Analysis on Spatio-Temporal Evolution and Influencing Factors of Air Quality Index (AQI) in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Method
2.1.1. Spatial Autocorrelation Analysis
2.1.2. Introduction of Spatial Econometric Model
2.2. Data Selection
3. Results
3.1. Analysis of Spatial Pattern of AQI
3.2. Analysis of Change Trend of AQI
3.3. Analysis of Influencing Factors of AQI
3.3.1. Model Test Results and Selection
3.3.2. Model Estimation Results and Analysis
3.4. Analysis of Spillover Effect of AQI
4. Conclusions and Discussion
4.1. Conclusions
4.2. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, D.N.; Liu, M.G.; Xu, E.F.; Pang, B.; Guo, X.D.; Xiao, B.W.; Niu, D.X. Comprehensive effectiveness assessment of renewable energy generation policy: A partial equilibrium analysis in China. Energy Policy 2018, 115, 330–341. [Google Scholar] [CrossRef]
- Duan, H.B.; Zhang, G.P.; Fan, Y.; Wang, S.Y. Role of endogenous energy efficiency improvement in global climate change mitigation. Energy Effic. 2017, 10, 459–473. [Google Scholar] [CrossRef]
- Wei, Y.G.; Huang, C.; Lam, P.T.I.; Yuan, Z.Y. Sustainable urban development: A review on urban carrying capacity. Habitat Int. 2015, 46, 64–71. [Google Scholar] [CrossRef]
- Wu, J.; Albrecht, J.; Fan, Y.; Xia, Y. The design of renewable support schemes and CO2 emissions in China. Energy Policy 2016, 99, 4–11. [Google Scholar] [CrossRef]
- Yu, X.Y. Is environment “a city thing” in China? Rural-urban differences in environmental attitudes. J. Environ. Psychol. 2014, 38, 39–48. [Google Scholar] [CrossRef]
- Mo, J.L.; Agnolucci, P.; Jiang, M.R.; Fan, Y. The impact of Chinese carbon emission trading scheme (ETS) on low carbon energy (LCE) investment. Energy Policy 2016, 89, 271–283. [Google Scholar] [CrossRef]
- Wang, H.; Xu, J.Y.; Zhang, M.; Yang, Y.Q.; Shen, X.J.; Wang, Y.Q.; Chen, D.; Guo, J.P. A study of the meteorological causes of a prolonged and severe haze episode in January 2013 over central-eastern China. Atmos. Environ. 2014, 98, 146–157. [Google Scholar] [CrossRef]
- Chen, Y.Y.; Ebenstein, A.; Greenstone, M.; Li, H.B. Evidence on the impact of sustained exposure to air pollution on life expectancy from China’s Huai River policy. Proc. Natl. Acad. Sci. USA 2013, 110, 12936–12941. [Google Scholar] [CrossRef]
- Wei, Y.G.; Huang, C.; Li, J.; Xie, L.L. An evaluation model for urban carrying capacity: A case study of China’s mega-cities. Habitat Int. 2016, 53, 87–96. [Google Scholar] [CrossRef]
- Xu, C.R.; Zhu, F.H.; Liu, D.D.; Shi, L.Y. Analysis of the influencing factors of haze in Beijing based on pollutants and meteorological elements. Electr. Power Technol. Environ. 2021, 37, 1–8. [Google Scholar]
- Wu, Q.J.; Yang, R.Y.; Yang, Z.S. A Study on the Rationality of Land Use Change in the Dianchi Basin during the Last 40 Years under the Background of Lake Revolution. Sustainability 2022, 14, 11479. [Google Scholar] [CrossRef]
- Xi, J.P. To Win the Great Victory of Socialism with Chinese Characteristics in the New Era by Building a Well-off Society in an All-Round Way: A Report at the Nineteenth National Congress of the Communist Party of China, 1st ed.; People’s Publishing House: Beijing, China, 2017; pp. 1–71. [Google Scholar]
- Xi, J.P. Lucid waters and lush mountains are invaluable assets: On vigorously advancing the construction of ecological civilization. People’s Daily, 11 July 2014; p. 12. [Google Scholar]
- Xi, J.P. President Xi Jinping attended the leaders’ summit of the fifteenth conference of the parties to the Convention on biological diversity and delivered a keynote speech. People’s Daily, 13 October 2021; p. 1. [Google Scholar]
- Baldelli, A. Evaluation of a low-cost multi-channel monitor for indoor air quality through a novel, low-cost, and reproducible platform. Meas. Sens. 2021, 17, 100059. [Google Scholar] [CrossRef]
- Popovicheva, O.; Timofeev, M.; Persiantseva, N.; Jefferson, M.A.; Johnson, M.; Rogak, S.N.; Baldelli, A. Microstructure and chemical composition of particles from small-scale gas flaring. Aerosol Air Qual. Res. 2019, 19, 2205–2221. [Google Scholar] [CrossRef] [Green Version]
- Penza, M. Low-cost sensors for outdoor air quality monitoring. In Advanced Nanomaterials for Inexpensive Gas Microsensors, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 235–288. [Google Scholar]
- Bulot, F.M.; Johnston, S.J.; Basford, P.J.; Easton, N.H.; Apetroaie-Cristea, M.; Foster, G.L.; Morris, A.K.; Cox, S.J.; Loxham, M. Long-term field comparison of multiple low-cost particulate matter sensors in an outdoor urban environment. Sci. Rep. 2019, 9, 7497. [Google Scholar] [CrossRef] [Green Version]
- Ministry of Environmental Protection of the People’s Republic of China. Technical Regulation on Ambient Air Quality Index (on Trial): HJ 633-2012, 1st ed.; China Environmental Science Press: Beijing, China, 2012.
