Cyclometalated Ir(III) Complexes with Curcuminoid Ligands as Active Second-Order NLO Chromophores and Building Blocks for SHG Polymeric Films †
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Synthesis of [Ir(ppy)2(μ-Cl)]2
3.2. Synthesis of Complex Ir1
3.3. Synthesis of Complex Ir2
3.4. Measurement of the Second-Order NLO Properties in Solution
3.5. Preparation of Composite Films of Complex Ir1 in PMMA and Related SHG Measurements
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Prasad, N.P.; Williams, D.J. Introduction to Nonlinear Optical Effects in molecules and Polymers; Wiley: Hoboken, NJ, USA, 1991. [Google Scholar]
- Zyss, J. Molecular Nonlinear Optics: Materials, Physics and Devices; Academic Press: Boston, MA, USA, 1994. [Google Scholar]
- Optoelectronic Properties of Inorganic Compounds; Roundhill, D.M.; Fackler, J.P., Jr. (Eds.) Plenum Press: New York, NY, USA, 1999. [Google Scholar]
- Kanis, D.R.; Ratner, M.A.; Marks, T.J. Optical nonlinearities of conjugated molecules. Stilbene derivatives and highly polar aromatic compounds. Chem. Rev. 1994, 67, 195–242. [Google Scholar] [CrossRef]
- Cheng, L.T.; Tam, W.; Stevenson, S.H.; Meredith, G.R.; Rikken, G.; Marder, S.R. Experimental investigations of organic molecular nonlinear optical polarizabilities. 1. Methods and results on benzene and stilbene derivatives. J. Phys. Chem. 1991, 95, 10631–10643. [Google Scholar] [CrossRef]
- Cheng, L.T.; Tam, W.; Marder, S.R.; Stiegman, A.E.; Rikken, G.; Spangler, C.W. Stronger acceptors can diminish nonlinear optical response in simple donor-acceptor polyenes. J. Phys. Chem. 1991, 95, 10643–10652. [Google Scholar] [CrossRef]
- Beverina, L.; Ruffo, R.; Patriarca, G.; De Angelis, F.; Roberto, D.; Righetto, S.; Ugo, R.; Pagani, G.A. Second harmonic generation in nonsymmetrical squaraines: Tuning of the directional charge transfer character in highly delocalized dyes. J. Mater. Chem. 2009, 19, 8190–8197. [Google Scholar] [CrossRef]
- Dalton, L.R.; Sullivan, P.A.; Bale, D.H. Electric field poled organic electro-optic materials: State of the art and future prospects. Chem. Rev. 2010, 110, 25–55. [Google Scholar] [CrossRef]
- Cariati, E.; Dragonetti, C.; Lucenti, E.; Nisic, F.; Righetto, S.; Roberto, D.; Tordin, E. An acido-triggered reversible luminescent and nonlinear optical switch based on a substituted styrylpyridine: EFISH measurements as an unusual method to reveal a protonation–deprotonation NLO contrast. Chem. Commun. 2014, 50, 1608–1610. [Google Scholar] [CrossRef] [Green Version]
- Heck, J.; Dabek, S.; Meyer-Friedrichsen, T.; Wong, H. Mono- and dinuclear sesquifulvalene complexes, organometallic materials with large nonlinear optical properties. Coord. Chem. Rev. 1999, 190–192, 1217–1254. [Google Scholar] [CrossRef]
- Le Bozec, H.; Renouard, T. Dipolar and non-dipolar pyridine and bipyridine metal complexes for nonlinear optics. Eur. J. Inorg. Chem. 2000, 2, 229–239. [Google Scholar] [CrossRef]
- Di Bella, S. Second-order nonlinear optical properties of transition metal complexes. Chem. Soc. Rev. 2001, 30, 355–366. [Google Scholar] [CrossRef]
