Genetics and Genomics of Livestock Health, Fertility and Product Quality

A special issue of Animals (ISSN 2076-2615). This special issue belongs to the section "Animal Genetics and Genomics".

Deadline for manuscript submissions: closed (11 August 2023) | Viewed by 32614

Special Issue Editor


E-Mail Website
Guest Editor
Department of Animal Sciences, The Ohio State University, Columbus, OH 43210, USA
Interests: beef; dairy; genetics; genetic engineering; animal breeding; biostatistics; animal genetics
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The global population is expected to approach 10 billion by the year 2050, while the economic status of people in developing countries will continue to improve. As a result, it is anticipated that the worldwide demand for animal products will increase by 70% by 2050. Increasing animal production will require a deep understanding of animal biology through genetics and genomics to feed the world’s growing population. Furthermore, consumers desire high quality products for consumption. At the same time, farmers need to combat diseases in the face of increased antimicrobial resistance and pressure from consumers and regulators to minimize the use of antibiotics. Genetics and genomics will play key roles in increasing the efficiency of production systems. Genetic selection and innovations must target animal production, product quality, reproduction, health, and welfare such that a high-quality, safe, healthful, and affordable food supply is available to everyone around the world. Genetics and genomics papers that address these important topics are welcome in this Special Issue.

Prof. Dr. Michael E. Davis
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Animals is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • animal
  • genetics
  • genomics
  • production
  • product quality
  • reproduction
  • fertility
  • health
  • welfare

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Related Special Issue

Published Papers (12 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

17 pages, 1453 KiB  
Article
Orthopedic Diseases in the Pura Raza Española Horse: The Prevalence and Genetic Parameters of Angular Hoof Deviations
by María Ripollés-Lobo, Davinia Isabel Perdomo-González, Pedro Javier Azor and Mercedes Valera
Animals 2023, 13(22), 3471; https://doi.org/10.3390/ani13223471 - 10 Nov 2023
Cited by 2 | Viewed by 1616
Abstract
Abnormalities in hoof shape are usually connected with limb conformation defects. The role of angular hoof deviations is important for longevity in sports competitions and is increasingly recognized as a factor associated with lameness in performance horses. In this paper, we measured the [...] Read more.
Abnormalities in hoof shape are usually connected with limb conformation defects. The role of angular hoof deviations is important for longevity in sports competitions and is increasingly recognized as a factor associated with lameness in performance horses. In this paper, we measured the prevalence of four defects related to the angulation of the hoof in the Pura Raza Española horse (PRE): splay-footed forelimb (SFF), pigeon-toed forelimb (PTF), splay-footed rear limb (SFR), and pigeon-toed rear limb (PTR). A total of 51,134 animals were studied, of which only 15.75% did not have any of the four angular hoof defects investigated, while 26.61%, 23.76%, 79.53%, and 3.86% presented SFF, PTF, SFR, and PTR, respectively. Angular defects were evaluated using two different models; model A was a linear scale composed of three categories, where 0 corresponded to the absence of defects, 1 to a minor presence of the defect and 2 to the highest degree of the defect. Model B was composed of two categories, where 0 corresponded to the absence of defects and 1 to the presence of defects, joining classes 1 and 2. We measured the factors influencing the appearance of these defects: age, inbreeding coefficient, sex, and birth stud size. The heritability of each defect was also estimated using a multivariate animal model, using the Gibbsf90+ software from the BLUPF90 family, resulting in heritability estimates of 0.18 (s.d. = 0.009), 0.20 (s.d. = 0.010), 0.11 (s.d. = 0.009), and 0.31 (s.d. = 0.010) for SFF, PTF, SFR, and PTR defects, respectively, for model A, and 0.17 (s.d. = 0.008), 0.19 (s.d. = 0.009), 0.11 (s.d. = 0.009), and 0.29 (s.d. = 0.009) for SFF, PTF, SFR, and PTR defects, respectively, for model B. Finally, the genetic correlation between the diameter of the superficial digital flexor tendon (SDFT) and the proportionality index (PI) in relation to the higher or lower prevalence of the defects was analyzed. We concluded that diameter of SDFT development is strongly correlated with inward toe conditions (PTF, PTR; P≠0 ≥ 0.95), while PI is associated with outward toe defects (SFF, SFR; P≠0 ≥ 0.95). Full article
Show Figures