- Ministry of Environmental Protection of the People’s Republic of China. Ambient Air Quality Standards: GB3095-2012, 1st ed.; China Environmental Science Press: Beijing, China, 2012.
- Zhang, J.Z.; Sun, J.; Wang, G.L.; An, L.C.; Wang, W.H. Relation between the spatial-temporal distribution characteristics of Air Quality Index and meteorological conditions in Beijing. Meteorol. Environ. Sci. 2014, 37, 33–39. [Google Scholar]
- Liu, M.F.; Xie, H.J. The spatial heterogeneity analysis of pollution agglomeration based on the AQI Air Quality Index. Econ. Geogr. 2016, 36, 166–175. [Google Scholar]
- Thanvisitthpon, N.; Rintra, J.; Sittiprapaporn, P.; Bumrungpert, A.; Trakulkongsmut, P. Self-Assessment Adaptive Capacity Indicators of Health Risks from Air Pollution. Sustainability 2021, 13, 13141. [Google Scholar] [CrossRef]
- Zakaria, N.N.; Othman, M.; Sokkalingam, R.; Daud, H.; Abdullah, L.; Kadir, E.A. Markov Chain Model Development for Forecasting Air Pollution Index of Miri, Sarawak. Sustainability 2019, 11, 5190. [Google Scholar] [CrossRef] [Green Version]
- Guo, H.; Zhou, F.; Zhang, Y.W.; Yang, Z.A. Quantitative Analysis of Sulfur Dioxide Emissions in the Yangtze River Economic Belt from 1997 to 2017, China. Int. J. Environ. Res. Public Health 2022, 19, 10770. [Google Scholar] [CrossRef]
- Zhang, J.B.; Rong, Y.M.; Yin, Q.F.; Zhang, P.; Zhao, L.R.; Chen, C.L. Spatiotemporal Variation and Influencing Factors of TSP and Anions in Coastal Atmosphere of Zhanjiang City, China. Int. J. Environ. Res. Public Health 2022, 19, 2030. [Google Scholar] [CrossRef]
- Yuan, G.H.; Yang, W.X. Evaluating China’s Air Pollution Control Policy with Extended AQI Indicator System: Example of the Beijing-Tianjin-Hebei Region. Sustainability 2019, 11, 939. [Google Scholar] [CrossRef] [Green Version]
- Yan, Y.; Li, Y.G.; Sun, M.H.; Wu, Z.H. Primary Pollutants and Air Quality Analysis for Urban Air in China: Evidence from Shanghai. Sustainability 2019, 11, 2319. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.S.; Hu, M.G.; Zhang, Y.P.; Han, Y. An Empirical Mode Decomposition for Establishing Spatiotemporal Air Quality Trends in Shandong Province, China. Sustainability 2021, 13, 12901. [Google Scholar] [CrossRef]
- Liu, H.J.; Du, G.J. Spatial pattern and distributional dynamics of urban air pollution in China—An empirical study based on AQI and six sub-pollutants of 161 cities. Econ. Geogr. 2016, 36, 33–38. [Google Scholar]
- Li, M.Y.; Wang, W.L.; Ying, X.J.; Zhu, X.C.; Zhang, R.S. Analysis of characteristics of AQI in 13 cities of Jing-Jin-Ji region in 2015. Chin. J. Pharm. 2016, 32, 298–301. [Google Scholar]
- Qiao, Z.; Wu, F.; Xu, X.L.; Yang, J.; Liu, L. Mechanism of Spatiotemporal Air Quality Response to Meteorological Parameters: A National-Scale Analysis in China. Sustainability 2019, 11, 3957. [Google Scholar] [CrossRef] [Green Version]
- Huang, W.Y.; Wang, H.W.; Wei, Y.G. Endogenous or Exogenous? Examining Trans-Boundary Air Pollution by Using the Air Quality Index (AQI): A Case Study of 30 Provinces and Autonomous Regions in China. Sustainability 2018, 10, 4220. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.C.; Li, X.Y.; Liu, T.; Zhao, X.J. Spatio-Temporal Correlation Analysis of Air Quality in China: Evidence from Provincial Capitals Data. Sustainability 2020, 12, 2486. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.T.; Liu, X.Y.; Wang, Z.B. Temporal and spatial distribution characteristics of urban air quality in China based on AQI index. J. Guangxi Norm. Univ. Nat. Sci. Ed. 2019, 37, 187–196. [Google Scholar]