- Pizzotti, M.; Ugo, R.; Roberto, D.; Bruni, S.; Fantucci, P.C.; Rovizzi, C. Organometallic counterparts of push−pull aromatic chromophores for nonlinear optics: Push–pull heteronuclear bimetallic complexes with pyrazine and trans-1,2-Bis(4-pyridyl)ethylene as Linkers. Organometallics 2002, 21, 5830–5840. [Google Scholar] [CrossRef]
- Tessore, F.; Roberto, D.; Ugo, R.; Mussini, P.; Quici, S.; Ledoux-Rak, I.; Zyss, J. Large, Concentration-dependent enhancement of the quadratic hyperpolarizability of [Zn(CH3CO2)2(L)2] in CHCl3 on substitution of acetate by triflate. Angew. Chem. Int. Ed. 2003, 42, 456–459. [Google Scholar] [CrossRef]
- Powell, C.E.; Humphrey, M.G. Nonlinear optical properties of transition metal acetylides and their derivatives. Coord. Chem. Rev. 2004, 248, 725–756. [Google Scholar] [CrossRef]
- Coe, B.J. Nonlinear Optical Properties of Metal Complexes. In Comprehensive Coordination Chemistry II; McCleverty, J.A., Meyer, T.J., Eds.; Elsevier Pergamon: Oxford, UK, 2004; Volume 9, pp. 621–687. [Google Scholar]
- Maury, O.; Le Bozec, H. Molecular engineering of octupolar NLO molecules and materials based on bipyridyl metal complexes. Acc. Chem. Res. 2005, 38, 691–704. [Google Scholar] [CrossRef]
- Cariati, E.; Pizzotti, M.; Roberto, D.; Tessore, F.; Ugo, R. Coordination and organometallic compounds and inorganic–organic hybrid cristalline materials for second-order non-linear optics. Coord. Chem. Rev. 2006, 250, 1210–1233. [Google Scholar] [CrossRef]
- Coe, B.J. Switchable nonlinear optical metallochromophores with pyridinium electron acceptor groups. Acc. Chem. Res. 2006, 39, 383–393. [Google Scholar] [CrossRef]
- Morrall, J.P.; Dalton, G.T.; Humphrey, M.G.; Samoc, M. Organotransition metal complexes for nonlinear optics. Adv. Organomet. Chem. 2007, 55, 61–136. [Google Scholar]
- Di Bella, S.; Dragonetti, C.; Pizzotti, M.; Roberto, D.; Tessore, F.; Ugo, R. Coordination and organometallic complexes as second-order nonlinear optical materials. In Molecular Organometallic Material for Optics; Bozec, H., Guerchais, V., Eds.; Springer: Heidelberg, Germany, 2010; pp. 1–55. [Google Scholar]
- Valore, A.; Balordi, M.; Colombo, A.; Dragonetti, C.; Righetto, S.; Roberto, D.; Ugo, R.; Benincori, T.; Rampinini, G.; Sannicolò, F.; et al. Novel ruthenium(II) complexes with substituted 1,10-phenanthroline or 4,5-diazafluorene linked to a fullerene as highly active second order NLO chromophores. Dalton Trans. 2010, 39, 10314–10318. [Google Scholar] [CrossRef]
- Boixel, J.; Guerchais, V.; Le Bozec, H.; Chantzis, A.; Jacquemin, D.; Colombo, A.; Dragonetti, C.; Marinotto, D.; Roberto, D. Sequential double second-order nonlinear optical switch by an acido-triggered photochromic cyclometallated platinum(II) complex. Chem. Commun. 2015, 51, 7805–7808. [Google Scholar] [CrossRef] [Green Version]
- Tessore, F.; Orbelli Biroli, A.; Di Carlo, G.; Pizzotti, M. Porphyrins for second order nonlinear optics (NLO): An intriguing history. Inorganics 2018, 6, 81. [Google Scholar] [CrossRef] [Green Version]
