, R.P.; Gimeno, M.C. Main Avenues in Gold Coordination Chemistry. Chem. Rev. 2021, 121, 8311–8363. [Google Scholar] [CrossRef] [PubMed]
- Gil-Rubio, J.; Vicente, J. The Coordination and Supramolecular Chemistry of Gold Metalloligands. Chem. Eur. J. 2018, 24, 32–46. [Google Scholar] [CrossRef]
- Hau, F.K.-W.; Yam, V.W.-W. Synthesis and cation-binding studies of gold(i) complexes bearing oligoether isocyanide ligands with ester and amide as linkers. Dalton Trans. 2016, 45, 300–306. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Lam, W.H.; Zhu, N.; Yam, V.W.-W. Design and Synthesis of Calixarene-Based Bis-alkynyl-Bridged Dinuclear AuI Isonitrile Complexes as Luminescent Ion Probes by the Modulation of Au⋯Au Interactions. Chem. Eur. J. 2009, 15, 8842–8851. [Google Scholar] [CrossRef] [PubMed]
- Yam, V.W.-W.; Cheung, K.-L.; Yuan, L.-H.; Wong, K.M.-C.; Cheung, K.-K. Synthesis, structural characterization and binding studies of a novel dinuclear gold(i) calix[4]crown acetylide complex. Chem. Commun. 2000, 1513–1514. [Google Scholar] [CrossRef]
- Zhou, Y.-P.; Zhang, M.; Li, Y.-H.; Guan, Q.-R.; Wang, F.; Lin, Z.-J.; Lam, C.-K.; Feng, X.-L.; Chao, H.-Y. Mononuclear Gold(I) Acetylide Complexes with Urea Group: Synthesis, Characterization, Photophysics, and Anion Sensing Properties. Inorg. Chem. 2012, 51, 5099–5109. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.-Y.; Qi, J.; Zhao, Z.-Z.; Feng, W.-J.; Li, Y.-H.; Sun, L.; Lin, Z.-J.; Chao, H.-Y. Synthesis, characterization, photophysics, and anion binding properties of gold(i) acetylide complexes with amide groups. New J. Chem. 2014, 38, 6168–6175. [Google Scholar] [CrossRef]
- Gale, P.A.; Sessler, J.L.; Král, V.; Lynch, V. Calix[4]pyrroles: Old Yet New Anion-Binding Agents. J. Am. Chem. Soc. 1996, 118, 5140–5141. [Google Scholar] [CrossRef]
- Rather, I.A.; Wagay, S.A.; Hasnain, M.S.; Ali, R. New dimensions in calix[4]pyrrole: The land of opportunity in supramolecular chemistry. RSC Adv. 2019, 9, 38309–38344. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.K.; Sessler, J.L. Calix[4]pyrrole-Based Ion Pair Receptors. Acc. Chem. Res. 2014, 47, 2525–2536. [Google Scholar] [CrossRef] [Green Version]
- Cafeo, G.; Carbotti, G.; Cuzzola, A.; Fabbi, M.; Ferrini, S.; Kohnke, F.H.; Papanikolaou, G.; Plutino, M.R.; Rosano, C.; White, A.J.P. Drug Delivery with a Calixpyrrole–trans-Pt(II) Complex. J. Am. Chem. Soc. 2013, 135, 2544–2551. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Aragay, G.; Pinto, A.; Aguiló, E.; Rodríguez, L.; Ballester, P. Influence of the Attachment of a Gold(I) Phosphine Moiety at the Upper Rim of a Calix[4]pyrrole on the Binding of Tetraalkylammonium Chloride Salts. Chem. Eur. J. 2020, 26, 3348–3357. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.-D.; Wang, D.-F.; Sessler, J.L. Conformational Features and Anion-Binding Properties of Calix[4]pyrrole: A Theoretical Study. J. Org. Chem. 2001, 66, 3739–3746. [Google Scholar] [CrossRef] [PubMed]
