NRF2 in Health and Diseases

A special issue of Antioxidants (ISSN 2076-3921). This special issue belongs to the section "Health Outcomes of Antioxidants and Oxidative Stress".

Deadline for manuscript submissions: closed (30 November 2021) | Viewed by 103363

Special Issue Editors


E-Mail Website
Guest Editor
Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC 27709, USA
Interests: airway; pathogenesis; susceptibility; oxidative stress; Nrf2; genomics; genetics

E-Mail Website
Guest Editor
National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, United States
Interests: genetic susceptibility to lung diseases; viral infections; mitochondrial genetics; Nrf2; genomics

Special Issue Information

Dear Colleagues,

Nuclear factor, erythroid derived 2, similar to 2 (NFE2L2) or NF-E2-related factor 2 (NRF2), is an essential transcriptional activator of antioxidant response element (ARE)-bearing genes encoding antioxidant, drug-metabolizing, and glutathione-homeostasis enzymes as well as other host defense proteins. During the last two decades or more, NRF2 has been extensively studied using in vitro and transgenic model systems, as well as clinical and epidemiological populations. Investigators have found that NRF2 not only contributes to redox balance for host protection from oxidative stress but also activates a broad spectrum of other cellular functions, including cell cycle and death, immunity, selective protein degradation, mitochondrial homeostasis, metabolism, development, aging and neurodegeneration, and carcinogenesis. Supplementation of NRF2 activators in diverse cells and multiple organs has provided clues for potential of therapeutic intervention to resolve pathogenesis.

We invite investigators to contribute research or review articles that will bring together current findings concerning the role of NRF2 in physiological and pathological conditions. We are interested in articles that investigate various human disorders and their model systems as well as in those describing well-characterized NRF2-associated molecular mechanisms. Potential topics include but are not limited to the role of NRF2 pathways in model systems of critical disorders; NRF2 in developmental cells and tissues; metabolome and NRF2; latest omics technologies to assess NRF2-directed events; NRF2 in tumor suppression or promotion; novel insights from epidemiological and clinical studies on NRF2; and recent advances in NRF2 modulators and supplemental antioxidant therapies.

Dr. Hye-Youn Cho
Prof. Dr. Steven R. Kleeberger
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Antioxidants is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • NRF2
  • KEAP1
  • Oxidative stress
  • Antioxidant enzyme
  • Therapeutic intervention
  • Neuroprotection
  • Aging
  • Development
  • Metabolism
  • Omics
  • Carcinogenesis
  • NRF2 activators

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (25 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

17 pages, 880 KiB  
Article
NRF2 Alters Mitochondrial Gene Expression in Neonate Mice Exposed to Hyperoxia
by Heather L. Vellers, Hye-Youn Cho, Wesley Gladwell, Kevin Gerrish, Janine H. Santos, Gaston Ofman, Laura Miller-DeGraff, T. Beth Mahler and Steven R. Kleeberger
Antioxidants 2022, 11(4), 760; https://doi.org/10.3390/antiox11040760 - 11 Apr 2022
Cited by 2 | Viewed by 2527
Abstract
Approximately 1 in 10 newborns are born preterm and require supplemental oxygen (O2) in an extrauterine environment following birth. Supplemental O2 can induce oxidative stress that can impair mitochondrial function, resulting in lung injury and increased risk in early life [...] Read more.
Approximately 1 in 10 newborns are born preterm and require supplemental oxygen (O2) in an extrauterine environment following birth. Supplemental O2 can induce oxidative stress that can impair mitochondrial function, resulting in lung injury and increased risk in early life pulmonary diseases. The nuclear factor-erythroid 2 related factor 2 (NRF2) protects the cells from oxidative stress by regulating the expression of genes containing antioxidant response elements and many mitochondrial-associated genes. In this study, we compared Nrf2-deficient (Nrf2−/−) and wild-type (Nrf2+/+) mice to define the role of NRF2 in lung mitochondrial genomic features in late embryonic development in mice (embryonic days, E13.5 and E18.5) versus birth (postnatal day 0, PND0). We also determined whether NRF2 protects lung mitochondrial genome parameters in postnatal mice exposed to a 72 h hyperoxia environment. We found Nrf2−/− embryonic lungs were characterized by decreases in mtDNA copies from E13.5 to E18.5. Interestingly, Nrf2−/− heteroplasmy frequency was significantly higher than Nrf2+/+ at E18.5, though this effect reversed at PND0. In postnatal mice exposed to hyperoxia, we identified three- to four-fold increases in mitochondria-encoded mitochondrial genes, which regulate oxidative phosphorylation. Overall, our findings demonstrate a potentially critical role of NRF2 in mediating long-term effects of hyperoxia on mitochondrial function. Full article
(This article belongs to the Special Issue NRF2 in Health and Diseases)
Show Figures

Figure 1

17 pages, 18063 KiB  
Article
The Inflammatory Response in Human Keratinocytes Exposed to Cinnamaldehyde Is Regulated by Nrf2
by Romain Vallion, Kévin Hardonnière, Abderrahmane Bouredji, Marie-Hélène Damiens, Claudine Deloménie, Marc Pallardy, Pierre-Jacques Ferret and Saadia Kerdine-Römer
Antioxidants 2022, 11(3), 575; https://doi.org/10.3390/antiox11030575 - 17 Mar 2022
Cited by 12 | Viewed by 3404
Abstract
Keratinocytes (KC) play a crucial role in epidermal barrier function, notably through their metabolic activity and the detection of danger signals. Chemical sensitizers are known to activate the transcription factor nuclear factor (erythroid-derived 2)-like 2 (Nrf2), leading to cellular detoxification and suppressed proinflammatory [...] Read more.
Keratinocytes (KC) play a crucial role in epidermal barrier function, notably through their metabolic activity and the detection of danger signals. Chemical sensitizers are known to activate the transcription factor nuclear factor (erythroid-derived 2)-like 2 (Nrf2), leading to cellular detoxification and suppressed proinflammatory cytokines such as IL-1β, a key cytokine in skin allergy. We investigated the role of Nrf2 in the control of the proinflammatory response in human KC following treatment with Cinnamaldehyde (CinA), a well-known skin sensitizer. We used the well-described human KC cell line KERTr exposed to CinA. Our results showed that 250 μM of CinA did not induce any Nrf2 accumulation but increased the expression of proinflammatory cytokines. In contrast, 100 μM of CinA induced a rapid accumulation of Nrf2, inhibited IL-1β transcription, and downregulated the zymosan-induced proinflammatory response. Moreover, Nrf2 knockdown KERTr cells (KERTr ko) showed an increase in proinflammatory cytokines. Since the inhibition of Nrf2 has been shown to alter cellular metabolism, we performed metabolomic and seahorse analyses. The results showed a decrease in mitochondrial metabolism following KERTr ko exposure to CinA 100 µM. In conclusion, the fate of Nrf2 controls proinflammatory cytokine production in KCs that could be linked to its capacity to preserve mitochondrial metabolism upon chemical sensitizer exposure. Full article
(This article belongs to the Special Issue NRF2 in Health and Diseases)
Show Figures