- Xiao, Y.; Tian, Y.Z.; Xu, W.X.; Wu, J.J.; Tian, L. Temporal and spatial distribution characteristics of air quality in China in recent 10 years. J. Eco-Environ. 2017, 26, 243–252. [Google Scholar]
- Zhan, C.G.; Wu, Y.; Wei, S.Z.; Tu, L.L. Study on spatial and temporal distribution of AQI in Wuhan based on GIS. Geospat. Inf. 2014, 5, 62–64. [Google Scholar]
- Fang, C.L.; Liu, H.M.; Li, G.D.; Sun, D.Q.; Miao, Z. Estimating the Impact of Urbanization on Air Quality in China Using Spatial Regression Models. Sustainability 2015, 7, 15570–15592. [Google Scholar] [CrossRef] [Green Version]
- He, R.R.; Zhu, L.B.; Zhou, K.S. Spatial autocorrelation analysis of air quality index (AQI) in eastern China based on residuals of time series models. Acta Sci. Circumstantiae 2017, 37, 2459–2467. [Google Scholar]
- Yang, M.; Wang, Y. Spatial-temporal characteristics of PM2.5 and its influencing factors in the Yangtze River Economic Belt. China Popul. Resour. Environ. 2017, 27, 91–100. [Google Scholar]
- Tobler, W. A Computer Movie Simulating Urban Growth in the Detroit Region. Econ. Geogr. 1970, 46, 234–240. [Google Scholar] [CrossRef]
- Chen, Q. Advanced Econometrics and Stata Application, 2nd ed.; Higher Education Press: Beijing, China, 2014; pp. 575–582. [Google Scholar]
- Moran, P. Notes on Continuous Stochastic Phenomena. Biometrika 1950, 37, 17–23. [Google Scholar] [CrossRef]
- Geary, R. The Contiguity Ratio and Statistical Mapping. Inc. Stat. 1954, 5, 115–145. [Google Scholar] [CrossRef]
- Getis, A.; Ord, J. The Analysis of Spatial Association by Use of Distance Statistics. Geogr. Anal. 1992, 24, 189–206. [Google Scholar] [CrossRef]
- Yang, R.Y.; Du, W.Y.; Yang, Z.S. Spatiotemporal Evolution and Influencing Factors of Urban Land Ecological Security in Yunnan Province. Sustainability 2021, 13, 2936. [Google Scholar] [CrossRef]
- Yang, R.Y.; Liu, F.L.; Zhu, S.X.; Zhang, B.S.; Wang, J. Research on Poverty Pattern And Its Influencing Factors of Xundian Hui And Yi Nationality Autonomous County. Chin. J. Agric. Resour. Reg. Plan. 2021, 42, 153–165. [Google Scholar]
- Yang, Z.S.; Yang, R.Y.; Liu, F.L. Spatio-temporal evolution and influencing factors of urban-rural income gap in Yunnan province based on poverty classification. Geogr. Res. 2021, 40, 2252–2271. [Google Scholar]
- Yang, R.Y.; Zhong, C.B.; Yang, Z.S.; Liu, F.L.; Peng, H.Y. Analysis on poverty influencing factors in deep poverty county of Karst Rocky-desertified Area in Southwest China. World Regional Studies 2022, 31, 1298–1309. [Google Scholar]
- Elhorst, J.P. Spatial Econometrics: From Cross-Sectional Data to Spatial Panels, 1st ed.; Springer Berlin Heidelberg: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Kuznets, S. Economic growth and income inequality. Am. Econ. Rev. 1955, 45, 42–48. [Google Scholar]