- Di Bella, S.; Colombo, A.; Dragonetti, C.; Righetto, S.; Roberto, D. Zinc(II) as a versatile template for the preparation of fascinating dipolar and octupolar second-order nonlinear optical molecular materials. Inorganics 2018, 6, 133. [Google Scholar] [CrossRef] [Green Version]
- Durand, R.J.; Gauthier, S.; Achelle, S.; Groizard, T.; Kahlal, S.; Saillard, J.Y.; Barsella, A.; Le Poul, N.; Robin Le Guen, F. Push–pull D–π-Ru–π-A chromophores: Synthesis and electrochemical, photophysical and second-order nonlinear optical properties. Dalton Trans. 2018, 47, 3965–3975. [Google Scholar] [CrossRef] [PubMed]
- Colombo, A.; Dragonetti, C.; Guerchais, V.; Hierlinger, C.; Zysman-Colman, E.; Roberto, D. A trip in the nonlinear optical properties of iridium complexes. Coord. Chem. Rev. 2020, 414, 213293. [Google Scholar] [CrossRef]
- Ledoux, I.; Zyss, J. Influence of the molecular environment in solution measurements of the Second-order optical susceptibility for urea and derivatives. Chem. Phys. 1982, 73, 203–213. [Google Scholar] [CrossRef]
- Levine, B.F.; Bethea, C.G. Molecular hyperpolarizabilities determined from conjugated and nonconjugated organic liquids. Appl. Phys. Lett. 1974, 24, 445–447. [Google Scholar] [CrossRef]
- Levine, B.F.; Bethea, C.G. Second and third order hyperpolarizabilities of organic molecules. J. Chem. Phys. 1975, 63, 2666–2682. [Google Scholar] [CrossRef]
- Singer, K.D.; Sohn, J.E.; King, L.A.; Gordon, H.M.; Katz, H.E.; Dirk, C.W. Second-order nonlinear-optical properties of donor- and acceptor-substituted aromatic compounds. J. Opt. Soc. Am. B 1989, 6, 1339–1350. [Google Scholar] [CrossRef]
- Roberto, D.; Tessore, F.; Ugo, R.; Bruni, S.; Manfredi, A.; Quici, S. Terpyridine Zn(II), Ru(III) and Ir(III) complexes as new asymmetric chromophores for nonlinear optics: First evidence for a shift from positive to negative value of the quadratic hyperpolarizability of a ligand carrying an electron donor substituent upon coordination to different metal centres. Chem. Commun. 2002, 846–847. [Google Scholar] [CrossRef]
- Dragonetti, C.; Righetto, S.; Roberto, D.; Ugo, R.; Valore, A.; Demartin, F.; De Angelis, F.; Sgamellotti, A.; Fantacci, S. The role of 5-R-1,10-phenanthroline (R = CH3, NO2) on the emission properties and second-order NLO response of cationic Ir(III) organometallic chromophores. Inorg. Chim. Acta 2008, 361, 4070–4076. [Google Scholar] [CrossRef]
- Valore, A.; Cariati, E.; Dragonetti, C.; Righetto, S.; Roberto, D.; Ugo, R.; De Angelis, F.; Fantacci, S.; Sgamellotti, A.; Macchioni, A.; et al. Cyclometalated IrIII complexes with substituted 1,10-phenanthrolines: A new class of efficient cationic organometallic second-order NLO chromophores. Chem. Eur. J. 2010, 16, 4814–4825. [Google Scholar] [CrossRef]
- Dragonetti, C.; Valore, A.; Colombo, A.; Righetto, S.; Rampinini, G.; Colombo, F.; Rocchigiani, L.; Macchioni, A. An investigation on the second-order NLO properties of novel cationic cyclometallated Ir(III) complexes of the type [Ir(2-phenylpyridine)2(9-R-4,5-diazafluorene)]+ (R = H, fulleridene) and the related neutral complex with the new 9-fulleriden-4-monoazafluorene ligand. Inorg. Chim. Acta 2012, 382, 72–78. [Google Scholar]
