New Energy-Powered Agricultural Machinery and Equipment

A special issue of Agriculture (ISSN 2077-0472). This special issue belongs to the section "Agricultural Technology".

Deadline for manuscript submissions: 28 February 2025 | Viewed by 8203

Special Issue Editors

Nanjing Institute of Agricultural Mechanization, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
Interests: interests: harvester; mechanics of materials of crops; intelligent agricultural equipment
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
Interests: harvester; mechanical troubleshooting
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
College of Engineering, Nanjing Agricultural University, Nanjing 210031, China
Interests: high-end agricultural machinery and equipment health maintenance; intelligent manufacturing technology and equipment
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

In the context of controlling global warming, the demand for new energy agricultural equipment for modern agricultural production is becoming more and more urgent. According to the statistics of the Consultative Group on International Agricultural Research (CGIAR), due to the high dependence on fossil energy, the energy consumption in the agri-food production process accounts for nearly 30% of the world's total energy consumption and contributes to about one-third of carbon emissions, of which the planting process alone contributes to nearly 20% of global carbon emissions. In order to achieve the goal of controlling carbon emissions and fossil energy consumption, it is necessary to reduce the high dependence of agricultural production on fossil energy, so the development of new energy-powered agricultural machinery and equipment with electric technology at the core is imperative. In this regard, this journal is hereby launching a call for papers in the research field of "New Energy-Powered Agricultural Machinery and Equipment" to provide ideas and technical references for the innovation and development of new energy-powered agricultural machinery and equipment around the world.

Potential topics include, but are not limited to:

  • Structural innovation design of agricultural machinery and equipment for new energy power;
  • Development and utilization of new energy power applicable to agricultural machinery and equipment;
  • Intelligent control system development of agricultural machinery and equipment with new energy power;
  • Application, scenario and promotion of new energy power for agricultural equipment.

Dr. Cheng Shen
Prof. Dr. Zhong Tang
Prof. Dr. Maohua Xiao
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Agriculture is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • structural innovation design of agricultural machinery and equipment for new energy power
  • development and utilization of new energy power applicable to agricultural machinery and equipment
  • intelligent control system development of agricultural machinery and equipment with new energy power
  • application, scenario and promotion of new energy power for agricultural equipment

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (7 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

33 pages, 18193 KiB  
Article
Research on Traversal Path Planning and Collaborative Scheduling for Corn Harvesting and Transportation in Hilly Areas Based on Dijkstra’s Algorithm and Improved Harris Hawk Optimization
by Huanyu Liu, Jiahao Luo, Lihan Zhang, Hao Yu, Xiangnan Liu and Shuang Wang
Agriculture 2025, 15(3), 233; https://doi.org/10.3390/agriculture15030233 - 22 Jan 2025
Viewed by 456
Abstract
This study addresses the challenges of long traversal paths, low efficiency, high fuel consumption, and costs in the collaborative harvesting of corn by harvesters and grain transport vehicles in hilly areas. A path-planning and collaborative scheduling method is proposed, combining Dijkstra’s algorithm with [...] Read more.
This study addresses the challenges of long traversal paths, low efficiency, high fuel consumption, and costs in the collaborative harvesting of corn by harvesters and grain transport vehicles in hilly areas. A path-planning and collaborative scheduling method is proposed, combining Dijkstra’s algorithm with the Improved Harris Hawk Optimization (IHHO) algorithm. A field model based on Digital Elevation Model (DEM) data is created for full coverage path planning, reducing traversal path length. A field transfer road network is established, and Dijkstra’s algorithm is used to calculate distances between fields. A multi-objective collaborative scheduling model is then developed to minimize fuel consumption, scheduling costs, and time. The IHHO algorithm enhances search performance by introducing quantum initialization to improve the initial population, integrating the slime mold algorithm for better exploration, and applying an average differential mutation strategy and nonlinear energy factor updates to strengthen both global and local search. Non-dominated sorting and crowding distance techniques are incorporated to enhance solution diversity and quality. The results show that compared to traditional HHO and HHO algorithms, the IHHO algorithm reduces average scheduling costs by 4.2% and 14.5%, scheduling time by 4.5% and 8.1%, and fuel consumption by 3.5% and 3.2%, respectively. This approach effectively reduces transfer path costs, saves energy, and improves operational efficiency, providing valuable insights for path planning and collaborative scheduling in multi-field harvesting and transportation in hilly areas. Full article
(This article belongs to the Special Issue New Energy-Powered Agricultural Machinery and Equipment)
Show Figures

