Marine Gel Interactions with Hydrophilic and Hydrophobic Pollutants
Abstract
:1. Introduction
2. Relative Hydrophobicity of EPS
3. Stability of Microgels upon the Addition of Amphiphiles, e.g., Dispersants
4. Incorporation of Oil and Other Hydrophobic Pollutants into Gel-Forming EPS and Marine Aggregates
5. Specific and Nonspecific Interactions of Marine Gels with Metal Ions
- (1)
- Polyfunctional properties: They have various kinds of SFGs (R-COOH, R-OH, R-SH, R-NH2, etc.). Those different SFGs also have different affinities to hard and soft cations ([44]. Sometimes, a metal ion is bound to more than two SFGs. There may be competition for cations between different SFGs. For example, B-type metals have stronger affinities to (S, S) > (S, N) > (N, O) > (O, O). The same SFG can have different properties depending on the types of backbone (aliphatic or aromatic) to which they bind. Finally, the geometry, such as cavities formed near SFGs, and flexibility of the organic molecules can make a significant difference to the stability of the complexation. These kinds of steric factors are controlled by ionic strength and pH in bulk solution.
- (2)
- Conformational changes: Depending on the hydration/dehydration processes, hydrogen bonds between hydrated cations and SFGs, or metallic bridges, and the conformation of the macromolecules can form aggregates or gels. The hydration water has a different structure from that of water in the bulk solution, and it makes the stability different [58,64]. The nature of a SFG in both LMW ligand and HMW macromolecules is similar. However, the fate of the same SFG may differ depending on the fate of particles and dissolved solutes.
- (3)
- Polyelectric properties: HMW macromolecules have SFGs (e.g., R-COOH) that protonate at low pH and deprotonate at high pH. When they deprotonate under basic conditions, negatively charged SFGs repulse one another. This process creates an electric field and causes more energy needed to remove protons from SFGs, eventually increasing the pKa. The formation of electric fields depends on the proportion of protonated sites. This indicates that the degree of protonation or deprotonation is not solely controlled by pH in bulk solution, but also by the near-field interactions between potential ligands.
- (4)
- Binding heterogeneity effects, with binding constants becoming a function of the metal ion-to-surface site ratio [58], occur because the strongest ligands are present at the lowest concentrations, while weaker ligands are present at higher concentrations. This necessitates experimental assessments at ambient concentrations of metals and ligands, or at least use the proper ratios.
- (5)
- ‘Particle concentration effects’ on kinetic constants (ki) and particle–water partition coefficients (Kd) are a consequence of incomplete separation between particles and solution and colloids, as there often are strong metal complexing macromolecular ligands in the 0.45 µm filter-passing fraction. This effect causes experimentally determined Kd and ki values to become a function of particle (Cp) concentration. This ‘particle concentration effect’ on kinetic constants (ki) and particle–water partition coefficients (Kd) was demonstrated using, as an example, thorium ions in the ocean, that is, the Brownian pumping model of Honeyman and Santschi [65].
6. Gel Interactions with Nanoparticles
7. Gel Interactions with Micro- and Nano-Plastics
8. Gel Interactions with Organisms
9. Conclusions
10. Open Questions