Figure 1

13 pages, 2353 KiB  
Article
Genome-Wide Association Study and Identification of Candidate Genes for Intramuscular Fat Fatty Acid Composition in Ningxiang Pigs
by Qinghua Zeng, Hu Gao, Shishu Yin, Yinglin Peng, Fang Yang, Yawei Fu, Xiaoxiao Deng, Yue Chen, Xiaohong Hou, Qian Wang, Zhao Jin, Gang Song, Jun He, Yulong Yin and Kang Xu
Animals 2023, 13(20), 3192; https://doi.org/10.3390/ani13203192 - 13 Oct 2023
Cited by 3 | Viewed by 1883
Abstract
Ningxiang pigs exhibit a diverse array of fatty acids, making them an intriguing model for exploring the genetic underpinnings of fatty acid metabolism. We conducted a genome-wide association study using a dataset comprising 50,697 single-nucleotide polymorphisms (SNPs) and samples from over 600 Ningxiang [...] Read more.
Ningxiang pigs exhibit a diverse array of fatty acids, making them an intriguing model for exploring the genetic underpinnings of fatty acid metabolism. We conducted a genome-wide association study using a dataset comprising 50,697 single-nucleotide polymorphisms (SNPs) and samples from over 600 Ningxiang pigs. Our investigation yielded novel candidate genes linked to five saturated fatty acids (SFAs), four monounsaturated fatty acids (MUFAs), and five polyunsaturated fatty acids (PUFAs). Significant associations with SFAs, MUFAs, and PUFAs were found for 37, 21, and 16 SNPs, respectively. Notably, some SNPs have significant PVE, such as ALGA0047587, which can explain 89.85% variation in Arachidic acid (C20:0); H3GA0046208 and DRGA0016063 can explain a total of 76.76% variation in Elaidic Acid (C18:1n-9(t)), and the significant SNP ALGA0031262 of Arachidonic acid (C20:4n-6) can explain 31.76% of the variation. Several significant SNPs were positioned proximally to previously reported genes. In total, we identified 11 candidate genes (hnRNPU, CEPT1, ATP1B1, DPT, DKK1, PRKG1, EXT2, MEF2C, IL17RA, ITGA1 and ALOX5), six candidate genes (ALOX5AP, MEDAG, ISL1, RXRB, CRY1, and CDKAL1), and five candidate genes (NDUFA4L2, SLC16A7, OTUB1, EIF4E and ROBO2) associated with SFAs, MUFAs, and PUFAs, respectively. These findings hold great promise for advancing breeding strategies aimed at optimizing meat quality and enhancing lipid metabolism within the intramuscular fat (IMF) of Ningxiang pigs. Full article
Show Figures