- Xu, W.X.; Tian, Y.Z.; Liu, Y.X.; Zhao, B.X.; Liu, Y.C.; Zhang, X.Q. Understanding the Spatial-Temporal Patterns and Influential Factors on Air Quality Index: The Case of North China. Int. J. Environ. Res. Public Health 2019, 16, 2820. [Google Scholar] [CrossRef] [PubMed]
- Qin, J.H.; Wang, S.X.; Guo, L.H.; Xi, J. Spatial Association Pattern of Air Pollution and Influencing Factors in the Beijing–Tianjin–Hebei Air Pollution Transmission Channel: A Case Study in Henan Province. Int. J. Environ. Res. Public Health 2020, 17, 1598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, R.Y.; Zhong, C.B.; Yang, Z.S.; Wu, Q.J. Analysis on the Effect of the Targeted Poverty Alleviation Policy on Narrowing the Urban-Rural Income Gap: An Empirical Test Based on 124 Counties in Yunnan Province. Sustainability 2022, 14, 12560. [Google Scholar] [CrossRef]
- Yang, R.Y.; Wu, Q.J.; Yang, Z.S.; Yang, S.Q. Study on Spatio-Temporal Changes of Land Use Sustainability in Southwestern Border Mountainous Provinces in Recent 20 Years Based on Remote Sensing Interpretation: A Case Study in Yunnan Province, China. Land 2022, 11, 1957. [Google Scholar] [CrossRef]
- Yang, R.Y.; Zhong, C.B. Land Suitability Evaluation of Sorghum Planting in Luquan County of Jinsha River Dry and Hot Valley Based on the Perspective of Sustainable Development of Characteristic Poverty Alleviation Industry. Agriculture 2022, 12, 1852. [Google Scholar] [CrossRef]
Attribute | Dimension | Variable | Calculation Method or Data Description | Unit |
---|---|---|---|---|
Dependent Variable | Environment | Air Quality Index (AQI) | National Urban Air Quality Real-time Release Platform of China National Environmental Monitoring Centre | None |
Independent Variable | Economic Development | Per Capita GDP | GDP/Total population | CNY/Person |
Industrialization Level | Output value of secondary industry/GDP × 100% | % | ||
Social Population | Urban Population Density | Total urban population/Urban land area | Person/km2 | |
Population Density | Total population/Total land area | Person/km2 | ||
Population Urbanization Rate | Total urban population/Total regional population | % | ||
Natural Environment | Park Green Area Per Capita | Total area of park green space/Total population in the area | m2/Person | |
Percentage of Forest Cover | Forest area/Total land area × 100% | % | ||
Green Space Rate of Built-up Area | Greening area of built-up area/Total area of built-up area × 100% | % | ||
Environmental Governance | Governance Efforts of Environmental Pollution | Total investment in governance of environmental pollution/GDP × 100% | % | |
Governance Efforts of Industrial Waste Gas | Operation cost of industrial waste gas treatment facilities/GDP × 100% | % | ||
Governance Facilities of Industrial Waste Gas | Total number of industrial waste gas treatment facilities in the year | 10,000 sets | ||
Sewage Treatment Rate | Sewage treatment capacity/total sewage discharge × 100% | % | ||
Domestic Garbage Harmless Treatment Rate | Amount of harmless urban domestic waste/total amount of urban domestic waste generated × 100% | % | ||
Environmental Pollution | Total emissions of SO2 | Total SO2 emissions in the year | 10,000 tons | |
Total emissions of NOx | Total NOx emissions in the year | 10,000 tons |