Figure 1

15 pages, 3656 KiB  
Article
NRF2-Dependent Placental Effects Vary by Sex and Dose following Gestational Exposure to Ultrafine Particles
by Jonathan C. Behlen, Carmen H. Lau, Drew Pendleton, Yixin Li, Aline Rodrigues Hoffmann, Michael C. Golding, Renyi Zhang and Natalie M. Johnson
Antioxidants 2022, 11(2), 352; https://doi.org/10.3390/antiox11020352 - 10 Feb 2022
Cited by 4 | Viewed by 3066
Abstract
Exposure to ultrafine particles (UFPs, PM0.1) during pregnancy triggers placental oxidative stress and inflammation, similar to fine PM (PM2.5). The Nrf2 gene encodes a redox-sensitive transcription factor that is a major regulator of antioxidant and anti-inflammatory responses. Disruption of [...] Read more.
Exposure to ultrafine particles (UFPs, PM0.1) during pregnancy triggers placental oxidative stress and inflammation, similar to fine PM (PM2.5). The Nrf2 gene encodes a redox-sensitive transcription factor that is a major regulator of antioxidant and anti-inflammatory responses. Disruption of NRF2 is known to substantially enhance PM2.5-driven oxidant and inflammatory responses; however, specific responses to UFP exposure, especially during critical windows of susceptibility such as pregnancy, are not fully characterized; To investigate the role of NRF2 in regulating maternal antioxidant defenses and placental responses to UFP exposure, wildtype (WT) and Nrf2−/ pregnant mice were exposed to either low dose (LD, 100 µg/m3) or high dose (HD, 500 µg/m3) UFP mixture or filtered air (FA, control) throughout gestation; Nrf2−/ HD-exposed female offspring exhibited significantly reduced fetal and placental weights. Placental morphology changes appeared most pronounced in Nrf2−/ LD-exposed offspring of both sexes. Glutathione (GSH) redox analysis revealed significant increases in the GSH/GSSG ratio (reduced/oxidized) in WT female placental tissue exposed to HD in comparison with Nrf2−/ HD-exposed mice. The expression of inflammatory cytokine genes (Il1β, Tnfα) was significantly increased in Nrf2−/ placentas from male and female offspring across all exposure groups. Genes related to bile acid metabolism and transport were differentially altered in Nrf2−/ mice across sex and exposure groups. Notably, the group with the most marked phenotypic effects (Nrf2−/ HD-exposed females) corresponded to significantly higher placental Apoa1 and Apob expression suggesting a link between placental lipid transport and NRF2 in response to high dose UFP exposure; Disruption of NRF2 exacerbates adverse developmental outcomes in response to high dose UFP exposure in female offspring. Morphological effects in placenta from male and female offspring exposed to low dose UFPs also signify the importance of NRF2 in maternal–fetal response to UFPs. Full article
(This article belongs to the Special Issue NRF2 in Health and Diseases)
Show Figures

Figure 1

16 pages, 36193 KiB  
Article
Dietary Selenium Alleviated Mouse Liver Oxidative Stress and NAFLD Induced by Obesity by Regulating the KEAP1/NRF2 Pathway
by Yi Wang, Bingbing Liu, Peixuan Wu, Yi Chu, Sisi Gui, Yazhen Zheng and Xiaodong Chen
Antioxidants 2022, 11(2), 349; https://doi.org/10.3390/antiox11020349 - 10 Feb 2022
Cited by 52 | Viewed by 4914
Abstract
Nonalcoholic fatty liver disease (NAFLD) occurs when excess fat is stored in the liver and it is strongly linked with metabolic syndrome and oxidative stress. Selenium (Se) is an essential micronutrient in animals, which has a variety of biological functions, including antioxidant and [...] Read more.
Nonalcoholic fatty liver disease (NAFLD) occurs when excess fat is stored in the liver and it is strongly linked with metabolic syndrome and oxidative stress. Selenium (Se) is an essential micronutrient in animals, which has a variety of biological functions, including antioxidant and anti-inflammatory. However, the exact effect of dietary selenium on NAFLD and the underlying molecular mechanism are not yet clear. Herein, we fed a high-fat diet (HFD) to C57BL/6 mice to construct an in vivo NAFLD model, treated AML-12 cells with palmitic acid (PA) to construct an in vitro NAFLD model, and AML-12 cells were stimulated with H2O2 to induce hepatocyte oxidative stress and then treated with adequate selenium. We observed that adequate selenium significantly improved the hepatic injury and insulin resistance in HFD mice, and decreased the fat accumulation and the expression of lipogenic genes in PA-induced AML-12 cells. Meanwhile, selenium significantly inhibited the production of reactive oxygen species (ROS), inhibited apoptosis, and restored mitochondrial number and membrane potential in PA- induced AML-12 cells. In addition, selenium can promote selenoproteinP1 (SEPP1) synthesis to regulate the Kelch-like ECH-associated protein 1 (KEAP1)/NF-E2-related factor 2 (NRF2) pathway, so as to defend against hepatocyte oxidative stress. These findings suggest that dietary selenium supplementation can effectively resist hepatic injury and insulin resistance during NAFLD development, and regulate the KEAP1/NRF2 pathway to resist oxidative stress by promoting SEPP1 synthesis. Full article
(This article belongs to the Special Issue NRF2 in Health and Diseases)
Show Figures