- Hierlinger, C.; Cordes, D.B.; Slawin, A.M.Z.; Colombo, A.; Dragonetti, C.; Righetto, S.; Roberto, D.; Jacquemin, D.; Zysman-Colman, E.; Guerchais, V. An investigation on the second-order nonlinear optical response of cationic bipyridine or phenanthroline iridium(III) complexes bearing cyclometallated 2-phenylpyridines with a triphenylamine substituent. Dalton Trans. 2018, 47, 8292–8300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.-Y.; Jing, L.-X.; Wang, H.-Q.; Ye, J.-T.; Qiu, Y.-Q. Improving the NLO response of bis-cyclometalated iridium(III) complexes by modifying ligands: A DFT study. J. Organomet. Chem. 2018, 869, 18–25. [Google Scholar] [CrossRef]
- Bolink, H.J.; Cappelli, E.; Coronado, E.; Graetzel, M.; Orti, E.; Costa, R.D.; Viruela, P.M.; Nazeeruddin, K. Stable single-layer light-emitting electrochemical cell using 4,7-diphenyl-1,10-phenanthroline-bis(2-phenylpyridine) iridium (III) hexafluorophosphate. J. Am. Chem. Soc. 2006, 128, 14786–14787. [Google Scholar] [CrossRef] [PubMed]
- Margapoti, E.; Shukla, V.; Valore, A.; Sharma, A.; Dragonetti, C.; Kitts, C.C.; Roberto, D.; Murgia, M.; Ugo, R.; Muccini, M. Excimer Emission in Single Layer Electroluminescent Devices Based on [Ir(4,5-diphenyl-2-methylthiazolo)2(5-methyl-1,10-phenanthroline)]+[PF6]−. J. Phys. Chem. C 2009, 113, 12517–12522. [Google Scholar] [CrossRef]
- Ma, D.; Tsuboi, T.; Qiu, Y.; Duan, L. Recent Progress in Ionic Iridium(III) complexes for organic electronic devices. Adv. Mater. 2017, 29, 1603253. [Google Scholar] [CrossRef]
- Zysman-Colman, E. Iridium(III) in Optoelectronic and Photonics Applications; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2017. [Google Scholar]
- Dragonetti, C.; Valore, A.; Colombo, A.; Righetto, S.; Trifiletti, V. Simple novel cyclometallated iridium complexes for potential application in dye-sensitized solar cells. Inorg. Chim. Acta 2012, 388, 163–167. [Google Scholar] [CrossRef]
- Dragonetti, C.; Colombo, A.; Magni, M.; Mussini, P.; Nisic, F.; Roberto, D.; Ugo, R.; Valore, A.; Valsecchi, A.; Salvatori, P.; et al. Thiocyanate-Free Ruthenium(II) Sensitizer with a Pyrid-2-yltetrazolate ligand for dye-sensitized solar cells. Inorg. Chem. 2013, 52, 10723–10725. [Google Scholar] [CrossRef]
- Hierlinger, C.; Flint, H.V.; Cordes, D.B.; Slawin, A.M.Z.; Gibson, E.A.; Jacquemin, D.; Guerchais, V.; Zysman-Colman, E. A panchromatic, near infrared Ir(III) emitter bearing a tripodal C^N^C ligand as a dye for dye-sensitized solar cells. Polyhedron 2018, 140, 109–115. [Google Scholar] [CrossRef] [Green Version]
- Légalité, F.; Escudero, D.; Pellegrin, Y.; Blart, E.; Jacquemin, D.; Odobel, F. “Iridium effect” in cyclometalated iridium complexes for p-type dye sensitized solar cells. Dyes Pigment. 2019, 171, 107693. [Google Scholar] [CrossRef]
- Jin, C.; Liu, J.; Chen, Y.; Zeng, L.; Guan, R.; Ouyang, C.; Ji, L.; Chao, H. Cyclometalated Iridium (III) complexes as two-photon phosphorescent probes for specific mitochondrial dynamics tracking in living cells. Chem. Eur. J. 2015, 21, 12000–12010. [Google Scholar] [CrossRef]