Dimension | Year | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | Annual Average |
---|---|---|---|---|---|---|---|---|---|---|
Province | Moran’s I | 0.454 | 0.467 | 0.485 | 0.415 | 0.393 | 0.358 | 0.377 | 0.352 | 0.428 |
Z-statistic | 6.377 | 6.445 | 6.682 | 5.807 | 5.505 | 5.060 | 5.296 | 4.976 | 5.978 | |
p Value | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |
City | Moran’s I | 0.951 | 0.758 | 0.722 | 0.759 | 0.647 | 0.715 | 0.692 | 0.632 | 0.769 |
Z-statistic | 65.913 | 52.673 | 50.197 | 52.687 | 45.194 | 49.725 | 48.122 | 44.095 | 53.433 | |
p Value | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |
County | Moran’s I | 1.035 | 0.915 | 0.893 | 0.908 | 0.789 | 0.852 | 0.815 | 0.750 | 0.913 |
Z-statistic | 291.723 | 258.021 | 251.818 | 255.916 | 222.471 | 240.292 | 229.837 | 211.509 | 257.285 | |
p Value | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Items | Test Variable Name | Add All Independent Variable | Eliminate Independent Variables of Multicollinearity | ||
---|---|---|---|---|---|
Test Statistics | p Value | Test Statistics | p Value | ||
Spatial Error | Moran’s I | 0.780 | 0.435 | 0.796 | 0.426 |
Lagrange Multiplier | 3.761 | 0.052 * | 4.430 | 0.035 ** | |
Robust Lagrange Multiplier | 2.536 | 0.111 | 3.021 | 0.082 * | |
Spatial Lag | Lagrange Multiplier | 18.293 | 0.000 *** | 23.939 | 0.000 *** |
Robust Lagrange Multiplier | 17.068 | 0.000 *** | 22.530 | 0.000 *** |
Variable and Test Result | Fix Effect | SAC(FE) | SDM(RE) | SEM(RE) | SAR-1(RE) | SAR-2(FE) | SAR-3(RE) |
---|---|---|---|---|---|---|---|
Per Capita GDP | −0.0410 (0.0527) | −0.0538 (0.0583) | −0.0585 (0.0479) | −0.0657 (0.0611) | −0.1326 ** (0.0544) | −0.0670 (0.0773) | −0.0488 (0.0832) |
Industrialization Level | 0.0050 * (0.0029) | 0.0062 *** (0.0018) | 0.0064 *** (0.0017) | 0.0063 *** (0.0021) | 0.0086 *** (0.0019) | 0.0092 *** (0.0026) | 0.0055 ** (0.0023) |
Population Density | 0.0006 (0.1710) | −0.0775 (0.1651) | 0.0591 ** (0.0248) | 0.0893 *** (0.0280) | 0.1030 *** (0.0280) | −0.2863 ** (0.1410) | 0.1208 *** (0.0350) |
Park Green Area Per Capita | −0.0415 (0.1022) | −0.0040 (0.0648) | −0.0277 (0.0587) | −0.0332 (0.0622) | −0.0519 (0.0692) | 0.1069 (0.0900) | −0.0840 (0.0838) |
Population Urbanization Rate | −0.0033 (0.0124) | −0.0104 * (0.0056) | −0.0008 (0.0039) | −0.0036 (0.0047) | −0.0020 (0.0052) | −0.0056 (0.0115) | 0.0171 (0.0129) |
Population Urbanization Rate (Square term) | 0.0000 (0.0001) | 0.0001 * (0.0000) | 0.0000 (0.0000) | 0.0000 (0.0000) | 0.0000 (0.0000) | 0.0000 (0.0001) | −0.0005 * (0.0003) |
Percentage of Forest Cover | −0.0089 * (0.0049) | −0.0074 * (0.0039) | −0.0018 (0.0017) | −0.0094 *** (0.0019) | −0.0077 *** (0.0020) | −0.0085 ** (0.0038) | −0.0090 *** (0.0025) |
Governance Efforts of Environmental Pollution | 0.0030 (0.0217) | 0.0016 (0.0142) | 0.0013 (0.0148) | 0.0072 (0.0153) | 0.0145 (0.0163) | 0.0220 (0.0207) | −0.0012 (0.0172) |
Governance Efforts of Industrial Waste Gas | −0.0293 (0.0373) | −0.0223 (0.0269) | −0.0171 (0.0258) | −0.0109 (0.0276) | −0.0376 (0.0305) | 0.0861 (0.0798) | −0.0251 (0.0288) |
Governance Facilities of Industrial Waste Gas | 0.0210 (0.0309) | 0.0277 (0.0188) | 0.0459 *** (0.0169) | 0.0328 (0.0204) | 0.0043 (0.0179) | 0.0329 (0.0207) | 0.0282 (0.0232) |