Figure 1

17 pages, 7069 KiB  
Article
Nrf2/ARE Signaling Directly Regulates SOX9 to Potentially Alter Age-Dependent Cartilage Degeneration
by Yusuke Kubo, Rainer Beckmann, Athanassios Fragoulis, Claudius Conrads, Prathyusha Pavanram, Sven Nebelung, Michael Wolf, Christoph Jan Wruck, Holger Jahr and Thomas Pufe
Antioxidants 2022, 11(2), 263; https://doi.org/10.3390/antiox11020263 - 28 Jan 2022
Cited by 14 | Viewed by 3280
Abstract
Oxidative stress is implicated in osteoarthritis, and nuclear factor erythroid 2–related factor 2 (Nrf2)/antioxidant response element (ARE) pathway maintains redox homeostasis. We investigated whether Nrf2/ARE signaling controls SOX9. SOX9 expression in human C-28/I2 chondrocytes was measured by RT–qPCR after shRNA-mediated knockdown of Nrf2 [...] Read more.
Oxidative stress is implicated in osteoarthritis, and nuclear factor erythroid 2–related factor 2 (Nrf2)/antioxidant response element (ARE) pathway maintains redox homeostasis. We investigated whether Nrf2/ARE signaling controls SOX9. SOX9 expression in human C-28/I2 chondrocytes was measured by RT–qPCR after shRNA-mediated knockdown of Nrf2 or its antagonist the Kelch-like erythroid cell-derived protein with cap ‘‘n’’ collar homology-associated protein 1 (Keap1). To verify whether Nrf2 transcriptionally regulates SOX9, putative ARE-binding sites in the proximal SOX9 promoter region were inactivated, cloned into pGL3, and co-transfected with phRL–TK for dual-luciferase assays. SOX9 promoter activities without and with Nrf2-inducer methysticin were compared. Sox9 expression in articular chondrocytes was correlated to cartilage thickness and degeneration in wild-type (WT) and Nrf2-knockout mice. Nrf2-specific RNAi significantly decreased SOX9 expression, whereas Keap1-specific RNAi increased it. Putative ARE sites (ARE1, ARE2) were identified in the SOX9 promoter region. ARE2 mutagenesis significantly reduced SOX9 promoter activity, but ARE1 excision did not. Functional ARE2 site was essential for methysticin-mediated induction of SOX9 promoter activity. Young Nrf2-knockout mice revealed significantly lower Sox9-positive chondrocytes, and old Nrf2-knockout animals showed thinner cartilage and more cartilage degeneration. Our results suggest Nrf2 directly regulates SOX9 in articular cartilage, and Nrf2-loss can develop mild osteoarthritis at old age. Pharmacological Nrf2 induction may hold the potential to diminish age-dependent cartilage degeneration through improving SOX9 expression. Full article
(This article belongs to the Special Issue NRF2 in Health and Diseases)
Show Figures

Figure 1

11 pages, 2501 KiB  
Article
Nrf2 Is Required for Optimal Alveolar-Macrophage-Mediated Apoptotic Neutrophil Clearance after Oxidant Injury
by Narsa M. Reddy, Chandra Mohan Tamatam, Ankireddy Aparna and Sekhar P. Reddy
Antioxidants 2022, 11(2), 212; https://doi.org/10.3390/antiox11020212 - 22 Jan 2022
Cited by 9 | Viewed by 3732
Abstract
Recognition and clearance of apoptotic cells by phagocytes (also known as efferocytosis), primarily mediated by macrophages, are essential to terminate lung inflammatory responses and promote tissue repair after injury. The Nrf2 transcription factor is crucial for cytoprotection and host defense. Previously, we showed [...] Read more.
Recognition and clearance of apoptotic cells by phagocytes (also known as efferocytosis), primarily mediated by macrophages, are essential to terminate lung inflammatory responses and promote tissue repair after injury. The Nrf2 transcription factor is crucial for cytoprotection and host defense. Previously, we showed sustained neutrophilic lung inflammation in Nrf2-deficient (Nrf2−/−) mice after hyperoxia-induced lung injury in vivo, but the mechanisms underlying this abnormal phenotype remain unclear. To examine whether Nrf2 regulates apoptotic neutrophil clearance, we used the alveolar macrophages (AMФs) and bone-marrow-derived macrophages (BMDMФs) of wild-type (WT) and Nrf2−/− mice. We found that the efferocytic ability of AMФ was impaired in hyperoxia-exposed mice’s lungs, but the effect was more pronounced in Nrf2−/− mice. Importantly, AMФ-mediated efferocytosis remained impaired in Nrf2−/− mice recovering from injury but was restored to the basal state in the wild-type counterparts. Hyperoxia affected apoptotic neutrophil binding, not internalization, in both WT and Nrf2−/− BMDMФs, but the effect was more significant in the latter cells. Augmenting Nrf2 activity restored hyperoxia attenuated efferocytosis in WT, but not in Nrf2−/− macrophages. However, the loss of Nrf2 in neutrophils affected their uptake by WT macrophages. Collectively, these results demonstrate that Nrf2 is required for optimal macrophage-mediated efferocytosis and that activating Nrf2 may provide a physiological way to accelerate apoptotic cell clearance after oxidant injury. Full article
(This article belongs to the Special Issue NRF2 in Health and Diseases)
Show Figures