Figure 1

24 pages, 7653 KiB  
Article
Design and Experiment of Electric Uncrewed Transport Vehicle for Solanaceous Vegetables in Greenhouse
by Chunsong Guan, Weisong Zhao, Binxing Xu, Zhichao Cui, Yating Yang and Yan Gong
Agriculture 2025, 15(2), 118; https://doi.org/10.3390/agriculture15020118 - 7 Jan 2025
Viewed by 497
Abstract
Despite some rudimentary handling vehicles employed in the labor-intensive harvesting and transportation of greenhouse vegetables, research on intelligent uncrewed transport vehicles remains limited. Herein, an uncrewed transport vehicle was designed for greenhouse solanaceous vegetable harvesting. Its overall structure and path planning were tailored [...] Read more.
Despite some rudimentary handling vehicles employed in the labor-intensive harvesting and transportation of greenhouse vegetables, research on intelligent uncrewed transport vehicles remains limited. Herein, an uncrewed transport vehicle was designed for greenhouse solanaceous vegetable harvesting. Its overall structure and path planning were tailored to the greenhouse environment, with specially designed components, including the electric crawler chassis, unloading mechanism, and control system. A SLAM system based on fusion of LiDAR and inertial navigation ensures precise positioning and navigation with the help of an overall path planner using an A* algorithm and a 3D scanning constructed local virtual environment. Multi-sensor fusion localization, path planning, and control enable autonomous operation. Experimental studies demonstrated it can automatically move, pause, steer, and unload along predefined trajectories. The driving capacity and range of electric chassis reach the design specifications, whose walking speeds approach set speeds (<5% error). Under various loads, the vehicle closely follows the target path with very small tracking errors. Initial test points showed high localization accuracy at maximum longitudinal and lateral deviations of 9.5 cm and 6.7 cm, while the average value of the lateral deviation of other points below 5 cm. These findings contribute to the advancement of uncrewed transportation technology and equipment in greenhouse applications. Full article
(This article belongs to the Special Issue New Energy-Powered Agricultural Machinery and Equipment)
Show Figures

Figure 1

15 pages, 4980 KiB  
Article
Sensorless Design and Analysis of a Brushed DC Motor Speed Regulation System for Branches Sawing
by Shangshang Cheng, Huijun Zeng, Zhen Li, Qingting Jin, Shilei Lv, Jingyuan Zeng and Zhou Yang
Agriculture 2024, 14(11), 2078; https://doi.org/10.3390/agriculture14112078 - 19 Nov 2024
Viewed by 786
Abstract
Saw rotational speed critically influences cutting force and surface quality yet is often destabilized by variable cutting resistance. The sensorless detection method for calculating rotational speed based on current ripple can prevent the contact of wood chips and dust with Hall sensors. This [...] Read more.
Saw rotational speed critically influences cutting force and surface quality yet is often destabilized by variable cutting resistance. The sensorless detection method for calculating rotational speed based on current ripple can prevent the contact of wood chips and dust with Hall sensors. This paper introduces a speed control system for brushed DC motors that capitalizes on the linear relationship between current ripple frequency and rotational speed. The system achieves speed regulation through indirect speed measurement and PID control. It utilizes an H-bridge circuit controlled by the EG2014S driver chip to regulate the motor direction and braking. Current ripple detection is accomplished through a 0.02 Ω sampling resistor and AMC1200SDUBR signal amplifier, followed by a wavelet transform and Savitzky–Golay filtering for refined signal extraction. Experimental results indicate that the system maintains stable speeds across the 2000–6000 RPM range, with a maximum error of 2.32% at 6000 RPM. The improved ripple detection algorithm effectively preserves critical signals while reducing noise. This enables the motor to quickly regain speed when resistance is encountered, ensuring a smooth cutting surface. Compared to traditional Hall sensor systems, this sensorless design enhances adaptability in agricultural applications. Full article
(This article belongs to the Special Issue New Energy-Powered Agricultural Machinery and Equipment)
Show Figures