Figure 1

21 pages, 1130 KiB  
Article
Association between Polymorphism in the Janus Kinase 2 (JAK2) Gene and Selected Performance Traits in Cattle and Sheep
by Nicola Oster, Małgorzata Anna Szewczuk, Sławomir Zych, Tomasz Stankiewicz, Barbara Błaszczyk and Marta Wieczorek-Dąbrowska
Animals 2023, 13(15), 2470; https://doi.org/10.3390/ani13152470 - 31 Jul 2023
Cited by 1 | Viewed by 1489
Abstract
The Janus Kinase 2 (JAK2) tyrosine kinase is an essential component of signal transduction of the class II cytokine receptors, including the growth hormone receptor. Therefore, it may play a crucial role in the signaling pathway of the somatotropic axis, which influences growth, [...] Read more.
The Janus Kinase 2 (JAK2) tyrosine kinase is an essential component of signal transduction of the class II cytokine receptors, including the growth hormone receptor. Therefore, it may play a crucial role in the signaling pathway of the somatotropic axis, which influences growth, development, and reproductive traits in ruminants. For this purpose, for three breeds of cattle (Hereford, Angus, and Limousin; a total of 781 individuals), two polymorphic sites located in exon 16 (rs210148032; p.Ile704Val, within pseudokinase (JH2)) and exon 23 (silent mutation rs211067160, within JH1 kinase domain) were analyzed. For two breeds of sheep (Pomeranian and Suffolk; 333 individuals in total), two polymorphic sites in exon 6 (rs160146162 and rs160146160; encoding the FERM domain) and one polymorphic site in exon 24 of the JAK2 gene (rs160146116; JH1 kinase domain) were genotyped. In our study, the associations examined for cattle were inconclusive. However, Hereford and Limousin cattle with genotypes AA (e16/RsaI) and AA (e23/HaeIII) tended to have the highest body weight and better daily gains (p ≤ 0.05). No clear tendency was observed in the selected reproductive traits. In the case of sheep, regardless of breed, individuals with the AA (e6/EarI), GG (e6/seq), and AA (e24/Hpy188III) genotypes had the highest body weights and daily gains in the study periods (p ≤ 0.01). The same individuals in the Pomeranian breed also had better fertility and lamb survival (p ≤ 0.01). To the best of our knowledge, these are the first association studies for all these polymorphic sites. Single-nucleotide polymorphisms in the JAK2 gene can serve as genetic markers for growth and selected reproductive traits in ruminants given that they are further investigated in subsequent populations and analyzed using haplotype and/or combined genotype systems. Full article
Show Figures