Graphical abstract

12 pages, 2564 KiB  
Article
NRF2 Protects against Altered Pulmonary T Cell Differentiation in Neonates Following In Utero Ultrafine Particulate Matter Exposure
by Carmen H. Lau, Drew Pendleton, Nicholas L. Drury, Jiayun Zhao, Yixin Li, Renyi Zhang, Gus A. Wright, Aline Rodrigues Hoffmann and Natalie M. Johnson
Antioxidants 2022, 11(2), 202; https://doi.org/10.3390/antiox11020202 - 21 Jan 2022
Cited by 3 | Viewed by 3754
Abstract
Early life exposure to particulate matter (PM) air pollution negatively impacts neonatal health. The underlying mechanisms following prenatal exposure, particularly to ultrafine particles (UFP, diameter ≤ 0.1 μm), are not fully understood; To evaluate the role of Nrf2 in response to in utero [...] Read more.
Early life exposure to particulate matter (PM) air pollution negatively impacts neonatal health. The underlying mechanisms following prenatal exposure, particularly to ultrafine particles (UFP, diameter ≤ 0.1 μm), are not fully understood; To evaluate the role of Nrf2 in response to in utero UFP exposure, we exposed time-mated Nrf2-deficient (Nrf2−/) or wildtype (WT) mice to filtered air (FA) or 100 μg/m3 ultrafine PM daily throughout pregnancy. Offspring were evaluated for pulmonary immunophenotypes and pulmonary/systemic oxidative stress on postnatal day 5, a timepoint at which we previously demonstrated viral respiratory infection susceptibility; Nrf2−/ offspring exposed to FA had significantly lower average body weights compared to FA-exposed WT pups. Moreover, PM-exposed Nrf2−/ offspring weighed significantly less than PM-exposed WT pups. Notably, PM-exposed Nrf2−/ offspring showed a decreased pulmonary Th1/Th2 ratio, indicating a Th2 bias. Th17 cells were increased in FA-exposed Nrf2−/ neonates yet decreased in PM-exposed Nrf2−/ neonates. Analysis of oxidative stress-related genes in lung and oxidative stress biomarkers in liver tissues did not vary significantly across exposure groups or genotypes. Collectively, these findings indicate that the lack of Nrf2 causes growth inhibitory effects in general and in response to gestational UFP exposure. Prenatal UFP exposure skews CD4+ T lymphocyte differentiation toward Th2 in neonates lacking Nrf2, signifying its importance in maternal exposure and infant immune responses. Full article
(This article belongs to the Special Issue NRF2 in Health and Diseases)
Show Figures

Graphical abstract

22 pages, 4485 KiB  
Article
Age-Related Mitochondrial Impairment and Renal Injury Is Ameliorated by Sulforaphane via Activation of Transcription Factor NRF2
by Razia Sultana Mohammad, Mustafa F. Lokhandwala and Anees A. Banday
Antioxidants 2022, 11(1), 156; https://doi.org/10.3390/antiox11010156 - 14 Jan 2022
Cited by 21 | Viewed by 3360
Abstract
Age is one of the major risk factors for the development of chronic pathologies, including kidney diseases. Oxidative stress and mitochondrial dysfunction play a pathogenic role in aging kidney disease. Transcription factor NRF2, a master regulator of redox homeostasis, is altered during aging, [...] Read more.
Age is one of the major risk factors for the development of chronic pathologies, including kidney diseases. Oxidative stress and mitochondrial dysfunction play a pathogenic role in aging kidney disease. Transcription factor NRF2, a master regulator of redox homeostasis, is altered during aging, but the exact implications of altered NRF2 signaling on age-related renal mitochondrial impairment are not yet clear. Herein, we investigated the role of sulforaphane, a well-known NRF2 activator, on age-related mitochondrial and kidney dysfunction. Young (2–4 month) and aged (20–24 month) male Fischer 344 rats were treated with sulforaphane (15 mg/kg body wt/day) in drinking water for four weeks. We observed significant impairment in renal cortical mitochondrial function along with perturbed redox homeostasis, decreased kidney function and marked impairment in NRF2 signaling in aged Fischer 344 rats. Sulforaphane significantly improved mitochondrial function and ameliorated kidney injury by increasing cortical NRF2 expression and activity and decreasing protein expression of KEAP1, an NRF2 repressor. Sulforaphane treatment did not affect the renal NRF2 expression or activity and mitochondrial function in young rats. Taken together, our results provide novel insights into the protective role of the NRF2 pathway in kidneys during aging and highlight the therapeutic potential of sulforaphane in mitigating kidney dysfunction in elders. Full article
(This article belongs to the Special Issue NRF2 in Health and Diseases)
Show Figures

Figure 1

14 pages, 2995 KiB  
Article
Lack of Type I Interferon Signaling Ameliorates Respiratory Syncytial Virus-Induced Lung Inflammation and Restores Antioxidant Defenses
by Maria Ansar, Yue Qu, Teodora Ivanciuc, Roberto P. Garofalo and Antonella Casola
Antioxidants 2022, 11(1), 67; https://doi.org/10.3390/antiox11010067 - 28 Dec 2021
Cited by 5 | Viewed by 2139
Abstract
Respiratory syncytial virus (RSV) infection in mouse and human lung is associated with pathogenic inflammation and oxidative injury. RSV impairs antioxidant responses by increasing the degradation of transcription factor NF-E2-related factor 2 (NRF2), which controls the expression of several antioxidant enzymes (AOEs). In [...] Read more.
Respiratory syncytial virus (RSV) infection in mouse and human lung is associated with pathogenic inflammation and oxidative injury. RSV impairs antioxidant responses by increasing the degradation of transcription factor NF-E2-related factor 2 (NRF2), which controls the expression of several antioxidant enzymes (AOEs). In addition to its protective effects, type I IFNs have been increasingly recognized as important mediators of host pathogenic responses during acute respiratory viral infections. We used a mouse model of RSV infection to investigate the effect of lack of type I interferon (IFN) receptor on viral-mediated clinical disease, airway inflammation, NRF2 expression, and antioxidant defenses. In the absence of type I IFN signaling, RSV-infected mice showed significantly less body weight loss and airway obstruction, as well as a significant reduction in cytokine and chemokine secretion and airway inflammation. Lack of type I IFN receptor was associated with greatly reduced virus-induced promyelocytic leukemia lung protein expression, which we showed to be necessary for virus-induced NRF2 degradation in a cell model of infection, resulting in restoration of NRF2 levels, AOE expression, and airway antioxidant capacity. Our data support the concept that modulation of type I IFN production and/or signaling could represent an important therapeutic strategy to ameliorate severity of RSV-induced lung disease. Full article
(This article belongs to the Special Issue NRF2 in Health and Diseases)
Show Figures