Figure 1

18 pages, 5936 KiB  
Article
Field Obstacle Detection and Location Method Based on Binocular Vision
by Yuanyuan Zhang, Kunpeng Tian, Jicheng Huang, Zhenlong Wang, Bin Zhang and Qing Xie
Agriculture 2024, 14(9), 1493; https://doi.org/10.3390/agriculture14091493 - 1 Sep 2024
Cited by 1 | Viewed by 1460
Abstract
When uncrewed agricultural machinery performs autonomous operations in the field, it inevitably encounters obstacles such as persons, livestock, poles, and stones. Therefore, accurate recognition of obstacles in the field environment is an essential function. To ensure the safety and enhance the operational efficiency [...] Read more.
When uncrewed agricultural machinery performs autonomous operations in the field, it inevitably encounters obstacles such as persons, livestock, poles, and stones. Therefore, accurate recognition of obstacles in the field environment is an essential function. To ensure the safety and enhance the operational efficiency of autonomous farming equipment, this study proposes an improved YOLOv8-based field obstacle detection model, leveraging depth information obtained from binocular cameras for precise obstacle localization. The improved model incorporates the Large Separable Kernel Attention (LSKA) module to enhance the extraction of field obstacle features. Additionally, the use of a Poly Kernel Inception (PKI) Block reduces model size while improving obstacle detection across various scales. An auxiliary detection head is also added to improve accuracy. Combining the improved model with binocular cameras allows for the detection of obstacles and their three-dimensional coordinates. Experimental results demonstrate that the improved model achieves a mean average precision (mAP) of 91.8%, representing a 3.4% improvement over the original model, while reducing floating-point operations to 7.9 G (Giga). The improved model exhibits significant advantages compared to other algorithms. In localization accuracy tests, the maximum average error and relative error in the 2–10 m range for the distance between the camera and five types of obstacles were 0.16 m and 2.26%. These findings confirm that the designed model meets the requirements for obstacle detection and localization in field environments. Full article
(This article belongs to the Special Issue New Energy-Powered Agricultural Machinery and Equipment)
Show Figures

Figure 1

15 pages, 2468 KiB  
Article
Raising the Drying Unit for Fruits and Vegetables Energy Efficiency by Application of Thermoelectric Heat Pump
by Dmitry Tikhomirov, Aleksei Khimenko, Aleksey Kuzmichev, Dmitry Budnikov and Vadim Bolshev
Agriculture 2024, 14(6), 922; https://doi.org/10.3390/agriculture14060922 - 11 Jun 2024
Viewed by 1183
Abstract
Drying food stuffs and other materials belongs to one of the most commonly used feedstock processing techniques, featuring rather high energy consumption. The major disadvantage of conventional electric convective-type household dryers is substantial thermal energy emission into the environment with a wet exhaust, [...] Read more.
Drying food stuffs and other materials belongs to one of the most commonly used feedstock processing techniques, featuring rather high energy consumption. The major disadvantage of conventional electric convective-type household dryers is substantial thermal energy emission into the environment with a wet exhaust, worked-out drying agent. Among other principal disadvantages common to all dryers of this type, the following have to be mentioned: spatial inhomogeneity of heating a product under processing and that of drying agent distribution due to its temperature reduction and relative humidity growth as it moves upwards. A block diagram and a breadboard model of a convective-type thermoelectric dryer employing a thermoelectric heat pump have been designed. In our approach, a product is treated with the help of a drying agent (normally, heated air) with partial exhaust-air recirculation and heat recovery. Laboratory studies of the drying process have been carried out using apple fruits as a test material in order to evaluate the power consumed for evaporation of 1 kg of water in the newly developed convective-type thermoelectric drying unit. Physical parameters of apple fruits before and after drying both in the thermoelectric drying unit and in a conventional series-produced convective-type domestic dryer have been reported. The energy efficiency of the newly designed drying unit has been compared with that of some series-produced samples. It has been found out that, unlike conventional convective-type dryers, the breadboard model of the developed thermoelectric drying unit features a smoother product drying process owing to the presence of side air channels and more effective drying agent path organization in the processing chamber. This conclusion was supported by the results of the carried out tests. Application of thermoelectric heat pumps with the function of the exhaust drying agent heat recovery will make it possible to reduce the drying agent heater installed capacity and the power consumed by the newly designed convective-type thermoelectric drying unit by up to 20% in the course of the drying process, compared to series-produced household convective-type dryers. Full article
(This article belongs to the Special Issue New Energy-Powered Agricultural Machinery and Equipment)
Show Figures