Author Contributions
Funding
Conflicts of Interest
References
- Santschi, P.; Balnois, E.; Wilkinson, K.; Zhang, J.; Buffle, J.; Guo, L. Fibrillar polysaccharides in marine macromolecular organic matter as imaged by atomic force microscopy and transmission electron microscopy. Limnol. Oceanogr. 1998, 43, 896–908. [Google Scholar] [CrossRef]
- Droop, M.R. Vitamins, phytoplankton and bacteria: Symbiosis or scavenging? J. Plankton Res. 2007, 29, 107–113. [Google Scholar] [CrossRef] [Green Version]
- Kazamia, E.; Sutak, R.; Paz-Yepes, J.; Dorrell, R.G.; Vieira, F.R.J.; Mach, J.; Morrissey, J.; Leon, S.; Lam, F.; Pelletier, E.; et al. Endocytosis-mediated siderophore uptake as a strategy for Fe acquisition in diatoms. Sci. Adv. 2018, 4, eaar4536. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Butler, A. Marine Siderophores and Microbial Iron Mobilization. Biometals 2005, 18, 369–374. [Google Scholar] [CrossRef] [PubMed]
- Chin, W.-C.; Orellana, M.V.; Quesada, I.; Verdugo, P. Secretion in Unicellular Marine Phytoplankton: Demonstration of Regulated Exocytosis in Phaeocystis globosa. Plant Cell Physiol. 2004, 45, 535–542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rabin, N.; Zheng, Y.; Opoku-Temeng, C.; Du, Y.; Bonsu, E.; Sintim, H.O. Biofilm formation mechanisms and targets for developing antibiofilm agents. Future Med. Chem. 2015, 7, 493–512. [Google Scholar] [CrossRef] [PubMed]
- Passow, U. Transparent exopolymer particles (TEP) in aquatic environments. Prog. Oceanogr. 2002, 55, 287–333. [Google Scholar] [CrossRef] [Green Version]
- Wurl, O.; Miller, L.; Vagle, S. Production and fate of transparent exopolymer particles in the ocean. J. Geophys. Res. 2011, 116, C00H13. [Google Scholar] [CrossRef] [Green Version]
- Decho, A.W.; Gutierrez, T. Microbial Extracellular Polymeric Substances (EPSs) in Ocean Systems. Front. Microbiol. 2017, 8, 922. [Google Scholar] [CrossRef]
- Passow, U.; Alldredge, A.L. A dye-binding assay for the spectrophotometric measurement of transparent exopolymer particles (TEP). Limnol. Oceanogr. 1995, 40, 1326–1335. [Google Scholar] [CrossRef]
- Bar-Zeev, E.; Berman-Frank, I.; Girshevitz, O.; Berman, T. Revised paradigm of aquatic biofilm formation facilitated by microgel transparent exopolymer particles. Proc. Natl. Acad. Sci. USA 2012, 109, 9119–9124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berman, T. TEP, an Ubiquitous Constituent of NOM is an important factor in Membrane Biofouling. In Proceedings of the 2011 IWA Specialty Conference on Natural Organic Matter, Costa Mesa, CA, USA, 27–29 July 2011. [Google Scholar]
- De Gennes, P.G. Soft matter. Rev. Mod. Phys. 1992, 64, 645–648. [Google Scholar] [CrossRef]
- Chin, W.-C.; Orellana, M.V.; Verdugo, P. Spontaneous assembly of marine dissolved organic matter into polymer gels. Nature 1998, 391, 568–572. [Google Scholar] [CrossRef]
- Ding, Y.X.; Chin, W.C.; Rodriguez, A.; Hung, C.C.; Santschi, P.H.; Verdugo, P. Amphiphilic exopolymers from Sagittula stellata induce DOM self-assembly and formation of marine microgels. Mar. Chem. 2008, 112, 11–19. [Google Scholar] [CrossRef]
- Chen, C.-S.; Anaya, J.M.; Zhang, S.; Spurgin, J.; Chuang, C.-Y.; Xu, C.; Miao, A.-J.; Chen, E.Y.T.; Schwehr, K.A.; Jiang, Y.; et al. Effects of Engineered Nanoparticles on the Assembly of Exopolymeric Substances from Phytoplankton. PLoS ONE 2011, 6, e21865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Long, R.A.; Azam, F. Abundant protein-containing particles in the sea. Aquat. Microb. Ecol. 1996, 10, 213–221. [Google Scholar] [CrossRef] [Green Version]