Figure 1

13 pages, 1720 KiB  
Article
NRF2 Activation Ameliorates Oxidative Stress and Improves Mitochondrial Function and Synaptic Plasticity, and in A53T α-Synuclein Hippocampal Neurons
by Mikah S. Brandes, Jonathan A. Zweig, Anita Tang and Nora E. Gray
Antioxidants 2022, 11(1), 26; https://doi.org/10.3390/antiox11010026 - 24 Dec 2021
Cited by 13 | Viewed by 3835
Abstract
In Parkinson’s disease (PD), brain oxidative stress and mitochondrial dysfunction contribute to neuronal loss as well as motor and cognitive deficits. The transcription factor NRF2 has emerged as a promising therapeutic target in PD because it sits at the intersection of antioxidant and [...] Read more.
In Parkinson’s disease (PD), brain oxidative stress and mitochondrial dysfunction contribute to neuronal loss as well as motor and cognitive deficits. The transcription factor NRF2 has emerged as a promising therapeutic target in PD because it sits at the intersection of antioxidant and mitochondrial pathways. Here, we investigate the effects of modulating NRF2 activity in neurons isolated from a A53T α-synuclein (A53TSyn) mouse model of synucleinopathy. Embryonic hippocampal neurons were isolated from A53TSyn mice and their wild type (WT) littermates. Neurons were treated with either the NRF2 activator dimethyl fumarate (DMF) or the NRF2 inhibitor ML385. Reactive oxygen species (ROS), dendritic arborization and dendritic spine density were quantified. Mitochondrial bioenergetics were also profiled in these neurons. A53TSyn neurons had increased ROS and reduced basal and maximal mitochondrial respiration relative to WT neurons. A53TSyn neurons also displayed decreased dendritic arborization and reduced spine density. Treatment with DMF reduced ROS levels and improved both mitochondrial function and arborization, while inhibition of NRF2 with ML385 exacerbated these endpoints. Modulation of NRF2 activity had a significant effect on mitochondrial function, oxidative stress, and synaptic plasticity in A53TSyn neurons. These data suggest that NRF2 may be a viable target for therapeutic interventions in PD. Full article
(This article belongs to the Special Issue NRF2 in Health and Diseases)
Show Figures

Figure 1

13 pages, 1032 KiB  
Article
Dexamethasone Administration in Mice Leads to Less Body Weight Gain over Time, Lower Serum Glucose, and Higher Insulin Levels Independently of NRF2
by Fotini Filippopoulou, George I. Habeos, Vagelis Rinotas, Antonia Sophocleous, Gerasimos P. Sykiotis, Eleni Douni and Dionysios V. Chartoumpekis
Antioxidants 2022, 11(1), 4; https://doi.org/10.3390/antiox11010004 - 21 Dec 2021
Cited by 9 | Viewed by 4392
Abstract
Glucocorticoids are used widely on a long-term basis in autoimmune and inflammatory diseases. Their adverse effects include the development of hyperglycemia and osteoporosis, whose molecular mechanisms have been only partially studied in preclinical models. Both these glucocorticoid-induced pathologies have been shown to be [...] Read more.
Glucocorticoids are used widely on a long-term basis in autoimmune and inflammatory diseases. Their adverse effects include the development of hyperglycemia and osteoporosis, whose molecular mechanisms have been only partially studied in preclinical models. Both these glucocorticoid-induced pathologies have been shown to be mediated at least in part by oxidative stress. The transcription factor nuclear erythroid factor 2-like 2 (NRF2) is a central regulator of antioxidant and cytoprotective responses. Thus, we hypothesized that NRF2 may play a role in glucocorticoid-induced metabolic disease and osteoporosis. To this end, WT and Nrf2 knockout (Nrf2KO) mice of both genders were treated with 2 mg/kg dexamethasone or vehicle 3 times per week for 13 weeks. Dexamethasone treatment led to less weight gain during the treatment period without affecting food consumption, as well as to lower glucose levels and high insulin levels compared to vehicle-treated mice. Dexamethasone also reduced cortical bone volume and density. All these effects of dexamethasone were similar between male and female mice, as well as between WT and Nrf2KO mice. Hepatic NRF2 signaling and gluconeogenic gene expression were not affected by dexamethasone. A 2-day dexamethasone treatment was also sufficient to increase insulin levels without affecting body weight and glucose levels. Hence, dexamethasone induces hyperinsulinemia, which potentially leads to decreased glucose levels, as well as osteoporosis, both independently of NRF2. Full article
(This article belongs to the Special Issue NRF2 in Health and Diseases)
Show Figures

Figure 1

17 pages, 3017 KiB  
Article
Anemopsis californica Attenuates Photoaging by Regulating MAPK, NRF2, and NFATc1 Signaling Pathways
by Quynh T. N. Nguyen, Minzhe Fang, Nhung Quynh Do, Jeehaeng Jeong, Sarang Oh, Shengdao Zheng, Minseon Kim, Junhui Choi, Seojun Lim and Tae Hoo Yi
Antioxidants 2021, 10(12), 1882; https://doi.org/10.3390/antiox10121882 - 25 Nov 2021
Cited by 3 | Viewed by 2826
Abstract
Long-term exposure of the skin to solar radiation causes chronic inflammation and oxidative stress, which accelerates collagen degradation. This contributes to the formation of wrinkles and dark spots, skin fragility, and even skin cancer. In this study, Anemopsis californica (AC), a herb from [...] Read more.
Long-term exposure of the skin to solar radiation causes chronic inflammation and oxidative stress, which accelerates collagen degradation. This contributes to the formation of wrinkles and dark spots, skin fragility, and even skin cancer. In this study, Anemopsis californica (AC), a herb from North America that is well known for treating microorganism infection and promoting wound healing, was investigated for its photoprotective effects. The biological effects of AC were studied on two in vitro models, namely, lipopolysaccharide (LPS)-induced macrophages and ultraviolet B (UVB)-irradiated dermal fibroblasts, to characterize its underlying molecular mechanisms. The results showed that AC decreased the mRNA levels of inflammatory mediators in sensitized macrophages, including cytokines, inducible nitric oxide synthase (iNOS), and cyclooxygenase (COX-2). Moreover, AC alleviated UVB-induced photoaging in dermal fibroblasts by restoring procollagen synthesis. This resulted from the regulation of excessive reactive oxygen species (ROS) by AC, which was mediated by the activation of the antioxidative system nuclear factor erythroid 2-related factor 2 (NRF2). AC also alleviated oxidative stress and inflammatory responses by inhibiting the phosphorylation of mitogen-activated protein kinase (MAPK) and interfering with the nuclear translocation of the immune regulator nuclear factor of activated T-cells 1 (NFATc1). In conclusion, the protective effects of AC on skin cellular components suggested that it has the potential for use in the development of drugs and cosmetics that protect the skin from UVB-induced chronic inflammation and aging. Full article
(This article belongs to the Special Issue NRF2 in Health and Diseases)
Show Figures