Figure 1

20 pages, 11797 KiB  
Article
Multi-Scenario Variable-State Robust Fusion Algorithm for Ranging Analysis Framework
by Kaiting Xie, Zhaoguo Zhang and Faan Wang
Agriculture 2024, 14(4), 516; https://doi.org/10.3390/agriculture14040516 - 23 Mar 2024
Cited by 2 | Viewed by 1183
Abstract
Integrating modern information technology with traditional agriculture has made agricultural machinery navigation essential in PA (precision agriculture). However, agricultural equipment faces challenges such as low positioning accuracy and poor algorithm adaptability due to the complex farmland environment and various operational requirements. In this [...] Read more.
Integrating modern information technology with traditional agriculture has made agricultural machinery navigation essential in PA (precision agriculture). However, agricultural equipment faces challenges such as low positioning accuracy and poor algorithm adaptability due to the complex farmland environment and various operational requirements. In this research, we proposed a generalized ranging theoretical framework with multi-scenario variable-state fusion to improve the GNSS (Global Navigation Satellite System) observation exchange performance among agricultural vehicles, and accurately measure IVRs (inter-vehicular ranges). We evaluated the effectiveness of three types of GNSS observations, including PPP-SD (precise single point positioning using single difference), PPP-TCAR (precise single point positioning using double difference based on three-carrier ambiguity resolution), and PPP-LAMBDA (precise single point positioning using double difference based on least-squares ambiguity decorrelation adjustment). Moreover, we compared the accuracy of IVRs measurements. Our framework was validated through field experiments in different scenarios. It provides insights into the appropriate use of different positioning algorithms based on the application scenario, application objects, and motion states. Full article
(This article belongs to the Special Issue New Energy-Powered Agricultural Machinery and Equipment)
Show Figures

Figure 1

17 pages, 9228 KiB  
Article
Research on Energy Distribution Strategy of Tandem Hybrid Tractor Based on the Pontryagin Minimum Principle
by Rundong Zhou, Lin Wang, Xiaoting Deng, Chao Su, Song Fang and Zhixiong Lu
Agriculture 2024, 14(3), 440; https://doi.org/10.3390/agriculture14030440 - 7 Mar 2024
Viewed by 1105
Abstract
In order to study the energy distribution of the tandem hybrid tractor and achieve optimal fuel economy under the whole operating condition, an energy distribution strategy based on PMP (Pontryagin minimum principle) is proposed. The performance parameters of the relevant power components are [...] Read more.
In order to study the energy distribution of the tandem hybrid tractor and achieve optimal fuel economy under the whole operating condition, an energy distribution strategy based on PMP (Pontryagin minimum principle) is proposed. The performance parameters of the relevant power components are obtained by constructing the test bench of the tandem hybrid tractor. At the same time, the mathematical model of energy distribution is established from the aspects of energy distribution objective function, state variable, and variable constraint. Based on the external characteristic test of the hub motor and the resistance analysis, the transport operation condition of the tractor is selected as the simulation target condition. The ADVISOR2002 and Simulink software are used to jointly simulate the three energy distribution strategies: the thermostat type, the power-following type, and the PMP type. The simulation results show that, compared with the other two, the fuel economy and battery power loss of the PMP-based energy distribution strategy are significantly improved. The fuel consumption per 100 km is decreased by 32.91% and 26.10%, respectively, which verifies the feasibility of the strategy. This study is of great significance for improving the production efficiency and reducing fuel consumption of hybrid tractors. Full article
(This article belongs to the Special Issue New Energy-Powered Agricultural Machinery and Equipment)
Show Figures

Figure 1

Back to TopTop