- Colombo, A.; Dragonetti, C.; Roberto, D.; Valore, A.; Ferrante, C.; Fortunati, I.; Picone, A.L.; Todescato, F.; Williams, J.A.G. Two-photon absorption properties and 1O2 generation ability of Ir complexes: Unexpected large cross section of [Ir(CO)2Cl(4-(para-di-N-butylaminostyryl)pyridine)]. Dalton Trans. 2015, 44, 15712–15720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, L.; Chen, Y.; Kuang, S.; Li, G.; Guan, R.; Liu, J.; Ji, L.; Chao, H. Iridium (III) anthraquinone complexes as two-photon phosphorescence probes for mitochondria imaging and tracking under hypoxia. Chem. Eur. J. 2016, 22, 8955–8965. [Google Scholar] [CrossRef]
- Lepeltier, M.; Appaix, F.; Liao, Y.Y.; Dumur, F.; Marrot, J.; Le Bahers, T.; Andraud, C.; Monnereau, C. Carbazole-substituted iridium complex as a solid state emitter for two-photon intravital imaging. Inorg. Chem. 2016, 55, 9586–9595. [Google Scholar] [CrossRef] [PubMed]
- Colombo, A.; Garoni, E.; Dragonetti, C.; Righetto, S.; Roberto, D.; Baggi, N.; Escadeillas, M.; Guerchais, V.; Kamada, K. A novel multifunctional cyclometallated iridium(III) complex with interesting second-order nonlinear optical properties and two-photon absorption activity. Polyhedron 2018, 140, 116–121. [Google Scholar] [CrossRef]
- Murphy, L.; Congreve, A.; Palsson, L.-O.; Williams, J.A.G. The time domain in co-stained cell imaging: Time-resolved emission imaging microscopy using a protonatable luminescent iridium complex. Chem Commun. 2010, 46, 8743–8745. [Google Scholar] [CrossRef] [PubMed]
- Steunenberg, P.; Ruggi, A.; van den Berg, N.S.; Buckle, T.; Kuil, J.; van Leeuwen, F.W.V.; Velders, A.H. Phosphorescence imaging of living cells with amino acid-functionalized Tris(2-phenylpyridine)iridium(III) Complexes. Inorg. Chem. 2012, 51, 2105–2114. [Google Scholar] [CrossRef]
- Day, A.H.; Übler, M.H.; Best, H.L.; Lloyd-Evans, E.; Mart, R.J.; Fallis, I.A.; Allemann, R.K.; Al-Wattar, E.A.H.; Keymer, N.I.; Buurma, N.J.; et al. Targeted cell imaging properties of a deep red luminescent iridium(III) complex conjugated with a c-Myc signal peptide. Chem. Sci. 2020, 11, 1599–1606. [Google Scholar] [CrossRef] [Green Version]
- Colombo, A.; Fontani, M.; Dragonetti, C.; Roberto, D.; Williams, J.A.G.; Scotto di Perrotolo, R.; Casagrande, F.; Barozzi, S.; Polo, S. A highly luminescent tetrahydrocurcumin Ir(III) complex with remarkable photoactivated anticancer activity. Chem. Eur. J. 2019, 25, 7948–7952. [Google Scholar] [CrossRef]
- Chen, H.; Ge, C.; Cao, H.; Zhang, X.; Zhang, L.; Jiang, L.; Zhang, P.; Zhang, Q. Isomeric Ir(iii) complexes for tracking mitochondrial pH fluctuations and inducing mitochondrial dysfunction during photodynamic therapy. Dalton Trans. 2019, 48, 17200–17209. [Google Scholar] [CrossRef]
- McKenzie, L.K.; Sazanovich, I.V.; Baggaley, E.; Bonneau, M.; Guerchais, V.; Williams, J.A.G.; Weinstein, J.A.; Bryant, H.E. Metal complexes for two-photon photodynamic therapy: A cyclometallated iridium complex induces two-photon photosensitization of cancer cells under near-IR light. Chem. Eur. J. 2017, 23, 234–238. [Google Scholar] [CrossRef]