Figure 1

28 pages, 5696 KiB  
Article
Murine Neonatal Oxidant Lung Injury: NRF2-Dependent Predisposition to Adulthood Respiratory Viral Infection and Protection by Maternal Antioxidant
by Hye-Youn Cho, Laura Miller-DeGraff, Ligon A. Perrow, Wesley Gladwell, Vijayalakshmi Panduri, Fred B. Lih and Steven R. Kleeberger
Antioxidants 2021, 10(12), 1874; https://doi.org/10.3390/antiox10121874 - 24 Nov 2021
Cited by 6 | Viewed by 2502
Abstract
NRF2 protects against oxidant-associated airway disorders via cytoprotective gene induction. To examine if NRF2 is an important determinant of respiratory syncytial virus (RSV) susceptibility after neonate lung injury, Nrf2-deficient (Nrf2−/−) and wild-type (Nrf2+/+) mice neonatally exposed [...] Read more.
NRF2 protects against oxidant-associated airway disorders via cytoprotective gene induction. To examine if NRF2 is an important determinant of respiratory syncytial virus (RSV) susceptibility after neonate lung injury, Nrf2-deficient (Nrf2−/−) and wild-type (Nrf2+/+) mice neonatally exposed to hyperoxia were infected with RSV. To investigate the prenatal antioxidant effect on neonatal oxidative lung injury, time-pregnant Nrf2−/− and Nrf2+/+ mice were given an oral NRF2 agonist (sulforaphane) on embryonic days 11.5–17.5, and offspring were exposed to hyperoxia. Bronchoalveolar lavage and histopathologic analyses determined lung injury. cDNA microarray analyses were performed on placenta and neonatal lungs. RSV-induced pulmonary inflammation, injury, oxidation, and virus load were heightened in hyperoxia-exposed mice, and injury was more severe in hyperoxia-susceptible Nrf2−/− mice than in Nrf2+/+ mice. Maternal sulforaphane significantly alleviated hyperoxic lung injury in both neonate genotypes with more marked attenuation of severe neutrophilia, edema, oxidation, and alveolarization arrest in Nrf2−/− mice. Prenatal sulforaphane altered different genes with similar defensive functions (e.g., inhibition of cell/perinatal death and inflammation, potentiation of angiogenesis/organ development) in both strains, indicating compensatory transcriptome changes in Nrf2−/− mice. Conclusively, oxidative injury in underdeveloped lungs NRF2-dependently predisposed RSV susceptibility. In utero sulforaphane intervention suggested NRF2-dependent and -independent pulmonary protection mechanisms against early-life oxidant injury. Full article
(This article belongs to the Special Issue NRF2 in Health and Diseases)
Show Figures

Figure 1

15 pages, 3088 KiB  
Article
Quercetin and Isorhamnetin Attenuate Benzo[a]pyrene-Induced Toxicity by Modulating Detoxification Enzymes through the AhR and NRF2 Signaling Pathways
by Min Kim, Seung-Cheol Jee, Kyeong-Seok Kim, Hyung-Sik Kim, Kyoung-Nae Yu and Jung-Suk Sung
Antioxidants 2021, 10(5), 787; https://doi.org/10.3390/antiox10050787 - 16 May 2021
Cited by 31 | Viewed by 4857
Abstract
Benzo[a]pyrene, classified as a Group 1 carcinogen, is metabolized to B[a]P-7,8-dihydrodiol-9,10-epoxide (BPDE), causing DNA mutations and eventually cancer. Quercetin is a dietary flavonoid abundant in fruits and vegetables. After quercetin intake, quercetin’s metabolites isorhamnetin and miquelianin are more highly concentrated than quercetin in [...] Read more.
Benzo[a]pyrene, classified as a Group 1 carcinogen, is metabolized to B[a]P-7,8-dihydrodiol-9,10-epoxide (BPDE), causing DNA mutations and eventually cancer. Quercetin is a dietary flavonoid abundant in fruits and vegetables. After quercetin intake, quercetin’s metabolites isorhamnetin and miquelianin are more highly concentrated than quercetin in the human plasma. In this study, we investigated the molecular mechanisms associated with the cytoprotective effect of quercetin and its metabolites against benzo[a]pyrene from a detoxification perspective. Quercetin and its metabolite isorhamnetin reduced benzo[a]pyrene-induced cytotoxicity, whereas the metabolite miquelianin did not mitigate benzo[a]pyrene-induced cytotoxicity. Moreover, quercetin and isorhamnetin reduced intracellular levels of BPDE-DNA adducts. The formation and elimination of BPDE is mediated by the xenobiotic detoxification process. Quercetin and isorhamnetin increased the gene and protein expression levels of phase I, II, and III enzymes involved in xenobiotic detoxification. Furthermore, quercetin and isorhamnetin induced the translocation of aryl hydrocarbon receptor (AhR) and nuclear factor erythroid 2-related factor 2 (NRF2), which regulate the expression level of phase enzymes. Our results suggest that quercetin and isorhamnetin promote the metabolism, detoxification, and elimination of B[a]P, thereby increasing anti-genotoxic effects and protecting against B[a]P-induced cytotoxicity. Full article
(This article belongs to the Special Issue NRF2 in Health and Diseases)
Show Figures