- Blas, J.R.; López-Bes, J.M.; Márquez, M.; Sessler, J.L.; Luque, F.J.; Orozco, M. Exploring the Dynamics of Calix[4]pyrrole: Effect of Solvent and Fluorine Substitution. Chem. Eur. J. 2007, 13, 1108–1116. [Google Scholar] [CrossRef]
- Valderrey, V.; Escudero-Adán, E.C.; Ballester, P. Polyatomic Anion Assistance in the Assembly of [2]Pseudorotaxanes. J. Am. Chem. Soc. 2012, 134, 10733–10736. [Google Scholar] [CrossRef]
- Valderrey, V.; Escudero-Adán, E.C.; Ballester, P. Highly Cooperative Binding of Ion-Pair Dimers and Ion Quartets by a Bis(calix[4]pyrrole) Macrotricyclic Receptor. Angew. Chem. Int. Ed. 2013, 52, 6898–6902. [Google Scholar] [CrossRef]
- Kemper, B.; Hristova, Y.R.; Tacke, S.; Stegemann, L.; van Bezouwen, L.S.; Stuart, M.C.A.; Klingauf, J.; Strassert, C.A.; Besenius, P. Facile synthesis of a peptidic Au(i)-metalloamphiphile and its self-assembly into luminescent micelles in water. Chem. Commun. 2015, 51, 5253–5256. [Google Scholar] [CrossRef] [Green Version]
- Aguiló, E.; Gavara, R.; Baucells, C.; Guitart, M.; Lima, J.C.; Llorca, J.; Rodríguez, L. Tuning supramolecular aurophilic structures: The effect of counterion, positive charge and solvent. Dalton Trans. 2016, 45, 7328–7339. [Google Scholar] [CrossRef] [Green Version]
- McArdle, C.P.; Van, S.; Jennings, M.C.; Puddephatt, R.J. Gold(I) Macrocycles and Topologically Chiral [2]Catenanes. J. Am. Chem. Soc. 2002, 124, 3959–3965. [Google Scholar] [CrossRef]
- Adriaenssens, L.; Gil-Ramírez, G.; Frontera, A.; Quiñonero, D.; Escudero-Adán, E.C.; Ballester, P. Thermodynamic Characterization of Halide−π Interactions in Solution Using “Two-Wall” Aryl Extended Calix[4]pyrroles as Model System. J. Am. Chem. Soc. 2014, 136, 3208–3218. [Google Scholar] [CrossRef]
- Kim, S.K.; Sessler, J.L. Ion pair receptors. Chem. Soc. Rev. 2010, 39, 3784–3809. [Google Scholar] [CrossRef] [PubMed]
- Ciardi, M.; Tancini, F.; Gil-Ramírez, G.; Escudero Adán, E.C.; Massera, C.; Dalcanale, E.; Ballester, P. Switching from Separated to Contact Ion-Pair Binding Modes with Diastereomeric Calix[4]pyrrole Bis-phosphonate Receptors. J. Am. Chem. Soc. 2012, 134, 13121–13132. [Google Scholar] [CrossRef] [PubMed]
- The second set of proton signal showing a reduced intensity were not considered for the fit.
- Frassineti, C.; Ghelli, S.; Gans, P.; Sabatini, A.; Moruzzi, M.S.; Vacca, A. Nuclear Magnetic Resonance as a Tool for Determining Protonation Constants of Natural Polyprotic Bases in Solution. Anal. Biochem. 1995, 231, 374–382. [Google Scholar] [CrossRef] [PubMed]
- Frassineti, C.; Alderighi, L.; Gans, P.; Sabatini, A.; Vacca, A.; Ghelli, S. Determination of protonation constants of some fluorinated polyamines by means of 13C NMR data processed by the new computer program HypNMR2000. Protonation sequence in polyamines. Anal. Bioanal. Chem. 2003, 376, 1041–1052. [Google Scholar]
- Abu-salah, O.M. A Novel Method for the Preparation of Two bis(arylethynyl)-aurate(I) Complex Anions. J. Chem. Res. Synop. 1984, 187. Available online: http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=9579027 (accessed on 1 July 2022).