- Thornton, D.C.O. Coomassie Stainable Particles (CSP): Protein Containing Exopolymer Particles in the Ocean. Front. Mar. Sci. 2018, 5. [Google Scholar] [CrossRef]
- Shiu, R.-F.; Vazquez, C.I.; Tsai, Y.-T.; Torres, G.V.; Chen, C.-S.; Santschi, P.H.; Quigg, A.; Chin, W.-C. Nano-plastics induce aquatic particulate organic matter (microgels) formation. Sci. Total Environ. 2020. [Google Scholar] [CrossRef]
- Xu, C.; Zhang, S.; Chuang, C.-y.; Miller, E.J.; Schwehr, K.A.; Santschi, P.H. Chemical composition and relative hydrophobicity of microbial exopolymeric substances (EPS) isolated by anion exchange chromatography and their actinide-binding affinities. Mar. Chem. 2011, 126, 27–36. [Google Scholar] [CrossRef]
- Schwehr, K.A.; Xu, C.; Chiu, M.-H.; Zhang, S.; Sun, L.; Lin, P.; Beaver, M.; Jackson, C.; Agueda, O.; Bergen, C.; et al. Protein: Polysaccharide ratio in exopolymeric substances controlling the surface tension of seawater in the presence or absence of surrogate Macondo oil with and without Corexit. Mar. Chem. 2018, 206, 84–92. [Google Scholar] [CrossRef]
- Hung, C.; Guo, L.; Santschi, P.; Alvarado-Quiroz, N.; Haye, J. Distributions of carbohydrate species in the Gulf of Mexico. Mar. Chem. 2003, 81, 119–135. [Google Scholar] [CrossRef]
- Sun, L.; Xu, C.; Chin, W.C.; Zhang, S.; Lin, P.; Schwehr, K.A.; Quigg, A.; Chiu, M.-H.; Chin, W.-C.; Santschi, P.H. Light-induced aggregation of microbial exopolymeric substances. Chemosphere 2017, 181, 675–681. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Zhang, S.; Beaver, M.; Wozniak, A.; Obeid, W.; Lin, Y.; Wade, T.L.; Schwehr, K.A.; Lin, P.; Sun, L.; et al. Decreased sedimentation efficiency of petro- and non-petro-carbon caused by a dispersant for Macondo surrogate oil in a mesocosm simulating a coastal microbial community. Mar. Chem. 2018, 206, 34–43. [Google Scholar] [CrossRef]
- Ren, B.; Young, B.; Variola, F.; Delatolla, R. Protein to polysaccharide ratio in EPS as an indicator of non-optimized operation of tertiary nitrifying MBBR. Water Qual. Res. J. 2016, 5, 297–306. [Google Scholar] [CrossRef] [Green Version]
- Xu, C.; Chin, W.-C.; Lin, P.; Chen, H.M.; Lin, P.; Chiu, M.-C.; Waggoner, D.C.; Xing, W.; Sun, L.; Schwehr, K.A.; et al. Marine Gels, Extracellular Polymeric Substances (EPS) and Transparent Exopolymeric Particles (TEP) in natural seawater and seawater contaminated with a water accommodated fraction of Macondo oil surrogate. Mar. Chem. 2019, 215, 103667. [Google Scholar] [CrossRef]
- Xu, C.; Zhang, S.; Beaver, M.; Lin, P.; Sun, L.; Doyle, S.M.; Sylvan, J.B.; Wozniak, A.; Hatcher, P.G.; Kaiser, K.; et al. The role of microbially-mediated exopolymeric substances (EPS) in regulating Macondo oil transport in a mesocosm experiment. Mar. Chem. 2018, 206, 52–61. [Google Scholar] [CrossRef]
- Janado, M.; Yano, Y. Hydrophobic nature of sugars as evidenced by their differential affinity for polystyrene gel in aqueous media. J. Solut. Chem. 1985, 14, 891–902. [Google Scholar] [CrossRef]
- Petrova, O.E.; Sauer, K. Sticky situations: Key components that control bacterial surface attachment. J Bacteriol. 2016, 104, 2413–2425. [Google Scholar] [CrossRef] [Green Version]
- Fong, J.N.C.; Yildiz, F.H. Biofilm Matrix Proteins. Microbiol. Spectr. 2015, 3. [Google Scholar] [CrossRef] [Green Version]
- Shiu, R.-F.; Chiu, M.-H.; Vazquez, C.I.; Tsai, Y.-Y.; Le, A.; Kagiri, A.; Xu, C.; Kamalanathan, M.; Bacosa, H.P.; Doyle, S.M.; et al. Protein to carbohydrate (P/C) ratio changes in microbial extracellular polymeric substances induced by oil and Corexit. Mar. Chem. 2020, 223, 103789. [Google Scholar] [CrossRef]