Graphical abstract

11 pages, 1616 KiB  
Article
Auranofin-Mediated NRF2 Induction Attenuates Interleukin 1 Beta Expression in Alveolar Macrophages
by Stephanie B. Wall, Rui Li, Brittany Butler, Ashley R. Burg, Hubert M. Tse, Jennifer L. Larson-Casey, A. Brent Carter, Clyde J. Wright, Lynette K. Rogers and Trent E. Tipple
Antioxidants 2021, 10(5), 632; https://doi.org/10.3390/antiox10050632 - 21 Apr 2021
Cited by 15 | Viewed by 3120
Abstract
Background: Alveolar macrophages (AMs) are resident inflammatory cells in the lung that serve as early sentinels of infection or injury. We have identified thioredoxin reductase 1 inhibition by gold compounds increases activation of nuclear factor erythroid 2-related factor 2 (NRF2)-dependent pathways to attenuate [...] Read more.
Background: Alveolar macrophages (AMs) are resident inflammatory cells in the lung that serve as early sentinels of infection or injury. We have identified thioredoxin reductase 1 inhibition by gold compounds increases activation of nuclear factor erythroid 2-related factor 2 (NRF2)-dependent pathways to attenuate inflammatory responses. The present studies utilized murine alveolar macrophages (MH-S) to test the hypothesis that the gold compound, auranofin (AFN), decreases interleukin (IL)-1β expression through NRF2-mediated interactions with nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway genes and/or increases in glutathione synthesis. Methods: MH-S cells were treated with AFN and lipopolysaccharide (LPS) and analyzed at 6 and 24 h. The Il1b promoter was analyzed by chromatin immunoprecipitation for direct interaction with NRF2. Results: Expression of IL-1β, p-IκBα, p-p65 NF-kB, and NOD-, LRR-, and pyrin domain-containing protein 3 were elevated by LPS exposure, but only IL-1β expression was suppressed by AFN treatment. Both AFN and LPS treatments increased cellular glutathione levels, but attenuation of glutathione synthesis by buthionine sulfoximine (BSO) did not alter expression of Il-1β. Analysis revealed direct NRF2 binding to the Il1b promoter which was enhanced by AFN and inhibited the transcriptional activity of DNA polymerase II. Conclusions: Our data demonstrate that AFN-induced NRF2 activation directly suppresses IL-1β synthesis independent of NFκB and glutathione-mediated antioxidant mechanisms. NRF2 binding to the promoter region of IL1β directly inhibits transcription of the IL1β gene. Collectively, our research suggests that gold compounds elicit NRF2-dependent pulmonary protection by suppressing macrophage-mediated inflammation. Full article
(This article belongs to the Special Issue NRF2 in Health and Diseases)
Show Figures

Figure 1

Review

Jump to: Research

36 pages, 4132 KiB  
Review
Normal and Pathological NRF2 Signalling in the Central Nervous System
by Tony Heurtaux, David S. Bouvier, Alexandre Benani, Sergio Helgueta Romero, Katrin B. M. Frauenknecht, Michel Mittelbronn and Lasse Sinkkonen
Antioxidants 2022, 11(8), 1426; https://doi.org/10.3390/antiox11081426 - 22 Jul 2022
Cited by 32 | Viewed by 4368
Abstract
The nuclear factor erythroid 2-related factor 2 (NRF2) was originally described as a master regulator of antioxidant cellular response, but in the time since, numerous important biological functions linked to cell survival, cellular detoxification, metabolism, autophagy, proteostasis, inflammation, immunity, and differentiation have been [...] Read more.
The nuclear factor erythroid 2-related factor 2 (NRF2) was originally described as a master regulator of antioxidant cellular response, but in the time since, numerous important biological functions linked to cell survival, cellular detoxification, metabolism, autophagy, proteostasis, inflammation, immunity, and differentiation have been attributed to this pleiotropic transcription factor that regulates hundreds of genes. After 40 years of in-depth research and key discoveries, NRF2 is now at the center of a vast regulatory network, revealing NRF2 signalling as increasingly complex. It is widely recognized that reactive oxygen species (ROS) play a key role in human physiological and pathological processes such as ageing, obesity, diabetes, cancer, and neurodegenerative diseases. The high oxygen consumption associated with high levels of free iron and oxidizable unsaturated lipids make the brain particularly vulnerable to oxidative stress. A good stability of NRF2 activity is thus crucial to maintain the redox balance and therefore brain homeostasis. In this review, we have gathered recent data about the contribution of the NRF2 pathway in the healthy brain as well as during metabolic diseases, cancer, ageing, and ageing-related neurodegenerative diseases. We also discuss promising therapeutic strategies and the need for better understanding of cell-type-specific functions of NRF2 in these different fields. Full article
(This article belongs to the Special Issue NRF2 in Health and Diseases)
Show Figures

Graphical abstract

21 pages, 4834 KiB  
Review
Multifaceted Roles of the KEAP1–NRF2 System in Cancer and Inflammatory Disease Milieu
by Harit Panda, Huaichun Wen, Mikiko Suzuki and Masayuki Yamamoto
Antioxidants 2022, 11(3), 538; https://doi.org/10.3390/antiox11030538 - 11 Mar 2022
Cited by 31 | Viewed by 4298
Abstract
In a multicellular environment, many different types of cells interact with each other. The KEAP1–NRF2 system defends against electrophilic and oxidative stresses in various types of cells. However, the KEAP1–NRF2 system also regulates the expression of genes involved in cell proliferation and inflammation, [...] Read more.
In a multicellular environment, many different types of cells interact with each other. The KEAP1–NRF2 system defends against electrophilic and oxidative stresses in various types of cells. However, the KEAP1–NRF2 system also regulates the expression of genes involved in cell proliferation and inflammation, indicating that the system plays cell type-specific roles. In this review, we introduce the multifarious roles of the KEAP1–NRF2 system in various types of cells, especially focusing on cancer and inflammatory diseases. Cancer cells frequently hijack the KEAP1–NRF2 system, and NRF2 activation confers cancer cells with a proliferative advantage and therapeutic resistance. In contrast, the activation of NRF2 in immune cells, especially in myeloid cells, suppresses tumor development. In chronic inflammatory diseases, such as sickle cell disease, NRF2 activation in myeloid and endothelial cells represses the expression of proinflammatory cytokine and adherent molecule genes, mitigating inflammation and organ damage. Based on these cell-specific roles played by the KEAP1–NRF2 system, NRF2 inducers have been utilized for the treatment of inflammatory diseases. In addition, the use of NRF2 inducers and/or inhibitors with canonical antineoplastic drugs is an emerging approach to cancer treatment. Full article
(This article belongs to the Special Issue NRF2 in Health and Diseases)
Show Figures