Total Emissions of SO2 | 0.0172 (0.0208) | 0.0209 ** (0.0106) | 0.0191 * (0.0112) | 0.0290 ** (0.0130) | 0.0252 ** (0.0101) | 0.0266 ** (0.0112) | −0.0156 (0.0148) |
Green Space Rate of Built-up Area | −0.0016 (0.0086) | −0.0123 ** (0.0052) | −0.0050 (0.0042) | −0.0108 ** (0.0048) | −0.0086 * (0.0050) | 0.0030 (0.0054) | −0.0169 *** (0.0062) |
Domestic Garbage Harmless Treatment Rate | −0.0001 (0.0011) | 0.0002 (0.0007) | 0.0011 (0.0008) | −0.0001 (0.0007) | 0.0006 (0.0008) | −0.0017 * (0.0009) | 0.0008 (0.0011) |
Sewage Treatment Rate | −0.0013 (0.0016) | −0.0027 *** (0.0010) | −0.0036 *** (0.0010) | −0.0036 *** (0.0010) | −0.0033 *** (0.0011) | −0.0019 (0.0018) | −0.0035 *** (0.0013) |
Parameter ρ | 0.4147 *** (0.1185) | 0.4310 *** (0.0658) | 0.2554 *** (0.0552) | 0.4845 *** (0.0631) | 0.4650 *** (0.0843) | ||
Parameter λ | 0.2695 (0.1981) | 0.7242 *** (0.0855) | |||||
LR Test: Individual Effect | 53.62 *** (0.0000) | 9.86 (0.9093) | 8.12 (1.0000) | 24.37 * (0.0817) | 9.06 (0.9111) | 6.38 (0.8745) | 8.11 (0.9454) |
LR Test: Time Effect | 420.92 *** (0.0000) | 419.06 *** (0.0000) | 300.79 *** (0.0000) | 434.81 *** (0.0000) | 408.42 *** (0.0000) | 139.00 *** (0.0000) | 202.68 *** (0.0000) |
Hausman Test | 28.64 *** (0.0074) | 1.62 (0.9999) | 18.47 (0.1403) | 21.78 * (0.0589) | 27.86 *** (0.0095) | 7.39 (0.9188) | |
Individual Effect | Yes | Yes | — | — | — | Yes | — |
Time Effect | Yes | No | — | — | — | No | — |
Within R2 | 0.8523 | 0.8080 | 0.8671 | 0.7839 | 0.8190 | 0.9211 | 0.8390 |
Sample Size | 217 | 217 | 217 | 217 | 217 | 91 | 126 |
Variable | Statistic | p Value |
---|---|---|
LR Test of SDM and SAR | 139.90 *** | 0.0000 |
LR Test of SDM and SEM | 200.94 *** | 0.0000 |
Variable Name | Direct Effect | Spillover Effect | Total Effect |
---|---|---|---|
Per Capita GDP | −0.0826 (0.0507) | −0.3392 (0.1161) *** | −0.4218 (0.1415) *** |
Industrialization Level | 0.0074 (0.0016) *** | 0.0139 (0.0045) *** | 0.0212 (0.0050) *** |
Population Density | 0.0664 (0.0224) *** | 0.0670 (0.0494) | 0.1335 (0.0475) *** |
Percentage of Forest Cover | −0.0033 (0.0016) ** | −0.0194 (0.0037) *** | −0.0227 (0.0033) *** |
Total Emissions of SO2 | 0.0179 (0.0107) * | −0.0106 (0.0239) | 0.0073 (0.0236) |
Green Space Rate of Built-up Area | −0.0038 (0.0046) | 0.0121 (0.0139) | 0.0083 (0.0157) |
Sewage Treatment Rate | −0.0037 (0.0011) *** | −0.0023 (0.0045) | −0.0060 (0.0052) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, R.; Zhong, C. Analysis on Spatio-Temporal Evolution and Influencing Factors of Air Quality Index (AQI) in China. Toxics 2022, 10, 712. https://doi.org/10.3390/toxics10120712
Yang R, Zhong C. Analysis on Spatio-Temporal Evolution and Influencing Factors of Air Quality Index (AQI) in China. Toxics. 2022; 10(12):712. https://doi.org/10.3390/toxics10120712
Chicago/Turabian StyleYang, Renyi, and Changbiao Zhong. 2022. "Analysis on Spatio-Temporal Evolution and Influencing Factors of Air Quality Index (AQI) in China" Toxics 10, no. 12: 712. https://doi.org/10.3390/toxics10120712
APA StyleYang, R., & Zhong, C. (2022). Analysis on Spatio-Temporal Evolution and Influencing Factors of Air Quality Index (AQI) in China. Toxics, 10(12), 712. https://doi.org/10.3390/toxics10120712