- McKenzie, L.K.; Bryant, H.E.; Weinstein, J.A. Transition metal complexes as photosensitisers in one- and two-photon photodynamic therapy. Coord. Chem. Rev. 2019, 379, 2–29. [Google Scholar] [CrossRef] [Green Version]
- Aubert, V.; Ordronneau, L.; Escadeillas, M.; Williams, J.A.G.; Boucekkine, A.; Coulaud, E.; Dragonetti, C.; Righetto, S.; Roberto, D.; Ugo, R.; et al. Linear and nonlinear optical properties of cationic bipyridyl iridium(III) complexes: Tunable and photoswitchable? Inorg. Chem. 2011, 50, 5027–5038. [Google Scholar] [CrossRef] [PubMed]
- Zaarour, M.; Singh, A.; Latouche, C.; Williams, J.A.G.; Ledoux-Rak, I.; Zyss, J.; Boucekkine, A.; Le Bozec, H.; Guerchais, V.; Dragonetti, C.; et al. Linear and nonlinear optical properties of tris-cyclometalated phenylpyridine Ir(III) complexes incorporating π-conjugated substituents. Inorg. Chem. 2013, 52, 7987–7994. [Google Scholar] [CrossRef]
- Wang, J.; Wang, W.-Y.; Fang, X.-Y.; Qiu, Y.-Q. Carborane tuning on iridium complexes: Redox-switchable second-order NLO responses. J. Mol. Model. 2015, 21, 95. [Google Scholar] [CrossRef]
- Li, X.; Wang, H.-Q.; Ye, J.-T.; Zhang, Y.; Qiu, Y.-Q. Second-order NLO properties of bis-cyclometalated iridium(III) complexes: Substituent effect and redox switch. J. Mol. Graph. Model. 2019, 89, 131–138. [Google Scholar] [CrossRef]
- Edkins, R.M.; Bettington, S.L.; Goeta, A.E.; Beeby, A. Two-photon spectroscopy of cyclometalated iridium complexes. Dalton Trans. 2011, 40, 12765–12770. [Google Scholar] [CrossRef]
- Valore, A.; Colombo, A.; Dragonetti, C.; Righetto, S.; Roberto, D.; Ugo, R.; De Angelis, F.; Fantacci, S. Luminescent cyclometallated Ir(III) and Pt(II) complexes with β-diketonate ligands as highly active second-order NLO chromophores. Chem. Commun. 2010, 46, 2414–2416. [Google Scholar] [CrossRef]
- Dragonetti, C.; Colombo, A.; Marinotto, D.; Righetto, S.; Roberto, D.; Valore, A.; Escadeillas, M.; Guerchais, V.; Le Bozec, H.; Boucekkine, A.; et al. Functionalized styryl Iridium(III) complexes as active second-order NLO chromophores and building blocks for SHG polymeric films. J. Organomet. Chem. 2014, 751, 568–572. [Google Scholar] [CrossRef] [Green Version]
- Sprouse, S.; King, K.A.; Spellane, P.J.; Watts, R.J. Photophysical effects of metal–carbon bonds in ortho-metalated complexes of Ir(III) and Rh(III). J. Am. Chem. Soc. 1984, 106, 6647–6653. [Google Scholar] [CrossRef]
- Oudar, J.L.; Chemla, D.S. Hyperpolarizabilities of the nitroanilines and their relations to the excited state dipole moment. J. Chem. Phys. 1977, 66, 2664–2668. [Google Scholar] [CrossRef]
- Oudar, J.L. Optical nonlinearities of conjugated molecules. Stilbene derivatives and highly polar aromatic compounds. J. Chem. Phys. 1977, 67, 446–457. [Google Scholar] [CrossRef]