- Santschi, P.H.; Xu, C.; Schwehr, K.A.; Lin, P.; Sun, L.; Chin, W.C.; Kamalanathan, M.; Bacosa, H.P.; Quigg, A. Can the protein/carbohydrate (P/C) ratio of exopolymeric substances (EPS) be used as a proxy for their ‘stickiness’ and aggregation propensity? Mar. Chem. 2020, 218, 103734. [Google Scholar] [CrossRef]
- Chen, C.-S.; Shiu, R.-F.; Hsieh, Y.-Y.; Xu, C.; Vazquez, C.I.; Cui, Y.; Hsu, I.C.; Quigg, A.; Santschi, P.H.; Chin, W.-C. Stickiness of Extracellular Polymeric Substances on different surfaces via Magnetic Tweezers. Sci. Total Environ. 2021. [Google Scholar] [CrossRef]
- Xu, C.; Lin, P.; Zhang, S.; Sun, L.; Xing, W.; Schwehr, K.A.; Chin, W.-C.; Wade, T.L.; Knap, A.H.; Hatcher, P.G.; et al. The interplay of extracellular polymeric substances and oil/Corexit to affect the petroleum incorporation into sinking marine oil snow in four mesocosms. Sci. Total Environ. 2019, 693, 133626. [Google Scholar] [CrossRef]
- Sun, L.; Chin, W.-C.; Chiu, M.-H.; Xu, C.; Lin, P.; Schwehr, K.A.; Quigg, A.; Santschi, P.H. Sunlight induced aggregation of dissolved organic matter: Role of proteins in linking organic carbon and nitrogen cycling in seawater. Sci. Total Environ. 2019, 654, 872–877. [Google Scholar] [CrossRef] [PubMed]
- Jeong, C.; Kim, S.; Lee, C.; Cho, S.; Kim, S.-B. Changes in the physical properties of calcium alginate gel beads under a wide range of gelation temperature conditions. Foods 2020, 9, 180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, K.Y.; Rowley, J.A.; Eiselt, P.; Moy, E.M.; Bouhadir, K.H.; Mooney, D.J. Controlling mechanical and swelling properties of alginate hydrogels independently by cross-linker type and cross-linking density. Macromolecules 2000, 33, 4291–4294. [Google Scholar] [CrossRef]
- Lotti, T.; Carretti, E.; Berti, D.; Montis, C.; Del Buffa, S.; Lubello, C.; Feng, C.; Malpei, F. Hydrogels formed by anammox extracellular polymeric substances: Structural and mechanical insights. Sci. Rep. 2019, 9, 1–9. [Google Scholar]
- Kakita, H.; Kamishima, H. Some properties of alginate gels derived from algal sodium alginate. In Proceedings of the Nineteenth International Seaweed Symposium, Kobe, Japan, 26–31 March 2007; pp. 93–99. [Google Scholar]
- Sajjan, A.; Banapurmath, N.; Tapaskar, R.; Patil, S.; Kalahal, P.; Shettar, A. Preparation of polymer electrolyte hydrogels using poly (vinyl alcohol) and tetraethylorthosilicate for battery applications. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Karnataka, India, 2–3 March 2018; p. 012078. [Google Scholar]
- Feng, C.; Lotti, T.; Canziani, R.; Lin, Y.; Tagliabue, C.; Malpei, F. Extracellular biopolymers recovered as raw biomaterials from waste granular sludge and potential applications: A critical review. Sci. Total Environ. 2020, 753, 142051. [Google Scholar] [CrossRef]
- Saha, D.; Bhattacharya, S. Hydrocolloids as thickening and gelling agents in food: A critical review. J. Food Sci. Technol. 2010, 47, 587–597. [Google Scholar] [CrossRef] [Green Version]
- Kuznetsova, T.A.; Andryukov, B.G.; Besednova, N.N.; Zaporozhets, T.S.; Kalinin, A.V. Marine Algae Polysaccharides as Basis for Wound Dressings, Drug Delivery, and Tissue Engineering: A Review. J. Mar. Sci. Eng. 2020, 8, 481. [Google Scholar] [CrossRef]
- Schwarzenbach, R.P.; Gschwend, P.M.; Imboden, D.M. Environmental Organic Chemistry, 2nd ed.; Wiley-Interscience, John Wiley and Sons, Inc.: Hoboken, NJ, USA, 2003. [Google Scholar]