- Vicente, J.; Chicote, M.-T.; Alvarez-Falcon, M.M.; Jones, P.G. Gold(I) Complexes Derived from C6Me3(C⋮CH)3-1,3,5, C6Me4(C⋮CH)2-1,4, and MeC6H4C⋮CH-4. Organometallics 2005, 24, 5956–5963. [Google Scholar] [CrossRef]
- Liu, Q.; Xie, M.; Chang, X.; Cao, S.; Zou, C.; Fu, W.-F.; Che, C.-M.; Chen, Y.; Lu, W. Tunable Multicolor Phosphorescence of Crystalline Polymeric Complex Salts with Metallophilic Backbones. Angew. Chem. Int. Ed. 2018, 57, 6279–6283. [Google Scholar] [CrossRef]
- Abu-Salah, O.M.; Al-Ohaly, A.R.A.; Al-Showiman, S.S.; Al-Najjar, I.M. A13C nuclear magnetic resonance study of some linear alkynyl gold(I) and silver(I) complexes. Transit. Met. Chem. (Lond.) 1985, 10, 207–210. [Google Scholar] [CrossRef]
- TURBOMOLE V7.0 2015, a Development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989–2007, TURBOMOLE GmbH, Since 2007. Available online: http://www.turbomole.com (accessed on 1 July 2022).
- Ahlrichs, R.; Bär, M.; Häser, M.; Horn, H.; Kölmel, C. Electronic structure calculations on workstation computers: The program system turbomole. Chem. Phys. Lett. 1989, 162, 165–169. [Google Scholar] [CrossRef]
- Eichkorn, K.; Treutler, O.; Ohm, H.; Haser, M.; Ahlrichs, R. Auxiliary Basis-Sets to Approximate Coulomb Potentials (VOL 240, PG 283, 1995). Chem. Phys. Lett. 1995, 242, 652–660. [Google Scholar] [CrossRef]
- Eichkorn, K.; Weigend, F.; Treutler, O.; Ahlrichs, R. Auxiliary basis sets for main row atoms and transition metals and their use to approximate Coulomb potentials. Theor. Chem. Acc. 1997, 97, 119–124. [Google Scholar] [CrossRef]
- Sierka, M.; Hogekamp, A.; Ahlrichs, R. Fast evaluation of the Coulomb potential for electron densities using multipole accelerated resolution of identity approximation. J. Chem. Phys. 2003, 118, 9136–9148. [Google Scholar] [CrossRef]
- Perdew, J.P. Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys. Rev. B 1986, 33, 8822–8824. [Google Scholar] [CrossRef]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the Damping Function in Dispersion Corrected Density Functional Theory. J. Comput. Chem. 2011, 32, 1456–1465. [Google Scholar] [CrossRef] [PubMed]
- Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305. [Google Scholar] [CrossRef]
- Other considerations of the theoretical equilibrium i.e., Use of implicit solvation or explicit solvation of the complexes with one or two molecules of acetone produced results that were in contrast with the experimental ones.
- CCDC 1002710 Contains the Crystallographic Data. Refcode: BOGWIF. Available online: https://www.ccdc.cam.ac.uk/ (accessed on 1 July 2022).
- Montanel-Pérez, S.; Elizalde, R.; Laguna, A.; Villacampa, M.D.; Gimeno, M.C. Synthesis of Bioactive N-Acyclic Gold(I) and Gold(III) Diamino Carbenes with Different Ancillary Ligands. Eur. J. Inorg. Chem. 2019, 2019, 4273–4281. [Google Scholar] [CrossRef]
- Quero, J.; Ruighi, F.; Osada, J.; Gimeno, M.C.; Cerrada, E.; Rodriguez-Yoldi, M.J. Gold(I) Complexes Bearing Alkylated 1,3,5-Triaza-7-phosphaadamantane Ligands as Thermoresponsive Anticancer Agents in Human Colon Cells. Biomedicines 2021, 9, 1848. [Google Scholar] [CrossRef]