- Cariati, E.; Roberto, D.; Ugo, R.; Ford, P.C.; Galli, S.; Sironi, A. X-ray structures and emissive and second-order nonlinear optical properties of two inorganic-organic polymeric adducts of CuI with 4-acetylpyridine. The role of both “Intrastrand” charge transfers and structural motifs on the nonlinear optical response of Cu(I) polymeric adducts with pseudoaromatic η1-nitrogen donor ligands. Chem. Mater. 2002, 14, 5116–5123. [Google Scholar]
- Barsu, C.; Fortrie, R.; Nowika, K.; Baldeck, P.L.; Vial, J.C.; Barsella, A.; Fort, A.; Hissler, M.; Bretonnière, Y.; Maury, O.; et al. Synthesis of chromophores combining second harmonic generation and two photon induced fluorescence properties. Chem. Commun. 2006, 4744–4746. [Google Scholar] [CrossRef] [PubMed]
- Todescato, F.; Fortunati, I.; Carlotto, S.; Ferrante, C.; Grisanti, L.; Sissa, C.; Painelli, A.; Colombo, A.; Dragonetti, C.; Roberto, D. Dimers of polar chromophores in solution: Role of excitonic interactions in one- and two-photon absorption properties. Phys. Chem. Chem. Phys. 2011, 13, 11099–11109. [Google Scholar] [CrossRef] [PubMed]
- Ka Man Chan, C.; Tao, C.-H.; Li, K.-F.; Wong, K.M.-C.; Zhu, N.; Cheah, K.-W.; Yam, V.W.-W. Synthesis, characterization, luminescence and nonlinear optical (NLO) properties of truxene-containing platinum(II) alkynyl complexes. J. Organomet. Chem. 2011, 696, 1163–1173. [Google Scholar] [CrossRef]
- Rossi, E.; Colombo, A.; Dragonetti, C.; Righetto, S.; Roberto, D.; Ugo, R.; Valore, A.; Williams, J.A.G.; Lobello, M.G.; De Angelis, F.; et al. Tuning the dipolar second-order nonlinear optical properties of cyclometalated platinum(II) complexes with tridentate N^C^N binding ligands. Chem. Eur. J. 2013, 19, 9875–9883. [Google Scholar] [CrossRef]
- Chavan, S.S.; Pawal, S.B.; Lolage, S.R.; Garadkar, K.M. Synthesis, spectroscopic characterization, luminescence and NLO properties of heterometallic M(II)–Ru(II) (M = Ni and Zn) hybrid complexes composed of coordination and organometallic sites. J. Organomet. Chem. 2017, 853, 18–26. [Google Scholar] [CrossRef]
- Guerchais, V.; Boixel, J.; Le Bozec, H. Linear and nonlinear optical molecular switches based on photochromic metal complexes. In Photon-Working Switches; Yokoyama, Y., Nakatani, K., Eds.; Springer: Tokyo, Japan, 2017; pp. 363–384. [Google Scholar]
- Zhao, H.; Garoni, E.; Roisnel, T.; Colombo, A.; Dragonetti, C.; Marinotto, D.; Righetto, S.; Roberto, D.; Jacquemin, D.; Boixel, J.; et al. Photochromic DTE-Substituted-1,3-di(2-pyridyl)benzene Platinum(II) Complexes: Photomodulation of luminescence and second-order nonlinear optical properties. Inorg. Chem. 2018, 57, 7051–7063. [Google Scholar] [CrossRef] [Green Version]
- Chakrabarty, R.; Dutta, A.; Roy, S.; Das, G.; Ledoux-Rak, I.; Mondal, P.; Prasad, S.K.; Rao, D.S.S.; Bhattacharjee, C.R. Multifunctional lanthanide complexes: Mesomorphism, photoluminescence and second order NLO property. Chem. Sel. 2018, 3, 8245–8251. [Google Scholar] [CrossRef]
- Matozzo, P.; Colombo, A.; Dragonetti, C.; Righetto, S.; Roberto, D.; Biagini, P.; Fantacci, S.; Marinotto, D. A known chiral bis(salicylaldiminato)zinc(II) complex with unexpected interesting second-order nonlinear optical and luminescent properties in solution. Inorganics 2020, 8, 25. [Google Scholar] [CrossRef] [Green Version]