- Louchouarn, P.; Seward, S.; Cornelissen, G.; Arp, H.P.H.; Yeager, K.M.; Brinkmeyer, R.; Santschi, P.H. Limited mobility of dioxins near San Jacinto Super Fund site (waste pit) in the Houston Ship Channel, Texas due to high amorphous organic carbon. Environ. Pollut. 2018, 238, 988–998. [Google Scholar] [CrossRef]
- Orellana, M.V.; Verdugo, P. Ultraviolet radiation blocks the organic carbon exchange between the dissolved phase and the gel phase in the ocean. Limnol. Oceanogr. 2003, 48, 1618–1623. [Google Scholar]
- Chen, H.; Abdulla, H.A.N.; Sanders, R.L.; Myneni, S.C.B.; Mopper, K.; Hatcher, P.G. Production of Black Carbon-like and Aliphatic Molecules from Terrestrial Dissolved Organic Matter in the Presence of Sunlight and Iron. Environ. Sci. Technol. Lett. 2014, 1, 399–404. [Google Scholar] [CrossRef]
- Chen, C.-S.; Anaya, J.M.; Chen, E.Y.-T.; Farr, E.; Chin, W.-C. Ocean Warming—Acidification Synergism Undermines Dissolved Organic Matter Assembly. PLoS ONE 2015. [Google Scholar] [CrossRef]
- Shiu, R.-F.; Chin, W.-C.; Lee, C.-L. Carbonaceous particles reduce marine microgel formation. Sci. Rep. 2014, 4, 5856. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Jiang, Y.; Chen, C.-S.; Spurgin, J.; Schwehr, K.A.; Quigg, A.; Chin, W.-C.; Santschi, P.H. Aggregation, Dissolution, and Stability of Quantum Dots in Marine Environments: Importance of Extracellular Polymeric Substances. Environ. Sci. Technol. 2012, 46, 8764–8772. [Google Scholar] [CrossRef] [PubMed]
- Shiu, R.-F.; Lee, C.-L.; Chin, W.-C. Reduction in the exchange of coastal dissolved organic matter and microgels by inputs of extra riverine organic matter. Water Res. 2018, 131, 161–166. [Google Scholar] [CrossRef]
- Chiu, M.H.; Vazquez, C.I.; Shiu, R.F.; Le, C.; Sanchez, N.R.; Kagiri, A.; Garcia, C.A.; Nguyen, C.H.; Tsai, S.M.; Zhang, S.; et al. Impact of exposure of crude oil and dispersant (Corexit) on aggregation of extracellular polymeric substances. Sci. Total Environ. 2019, 657, 1535–1542. [Google Scholar] [CrossRef] [PubMed]
- Passow, U.; Ziervogel, K.; Asper, V.; Diercks, A. Marine snow formation in the aftermath of the Deepwater Horizon oil spill in the Gulf of Mexico. Environ. Res. Lett. 2012, 7, 035301. [Google Scholar] [CrossRef] [Green Version]
- Passow, U.; Ziervogel, K. Marine Snow Sedimented Oil Released During the Deepwater Horizon Spill. Oceanography 2016, 29, 118–125. [Google Scholar] [CrossRef] [Green Version]
- Passow, U.; Sweet, J.; Francis, S.; Xu, C.; Dissanayake, A.L.; Lin, Y.Y.; Santschi, P.H.; Quigg, A. Incorporation of oil into diatom aggregates. Mar. Ecol. Prog. Ser. 2019, 612, 65–86. [Google Scholar] [CrossRef] [Green Version]
- Passow, U.; Hetland, R.D. What Happened to All of the Oil? Oceanography 2016, 29, 88–95. [Google Scholar] [CrossRef] [Green Version]
- Engel, A.; Endres, S.; Galgani, L.; Schartau, M. Marvelous Marine Microgels: On the Distribution and Impact of Gel-Like Particles in the Oceanic Water-Column. Front. Mar. Sci. 2020, 7. [Google Scholar] [CrossRef]
- Buffle, J. Complexation Reactions in Aquatic Systems. An Analytical Approach; Ellis Horwood Pub.: Chichester, UK, 1988. [Google Scholar]
- Guo, L.; Sanschi, P.H. Ultrafiltration and its applications to sampling and characterization of aquatic colloids. In International Union of Pure and Applied Chemistry (IUPAC) Series on Analytical and Physical Chemistry of Environmental Systems; John Wiley: Hoboken, NJ, USA, 2007. [Google Scholar]