- Cerrada, E.; Fernández Moreira, V.; Gimeno, M.C. Chapter 4: Gold and Platinum Alkynyl Complexes for Biomedical Applications in Advances in Organometallic Chemistry; Pérez, P.J., Ed.; Academic Press: Cambridge, MA, USA, 2019; Volume 71, pp. 227–258. [Google Scholar]
- Yang, Z.; Jiang, G.; Xu, Z.; Zhao, S.; Liu, W. Advances in alkynyl gold complexes for use as potential anticancer agents. Coord. Chem. Rev. 2020, 423, 213492. [Google Scholar] [CrossRef]
- Fulmer, G.R.; Miller, A.J.M.; Sherden, N.H.; Gottlieb, H.E.; Nudelman, A.; Stoltz, B.M.; Bercaw, J.E.; Goldberg, K.I. NMR Chemical Shifts of Trace Impurities: Common Laboratory Solvents, Organics, and Gases in Deuterated Solvents Relevant to the Organometallic Chemist. Organometallics 2010, 29, 2176–2179. [Google Scholar] [CrossRef] [Green Version]
Receptor | Ka × 10−2 CD2Cl2 a | K(TBA●3●Cl−) /K(TBA●n●Cl−) | ΔΔG kcal/mol | ESP (Ar;Subst) kcal/mol b |
---|---|---|---|---|
Bis-iodo 3 | 2.54 ± 0.1 | 1 | 0 | −13.1; −13.7 |
Mono-iodo-mono-ethynyl 2 | 1.11 ± 0.02 | 2.28 ± 0.10 | 0.49 ± 0.03 | −14.8; −18.7 |
Mono-nuclear 2Au | 0.76 ± 0.1 | 3.3 ± 0.14 | 0.71 ± 0.03 | −30.3; −41.1 |
Ka × 10−4 (M−1) (CH3)2CO a | ΔH | −TΔS | K(3●Cl−) /K(n●Cl−) | ΔG | ΔΔG | |
---|---|---|---|---|---|---|
Bis-iodo 3 | 15.1 ± 0.1 | −3.70 ± 0.04 | −3.13 ± 0.04 | 1.0 | −6.83 ± 0.01 | 0.0 |
Mono-iodo-mono-ethynyl 2 | 9.2 ± 0.6 | −3.29 ± 0.08 | −3.25 ± 0.09 | 1.6 ± 0.1 | −6.54 ± 0.04 | 0.29 ± 0.04 |
Mono-nuclear 2Au | 5.5 ± 0.1 | −2.83 ± 0.01 | −3.43 ± 0.01 | 2.7 ± 0.1 | −6.25 ± 0.01 | 0.58 ± 0.01 |
K(3●Cl−)/K(n●Cl−) a | K(3●Cl−)/K(n●Cl−) b | |
---|---|---|
Bis-iodo 3 | 1.00 | 1.00 |
Mono-iodo-mono-ethynyl 2 | 1.6 ± 0.1 | 1.4 |
Mono-nuclear 2Au | 2.7 ± 0.1 | 3.8 |
Complex (n●Cl−) | ΔE in kcal/mol | ΔΔE in kcal/mol |
---|---|---|
n = Bis-iodo 3 | −32.8502 | 0 |
n = Mono-iodo-mono-ethynyl 2 | −32.5431 | 0.3 |
n = Mono-nuclear 2Au | −31.8133 | 1.0 |
Cell Line | IC50 2Au (µM) | IC50 6Au (µM) |
---|---|---|
MIA PaCa-2 | 0.78 ± 0.15 | - |
A549 | 0.90 ± 0.26 | 2.69 ± 0.19 |
HeLa | 1.09 ± 0.71 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rivoli, A.; Aragay, G.; Gimeno, M.C.; Ballester, P. Chloride Binding Properties of a Macrocyclic Receptor Equipped with an Acetylide Gold(I) Complex: Synthesis, Characterization, Reactivity, and Cytotoxicity Studies. Inorganics 2022, 10, 95. https://doi.org/10.3390/inorganics10070095
Rivoli A, Aragay G, Gimeno MC, Ballester P. Chloride Binding Properties of a Macrocyclic Receptor Equipped with an Acetylide Gold(I) Complex: Synthesis, Characterization, Reactivity, and Cytotoxicity Studies. Inorganics. 2022; 10(7):95. https://doi.org/10.3390/inorganics10070095
Chicago/Turabian StyleRivoli, Andrea, Gemma Aragay, María Concepción Gimeno, and Pablo Ballester. 2022. "Chloride Binding Properties of a Macrocyclic Receptor Equipped with an Acetylide Gold(I) Complex: Synthesis, Characterization, Reactivity, and Cytotoxicity Studies" Inorganics 10, no. 7: 95. https://doi.org/10.3390/inorganics10070095
APA StyleRivoli, A., Aragay, G., Gimeno, M. C., & Ballester, P. (2022). Chloride Binding Properties of a Macrocyclic Receptor Equipped with an Acetylide Gold(I) Complex: Synthesis, Characterization, Reactivity, and Cytotoxicity Studies. Inorganics, 10(7), 95. https://doi.org/10.3390/inorganics10070095