- Page, R.H.; Jurich, M.C.; Beck, B.; Sen, A.; Twieg, R.J.; Swalen, J.D.; Bjorklund, G.C.; Wilson, C.G. Electrochromic and optical waveguide studies of corona-poled electro-optic polymer films. J. Opt. Soc. Am. B 1990, 7, 1239–1250. [Google Scholar] [CrossRef]
- Herman, W.N.; Hayden, L.M. Maker fringes revisited: Second-harmonic generation from birefringent or absorbing materials. J. Opt. Soc. Am. B 1995, 12, 416–427. [Google Scholar] [CrossRef] [Green Version]
- Macchi, R.; Cariati, E.; Marinotto, D.; Roberto, D.; Tordin, E.; Ugo, R.; Bozio, R.; Cozzuol, M.; Pedron, D.; Mattei, G. Stable SHG from in situ grown oriented nanocrystals of [(E)-N,N-dimethylamino-N’-methylstilbazolium][p-toluenesulfonate] in a PMMA film. J. Mater. Chem. 2010, 20, 1885–1890. [Google Scholar] [CrossRef]
- Roberto, D.; Colombo, A.; Dragonetti, C.; Marinotto, D.; Righetto, S.; Tavazzi, S.; Escadeillas, M.; Guerchais, V.; Le Bozec, H.; Boucekkine, A.; et al. Cyclometallated 4-styryl-2-phenylpyridine Pt(II) acetylacetonate complexes as second-order NLO building blocks for SHG active polymeric films. Organometallics 2013, 32, 3890–3894. [Google Scholar]
- Colombo, A.; Nisic, F.; Dragonetti, C.; Marinotto, D.; Oliveri, I.P.; Righetto, S.; Lobello, M.G.; De Angelis, F. Unexpectedly high second-order nonlinear optical properties of simple Ru and Pt alkynyl complexes as an analytical springboard for NLO-active polymer films. Chem. Commun. 2014, 50, 7986–7989. [Google Scholar] [CrossRef] [Green Version]
- Prabu, S.; David, E.; Viswanathan, T.; Thirumoorthy, K.; Panda, T.; Dragonetti, C.; Colombo, A.; Marinotto, D.; Righetto, S.; Roberto, D.; et al. NLO-active Y-shaped ferrocene conjugated imidazole chromophores as precursors for SHG polymeric films. Dalton Trans. 2020, 49, 1854–1863. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fontani, M.; Colombo, A.; Dragonetti, C.; Righetto, S.; Roberto, D.; Marinotto, D. Cyclometalated Ir(III) Complexes with Curcuminoid Ligands as Active Second-Order NLO Chromophores and Building Blocks for SHG Polymeric Films. Inorganics 2020, 8, 36. https://doi.org/10.3390/inorganics8050036
Fontani M, Colombo A, Dragonetti C, Righetto S, Roberto D, Marinotto D. Cyclometalated Ir(III) Complexes with Curcuminoid Ligands as Active Second-Order NLO Chromophores and Building Blocks for SHG Polymeric Films. Inorganics. 2020; 8(5):36. https://doi.org/10.3390/inorganics8050036
Chicago/Turabian StyleFontani, Mattia, Alessia Colombo, Claudia Dragonetti, Stefania Righetto, Dominique Roberto, and Daniele Marinotto. 2020. "Cyclometalated Ir(III) Complexes with Curcuminoid Ligands as Active Second-Order NLO Chromophores and Building Blocks for SHG Polymeric Films" Inorganics 8, no. 5: 36. https://doi.org/10.3390/inorganics8050036
APA StyleFontani, M., Colombo, A., Dragonetti, C., Righetto, S., Roberto, D., & Marinotto, D. (2020). Cyclometalated Ir(III) Complexes with Curcuminoid Ligands as Active Second-Order NLO Chromophores and Building Blocks for SHG Polymeric Films. Inorganics, 8(5), 36. https://doi.org/10.3390/inorganics8050036