- Doucet, F.J.; Lead, J.R.; Santschi, P.H. Colloid-Trace Element Interactions in Aquatic Systems. In International Union of Pure and Applied Chemistry (IUPAC) Series on Analytical and Physical Chemistry of Environmental Systems; John Wiley: Hoboken, NJ, USA, 2007. [Google Scholar]
- Santschi, P.H. Marine colloids, agents of the self-cleansing capacity of aquatic systems: Historical perspective and new discoveries. Mar. Chem. 2018, 207, 124–135. [Google Scholar] [CrossRef]
- Santschi, P.; Lenhart, J.; Honeyman, B. Heterogeneous processes affecting trace contaminant distribution in estuaries: The role of natural organic matter. Mar. Chem. 1997, 58, 99–125. [Google Scholar] [CrossRef]
- Helms, J.R.; Mao, J.D.; Chen, H.M.; Perdue, E.M.; Green, N.W.; Hatcher, P.G.; Mopper, K.; Stubbins, A. Spectroscopic characterization of oceanic dissolved organic matter isolated by reverse osmosis coupled with electrodialysis. Mar. Chem. 2015, 177, 278–287. [Google Scholar] [CrossRef] [Green Version]
- Doucet, F.J.; Lead, J.R.; Santschi, P.H. Colloid-Trace Element Interactions in Aquatic Systems; John Wiley & Son, Inc.: Hoboken, NJ. USA, 2007. [Google Scholar]
- Honeyman, B.; Santschi, P. A Brownian-Pumping Model for Oceanic Trace-Metal Scavenging—Evidence from TH-Isotopes. J. Mar. Res. 1989, 47, 951–992. [Google Scholar] [CrossRef]
- Benedetti, M.F.; van Riemsdijk, W.H.; Koopal, L.K. Humic substances considered as a heterogeneous Donnan gel phase. Environ. Sci. Tech. 30: 1805-1813. Humic substances considered as a heterogeneous Donnan gel phase. Environ. Sci. Techol. 1996, 30, 1805–1813. [Google Scholar] [CrossRef]
- Chin, W.; Orellanam, M.V.; Verdugo, P. Exocytosis in Phaeocystis pouchetii: Donnan mechanism of swelling of exocytosed polymer-gels. EOS Trans. Am. Geophys. Un. 1996, 76, 75. [Google Scholar]
- Aitken, L.M.; Verdugo, P. Donnan mechanism of mucin release and conditioning in goblet cells: The role of polygons. J. Exp. Biol. 1989, 53, 73–79. [Google Scholar]
- Tam, P.Y.; Verdugo, P. Control of mucus hydration as a Donnan equilibrium process. Nature 1981, 292, 340–342. [Google Scholar] [CrossRef]
- Sudmalisa, D.; Mubita, T.M.; Gagliano, M.C.; Dinis, E.; Zeeman, G.; Rijnaarts, H.H.M.; Temmink, H. Cation exchange membrane behaviour of extracellular polymericsubstances (EPS) in salt adapted granular sludge. Water Res. 2020, 178, 115855. [Google Scholar] [CrossRef]
- Tanaka, T. Gels. Sci. Am. 1981, 244, 124–138. [Google Scholar] [CrossRef]
- Kanti De, S.; Kanwa, N.; Chakraborty, A. Influence of Trivalent Metal Ions on Lipid Vesicles: Gelation and Fusion Phenomena. Langmuir 2019, 35, 6429–6440. [Google Scholar] [CrossRef]
- Nishibori, N.; Yuasa, A.; Sakai, M.; Fujihara, S.; Nishio, S. Free polyamine concentrations in coastal seawater during phytoplankton bloom. Fish. Sci. 2001, 67, 79–83. [Google Scholar] [CrossRef]
- Felz, S.; Kleikamp, H.; Zlopasa, J.; van Loosdrecht, M.C.M.; Lin, Y. Impact of metal ions on structural EPS hydrogels from aerobic granular sludge. Biofilm 2020, 2, 100011. [Google Scholar] [CrossRef] [PubMed]
- Shiu, R.-F.; Lee, C.-L. Role of microgel formation in scavenging of chromophoric dissolved organic matter and heavy metals in a river-sea system. J. Hazard. Mater. 2017, 328, 12–20. [Google Scholar] [CrossRef] [Green Version]
- Joshi, P.M.; Juwarkar, A.A. In Vivo Studies to Elucidate the Role of Extracellular Polymeric Substances from Azotobacter in Immobilization of Heavy Metals. Environ. Sci. Technol. 2009, 43, 5884–5889. [Google Scholar] [CrossRef] [PubMed]