Figure 1

16 pages, 312 KiB  
Article
Estimates of Genetic Parameters for Milk, the Occurrence of and Susceptibility to Clinical Lameness and Claw Disorders in Dairy Goats
by Natasha Jaques, Sally-Anne Turner, Emilie Vallée, Cord Heuer and Nicolas Lopez-Villalobos
Animals 2023, 13(8), 1374; https://doi.org/10.3390/ani13081374 - 17 Apr 2023
Cited by 1 | Viewed by 1882
Abstract
The New Zealand goat industry accesses niche markets for high-value products, mainly formula for infants and young children. This study aimed to estimate the genetic parameters of occurrence and susceptibility of clinical lameness and selected claw disorders and establish their genetic associations with [...] Read more.
The New Zealand goat industry accesses niche markets for high-value products, mainly formula for infants and young children. This study aimed to estimate the genetic parameters of occurrence and susceptibility of clinical lameness and selected claw disorders and establish their genetic associations with milk production traits. Information on pedigree, lameness, claw disorders, and milk production was collected on three farms between June 2019 and July 2020. The dataset contained 1637 does from 174 sires and 1231 dams. Estimates of genetic and residual (co)variances, heritabilities, and genetic and phenotypic correlations were obtained with uni- and bi-variate animal models. The models included the fixed effects of farm and parity, deviation from the median kidding date as a covariate, and the random effects of animal and residual error. The heritability (h2) estimates for lameness occurrence and susceptibility were 0.07 and 0.13, respectively. The h2 estimates for claw disorder susceptibilities ranged from 0.02 to 0.23. The genotypic correlations ranged from weak to very strong between lameness and milk production traits (−0.94 to 0.84) and weak to moderate (0.23 to 0.84) between claw disorder and milk production traits. Full article
12 pages, 286 KiB  
Article
Improving Genomic Prediction Accuracy in the Chinese Holstein Population by Combining with the Nordic Holstein Reference Population
by Zipeng Zhang, Shaolei Shi, Qin Zhang, Gert P. Aamand, Mogens S. Lund, Guosheng Su and Xiangdong Ding
Animals 2023, 13(4), 636; https://doi.org/10.3390/ani13040636 - 11 Feb 2023
Cited by 1 | Viewed by 1871
Abstract
The size of the reference population is critical in order to improve the accuracy of genomic prediction. Indeed, improving genomic prediction accuracy by combining multinational reference populations has proven to be effective. In this study, we investigated the improvement of genomic prediction accuracy [...] Read more.
The size of the reference population is critical in order to improve the accuracy of genomic prediction. Indeed, improving genomic prediction accuracy by combining multinational reference populations has proven to be effective. In this study, we investigated the improvement of genomic prediction accuracy in seven complex traits (i.e., milk yield; fat yield; protein yield; somatic cell count; body conformation; feet and legs; and mammary system conformation) by combining the Chinese and Nordic Holstein reference populations. The estimated genetic correlations between the Chinese and Nordic Holstein populations are high with respect to protein yield, fat yield, and milk yield—whereby these correlations range from 0.621 to 0.720—and are moderate with respect to somatic cell count (0.449), but low for the three conformation traits (which range from 0.144 to 0.236). When utilizing the joint reference data and a two-trait GBLUP model, the genomic prediction accuracy in the Chinese Holsteins improves considerably with respect to the traits with moderate-to-high genetic correlations, whereas the improvement in Nordic Holsteins is small. When compared with the single population analysis, using the joint reference population for genomic prediction in younger animals, results in a 2.3 to 8.1 percent improvement in accuracy. Meanwhile, 10 replications of five-fold cross-validation were also implemented in order to evaluate the performance of joint genomic prediction, thereby resulting in a 1.6 to 5.2 percent increase in accuracy. With respect to joint genomic prediction, the bias was found to be quite low. However, for traits with low genetic correlations, the joint reference data do not improve the prediction accuracy substantially for either population. Full article
19 pages, 2756 KiB  
Article
Estimation of the Genetic Components of (Co)variance and Preliminary Genome-Wide Association Study for Reproductive Efficiency in Retinta Beef Cattle
by José María Jiménez, Rosa María Morales, Alberto Menéndez-Buxadera, Sebastián Demyda-Peyrás, Nora Laseca and Antonio Molina
Animals 2023, 13(3), 501; https://doi.org/10.3390/ani13030501 - 31 Jan 2023
Cited by 3 | Viewed by 1907
Abstract
In this study, we analyzed the variation of reproductive efficiency, estimated as the deviation between the optimal and real parity number of females at each stage of the cow’s life, in 12,554 cows belonging to the Retinta Spanish cattle breed, using classical repeatability [...] Read more.
In this study, we analyzed the variation of reproductive efficiency, estimated as the deviation between the optimal and real parity number of females at each stage of the cow’s life, in 12,554 cows belonging to the Retinta Spanish cattle breed, using classical repeatability and random regression models. The results of the analyses using repeatability model and the random regression model suggest that reproductive efficiency is not homogeneous throughout the cow’s life. The h2 estimate for this model was 0.30, while for the random regression model it increased across the parities, from 0.24 at the first calving to 0.51 at calving number 9. Additionally, we performed a preliminary genome-wide association study for this trait in a population of 252 Retinta cows genotyped using the Axiom Bovine Genotyping v3 Array. The results showed 5 SNPs significantly associated with reproductive efficiency, located in two genomic regions (BTA4 and BTA28). The functional analysis revealed the presence of 5 candidate genes located within these regions, which were previously involved in different aspects related to fertility in cattle and mice models. This new information could give us a better understanding of the genetic architecture of reproductive traits in this species, as well as allow us to accurately select more fertile cows. Full article
Show Figures

Figure 1

13 pages, 2587 KiB  
Article
chi-miR-99b-3p Regulates the Proliferation of Goat Skeletal Muscle Satellite Cells In Vitro by Targeting Caspase-3 and NCOR1
by Rongrong Liao, Yuhua Lv, Jianjun Dai, Defu Zhang, Lihui Zhu and Yuexia Lin
Animals 2022, 12(18), 2368; https://doi.org/10.3390/ani12182368 - 11 Sep 2022
Cited by 3 | Viewed by 1936
Abstract
We previously found that chi-miR-99b-3p was highly expressed in the skeletal muscle of 7-month-old (rapid growth period) goats and speculated that it may be associated with muscle development. To further investigate the role of chi-miR-99b-3p in goats, we found that chi-miR-99b-3p acted as [...] Read more.
We previously found that chi-miR-99b-3p was highly expressed in the skeletal muscle of 7-month-old (rapid growth period) goats and speculated that it may be associated with muscle development. To further investigate the role of chi-miR-99b-3p in goats, we found that chi-miR-99b-3p acted as a myogenic miRNA in the regulation of skeletal muscle development. Dual-luciferase reporter assays, qRT-PCR, and Western blot results confirmed that Caspase-3 and nuclear receptor corepressor 1 were direct targets for chi-miR-99b-3p as their expression was inhibited by this miR. Cell proliferation and qRT-PCR assays showed that chi-miR-99b-3p promoted proliferation through relevant targets and intrinsic apoptosis-related genes in goat skeletal muscle satellite cells (SMSCs), whereas inhibition of chi-miR-99b-3p had the opposite effect. Furthermore, integrative transcriptomic analysis revealed that overexpression of chi-miR-99b-3p induced various differentially expressed (DE) genes mainly associated with the cell cycle, relaxin signaling pathway, DNA replication, and protein digestion and absorption. Notably, most of the cell-cycle-related genes were downregulated in SMSCs after miR-99b-3p upregulation, including the pro-apoptosis-related gene BCL2. In addition, 47 DE miRNAs (16 upregulated and 31 downregulated) were determined by Small RNA-sequencing in SMSCs after chi-miR-99b-3p overexpression. Based on the KEGG enrichment analysis, we found that these DE miRNAs were involved in the biological pathways associated with the DE genes. Our study demonstrated that chi-miR-99b-3p was an effective facilitator of goat SMSCs and provided new insights into the mechanisms by which miRNAs regulate skeletal muscle growth in goats. Full article
Show Figures

Figure 1

17 pages, 3073 KiB  
Article
A Whole Genome Sequencing-Based Genome-Wide Association Study Reveals the Potential Associations of Teat Number in Qingping Pigs
by Zezhang Liu, Hong Li, Zhuxia Zhong and Siwen Jiang
Animals 2022, 12(9), 1057; https://doi.org/10.3390/ani12091057 - 20 Apr 2022
Cited by 10 | Viewed by 2941
Abstract
Teat number plays an important role in the reproductive performance of sows and the growth of piglets. However, the quantitative trait loci (QTLs) and candidate genes for the teat number-related traits in Qingping pigs remain unknown. In this study, we performed GWAS based [...] Read more.
Teat number plays an important role in the reproductive performance of sows and the growth of piglets. However, the quantitative trait loci (QTLs) and candidate genes for the teat number-related traits in Qingping pigs remain unknown. In this study, we performed GWAS based on whole-genome single-nucleotide polymorphisms (SNPs) and insertions/deletions (Indels) for the total number of teats and five other related traits in 100 Qingping pigs. SNPs and Indels of all 100 pigs were genotyped using 10× whole genome resequencing. GWAS using General Linear Models (GLM) detected a total of 28 SNPs and 45 Indels as peak markers for these six traits. We also performed GWAS for the absolute difference between left and right teat number (ADIFF) using Fixed and random model Circulating Probability Unification (FarmCPU). The most strongly associated SNP and Indel with a distance of 562,788 bp were significantly associated with ADIFF in both GLM and FarmCPU models. In the 1-Mb regions of the most strongly associated SNP and Indel, there were five annotated genes, including TRIML1, TRIML2, ZFP42, FAT1 and MTNR1A. We also highlighted TBX3 as an interesting candidate gene for SSC14. Enrichment analysis of candidate genes suggested the Wnt signaling pathway may contribute to teat number-related traits. This study expanded significant marker-trait associations for teat number and provided useful molecular markers and candidate genes for teat number improvement in the breeding of sows. Full article
Show Figures