- Jiann, K.-T.; Wen, L.-S.; Santschi, P.H. Trace metal (Cd, Cu, Ni and Pb) partitioning, affinities and removal in the Danshuei River estuary, a macro-tidal, temporally anoxic estuary in Taiwan. Mar. Chem. 2005, 96, 293–313. [Google Scholar] [CrossRef]
- San˜udo-Wilhelmy, S.A.; Rivera-Duarte, I.; Russell Flegal, A. Distribution of colloidal trace metals in the San Francisco Bay estuary. Geochim. Cosmochim. Acta 1996, 60, 4933–4944. [Google Scholar] [CrossRef]
- Wells, M.L.; Smith, G.J.; Bruland, K.W. The distribution of colloidal and particulate bioactive metals in Narragansett Bay, RI. Mar. Chem. 2000, 71, 143–163. [Google Scholar] [CrossRef]
- Nichols, C.A.M.; Guezennec, J.; Bowman, J.P. Bacterial Exopolysaccharides from Extreme Marine Environments with Special Consideration of the Southern Ocean, Sea Ice, and Deep-Sea Hydrothermal Vents: A Review. Mar. Biotechnol. 2005, 7, 253–271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michels, J.; Stippkugel, A.; Lenz, M.; Wirtz, K.; Engel, A. Rapid aggregation of biofilm-covered microplastics with marine biogenic particles. Proc. R. Soc. B 2018, 285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lusher, A.L.; Hernandez-Milian, G.; O’Brien, J.; Berrow, S.; O’Connor, I.; Officer, R. Microplastic and macroplastic ingestion by a deep diving, oceanic cetacean: The True’s beaked whale Mesoplodon mirus. Environ. Pollut. 2015, 199, 185–191. [Google Scholar] [CrossRef]
- Cole, M.; Lindeque, P.; Fileman, E.; Halsband, C.; Goodhead, R.; Moger, J.; Galloway, T.S. Microplastic Ingestion by Zooplankton. Environ. Sci. Technol. 2013, 47, 6646–6655. [Google Scholar] [CrossRef]
- Buffle, J.; Wilkinson, K.J.; Stoll, S.; Filella, M.; Zhang, J. A Generalized Description of Aquatic Colloidal Interactions: The Three-colloidal Component Approach. Environ. Sci. Technol. 1998, 32, 2887–2899. [Google Scholar] [CrossRef]
NOM | natural organic matter |
DOM | dissolved organic matter (i.e., passing a filter of about 0.5 µm pore size) |
DOC | dissolved organic carbon (i.e., passing a filter of about 0.5 µm pore size) |
EPS | exopolymeric substances, found in the colloidal or particulate fraction |
TEP | transparent exoplymeric particles, operationally determined |
Gels | a type of soft matter that is operationally determined in aquatic systems |
HMW | high molecular weight (relative term, usually more than 1 kDa) |
LMW | low molecular weight (relative term, usually less than 1 kDa |
SFG | surface functional group |
DLS | dynamic light scattering |
FTIR | fourier transform infrared spectroscopy |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santschi, P.H.; Chin, W.-C.; Quigg, A.; Xu, C.; Kamalanathan, M.; Lin, P.; Shiu, R.-F. Marine Gel Interactions with Hydrophilic and Hydrophobic Pollutants. Gels 2021, 7, 83. https://doi.org/10.3390/gels7030083
Santschi PH, Chin W-C, Quigg A, Xu C, Kamalanathan M, Lin P, Shiu R-F. Marine Gel Interactions with Hydrophilic and Hydrophobic Pollutants. Gels. 2021; 7(3):83. https://doi.org/10.3390/gels7030083
Chicago/Turabian StyleSantschi, Peter H., Wei-Chun Chin, Antonietta Quigg, Chen Xu, Manoj Kamalanathan, Peng Lin, and Ruei-Feng Shiu. 2021. "Marine Gel Interactions with Hydrophilic and Hydrophobic Pollutants" Gels 7, no. 3: 83. https://doi.org/10.3390/gels7030083
APA StyleSantschi, P. H., Chin, W. -C., Quigg, A., Xu, C., Kamalanathan, M., Lin, P., & Shiu, R. -F. (2021). Marine Gel Interactions with Hydrophilic and Hydrophobic Pollutants. Gels, 7(3), 83. https://doi.org/10.3390/gels7030083