Figure 1

12 pages, 3056 KiB  
Article
The Novel-miR-659/SPP1 Interaction Regulates Fat Deposition in Castrated Male Pigs
by Lianmei Xiao, Qiao Xu, Ximing Liu, Shuheng Chan, Yabiao Luo, Shuaihan He and Meiying Fang
Animals 2022, 12(8), 944; https://doi.org/10.3390/ani12080944 - 7 Apr 2022
Cited by 4 | Viewed by 2485
Abstract
Castration is usually used to remove boar taint in commercial pork production, but the adipose accumulation was increased excessively, which affected the meat quality of pigs. Based on our previous study, secreted phosphoprotein 1 (SPP1) was significantly differentially expressed between castrated [...] Read more.
Castration is usually used to remove boar taint in commercial pork production, but the adipose accumulation was increased excessively, which affected the meat quality of pigs. Based on our previous study, secreted phosphoprotein 1 (SPP1) was significantly differentially expressed between castrated and intact male pigs. However, the role of SPP1 in regulating adipose growth and fat storage caused by castration is unknown. In this study, SPP1 was identified to inhibit adipogenesis by the expression of adipogenic markers PPARγ and FABP4 as well as Oil red staining assay during differentiation of porcine bone marrow mesenchymal stem cells (pBMSCs). Subsequently, testosterone was used to treat pBMSCs to simulate the androgen status of intact pigs. Compared with the control groups without testosterone, the SPP1 expression in the testosterone group was markedly increased in the late stage of pBMSCs differentiation. Furthermore, novel-miR-659 was predicted by TargetScan and miRDB to target SPP1 and verified through a dual-luciferase reporter assay. Oil Red O staining assay indicated that novel-miR-659 overexpression significantly promoted adipogenesis, whereas novel-miR-659 inhibition suppressed adipogenesis. The expressions of adipogenic markers PPARγ and FABP4 showed the same tendency. Taken together, our study found that the targeted interaction between novel-miR-659 and SPP1 is involved in regulation of fat deposition in castrated male pigs. Full article
Show Figures

Figure 1

15 pages, 879 KiB  
Article
Reverse Genetic Screen for Deleterious Recessive Variants in the Local Simmental Cattle Population of Switzerland
by Irene M. Häfliger, Franz R. Seefried and Cord Drögemüller
Animals 2021, 11(12), 3535; https://doi.org/10.3390/ani11123535 - 12 Dec 2021
Cited by 3 | Viewed by 3489
Abstract
We herein report the result of a large-scale reverse genetic screen in the Swiss Simmental population, a local dual-purpose cattle breed. We aimed to detect possible recessively inherited variants affecting protein-coding genes, as such deleterious variants can impair fertility and rearing success significantly. [...] Read more.
We herein report the result of a large-scale reverse genetic screen in the Swiss Simmental population, a local dual-purpose cattle breed. We aimed to detect possible recessively inherited variants affecting protein-coding genes, as such deleterious variants can impair fertility and rearing success significantly. We used 115,000 phased SNP data of almost 10 thousand cattle with pedigree data. This revealed evidence for 11 genomic regions of 1.17 Mb on average, with haplotypes (SH1 to SH11) showing a significant depletion in homozygosity and an allele frequency between 3.2 and 10.6%. For the proposed haplotypes, it was unfortunately not possible to evaluate associations with fertility traits as no corresponding data were available. For each haplotype region, possible candidate genes were listed based on their known function in development and disease. Subsequent mining of single-nucleotide variants and short indels in the genomes of 23 sequenced haplotype carriers allowed us to identify three perfectly linked candidate causative protein-changing variants: a SH5-related DIS3:p.Ile678fs loss-of-function variant, a SH8-related CYP2B6:p.Ile313Asn missense variant, and a SH9-related NUBPL:p.Ser143Tyr missense variant. None of these variants occurred in homozygous state in any of more than 5200 sequenced cattle of various breeds. Selection against these alleles in order to reduce reproductive failure and animal loss is recommended. Full article
Show Figures

Figure 1

Review

Jump to: Research

24 pages, 2425 KiB  
Review
Genomic and Phenotypic Udder Evaluation for Dairy Cattle Selection: A Review
by Miguel A. Gutiérrez-Reinoso, Pedro M. Aponte and Manuel García-Herreros
Animals 2023, 13(10), 1588; https://doi.org/10.3390/ani13101588 - 9 May 2023
Cited by 2 | Viewed by 5020
Abstract
The traditional point of view regarding dairy cattle selection has been challenged by recent genomic studies indicating that livestock productivity prediction can be redefined based on the evaluation of genomic and phenotypic data. Several studies that included different genomic-derived traits only indicated that [...] Read more.
The traditional point of view regarding dairy cattle selection has been challenged by recent genomic studies indicating that livestock productivity prediction can be redefined based on the evaluation of genomic and phenotypic data. Several studies that included different genomic-derived traits only indicated that interactions among them or even with conventional phenotypic evaluation criteria require further elucidation. Unfortunately, certain genomic and phenotypic-derived traits have been shown to be secondary factors influencing dairy production. Thus, these factors, as well as evaluation criteria, need to be defined. Owing to the variety of genomic and phenotypic udder-derived traits which may affect the modern dairy cow functionality and conformation, a definition of currently important traits in the broad sense is indicated. This is essential for cattle productivity and dairy sustainability. The main objective of the present review is to elucidate the possible relationships among genomic and phenotypic udder evaluation characteristics to define the most relevant traits related to selection for function and conformation in dairy cattle. This review aims to examine the potential impact of various udder-related evaluation criteria on dairy cattle productivity and explore how to mitigate the adverse effects of compromised udder conformation and functionality. Specifically, we will consider the implications for udder health, welfare, longevity, and production-derived traits. Subsequently, we will address several concerns covering the application of genomic and phenotypic evaluation criteria with emphasis on udder-related traits in dairy cattle selection as well as its evolution from origins to the present and future prospects. Full article
Show Figures

Figure 1

25 pages, 2210 KiB  
Review
Candidate Genes and Their Expressions Involved in the Regulation of Milk and Meat Production and Quality in Goats (Capra hircus)
by Jose Ignacio Salgado Pardo, Juan Vicente Delgado Bermejo, Antonio González Ariza, José Manuel León Jurado, Carmen Marín Navas, Carlos Iglesias Pastrana, María del Amparo Martínez Martínez and Francisco Javier Navas González
Animals 2022, 12(8), 988; https://doi.org/10.3390/ani12080988 - 11 Apr 2022
Cited by 13 | Viewed by 4035
Abstract
Despite their pivotal position as relevant sources for high-quality proteins in particularly hard environmental contexts, the domestic goat has not benefited from the advances made in genomics compared to other livestock species. Genetic analysis based on the study of candidate genes is considered [...] Read more.
Despite their pivotal position as relevant sources for high-quality proteins in particularly hard environmental contexts, the domestic goat has not benefited from the advances made in genomics compared to other livestock species. Genetic analysis based on the study of candidate genes is considered an appropriate approach to elucidate the physiological mechanisms involved in the regulation of the expression of functional traits. This is especially relevant when such functional traits are linked to economic interest. The knowledge of candidate genes, their location on the goat genetic map and the specific phenotypic outcomes that may arise due to the regulation of their expression act as a catalyzer for the efficiency and accuracy of goat-breeding policies, which in turn translates into a greater competitiveness and sustainable profit for goats worldwide. To this aim, this review presents a chronological comprehensive analysis of caprine genetics and genomics through the evaluation of the available literature regarding the main candidate genes involved in meat and milk production and quality in the domestic goat. Additionally, this review aims to serve as a guide for future research, given that the assessment, determination and characterization of the genes associated with desirable phenotypes may provide information that may, in turn, enhance the implementation of goat-breeding programs in future and ensure their sustainability. Full article
Show Figures

Figure 1

Back to TopTop