Figure 1

28 pages, 2544 KiB  
Review
The Role of NRF2 in Obesity-Associated Cardiovascular Risk Factors
by Jorge Gutiérrez-Cuevas, Marina Galicia-Moreno, Hugo Christian Monroy-Ramírez, Ana Sandoval-Rodriguez, Jesús García-Bañuelos, Arturo Santos and Juan Armendariz-Borunda
Antioxidants 2022, 11(2), 235; https://doi.org/10.3390/antiox11020235 - 26 Jan 2022
Cited by 32 | Viewed by 7241
Abstract
The raising prevalence of obesity is associated with an increased risk for cardiovascular diseases (CVDs), particularly coronary artery disease (CAD), and heart failure, including atrial fibrillation, ventricular arrhythmias and sudden death. Obesity contributes directly to incident cardiovascular risk factors, including hyperglycemia or diabetes, [...] Read more.
The raising prevalence of obesity is associated with an increased risk for cardiovascular diseases (CVDs), particularly coronary artery disease (CAD), and heart failure, including atrial fibrillation, ventricular arrhythmias and sudden death. Obesity contributes directly to incident cardiovascular risk factors, including hyperglycemia or diabetes, dyslipidemia, and hypertension, which are involved in atherosclerosis, including structural and functional cardiac alterations, which lead to cardiac dysfunction. CVDs are the main cause of morbidity and mortality worldwide. In obesity, visceral and epicardial adipose tissue generate inflammatory cytokines and reactive oxygen species (ROS), which induce oxidative stress and contribute to the pathogenesis of CVDs. Nuclear factor erythroid 2-related factor 2 (NRF2; encoded by Nfe2l2 gene) protects against oxidative stress and electrophilic stress. NRF2 participates in the regulation of cell inflammatory responses and lipid metabolism, including the expression of over 1000 genes in the cell under normal and stressed environments. NRF2 is downregulated in diabetes, hypertension, and inflammation. Nfe2l2 knockout mice develop structural and functional cardiac alterations, and NRF2 deficiency in macrophages increases atherosclerosis. Given the endothelial and cardiac protective effects of NRF2 in experimental models, its activation using pharmacological or natural products is a promising therapeutic approach for obesity and CVDs. This review provides a comprehensive summary of the current knowledge on the role of NRF2 in obesity-associated cardiovascular risk factors. Full article
(This article belongs to the Special Issue NRF2 in Health and Diseases)
Show Figures

Figure 1

29 pages, 1496 KiB  
Review
Nrf2 in the Field of Dentistry with Special Attention to NLRP3
by Lisa Schieffer, Claudia Manzl, Christoph Schatz, Johannes Haybaeck and Adriano Crismani
Antioxidants 2022, 11(1), 149; https://doi.org/10.3390/antiox11010149 - 12 Jan 2022
Cited by 12 | Viewed by 3983
Abstract
The aim of this review article was to summarize the functional implications of the nuclear factor E2-related factor or nuclear factor (erythroid-derived 2)-like 2 (Nrf2), with special attention to the NACHT (nucleotide-binding oligomerization), LRR (leucine-rich repeat), and PYD (pyrin domain) domains-containing protein 3 [...] Read more.
The aim of this review article was to summarize the functional implications of the nuclear factor E2-related factor or nuclear factor (erythroid-derived 2)-like 2 (Nrf2), with special attention to the NACHT (nucleotide-binding oligomerization), LRR (leucine-rich repeat), and PYD (pyrin domain) domains-containing protein 3 (NLRP3) inflammasome in the field of dentistry. NLRP3 plays a crucial role in the progression of inflammatory and adaptive immune responses throughout the body. It is already known that this inflammasome is a key regulator of several systemic diseases. The initiation and activation of NLRP3 starts with the oral microbiome and its association with the pathogenesis and progression of several oral diseases, including periodontitis, periapical periodontitis, and oral squamous cell carcinoma (OSCC). The possible role of the inflammasome in oral disease conditions may involve the aberrant regulation of various response mechanisms, not only in the mouth but in the whole body. Understanding the cellular and molecular biology of the NLRP3 inflammasome and its relationship to Nrf2 is necessary for the rationale when suggesting it as a potential therapeutic target for treatment and prevention of oral inflammatory and immunological disorders. In this review, we highlighted the current knowledge about NLRP3, its likely role in the pathogenesis of various inflammatory oral processes, and its crosstalk with Nrf2, which might offer future possibilities for disease prevention and targeted therapy in the field of dentistry and oral health. Full article
(This article belongs to the Special Issue NRF2 in Health and Diseases)
Show Figures

Graphical abstract

16 pages, 5478 KiB  
Review
New Discoveries and Ambiguities of Nrf2 and ATF3 Signaling in Environmental Arsenic-Induced Carcinogenesis
by Zhuoyue Bi, Yao Fu, Priya Wadgaonkar, Yiran Qiu, Bandar Almutairy, Wenxuan Zhang, Akimasa Seno, Chitra Thakur and Fei Chen
Antioxidants 2022, 11(1), 77; https://doi.org/10.3390/antiox11010077 - 29 Dec 2021
Cited by 6 | Viewed by 2822
Abstract
Environment exposure to arsenic had been linked to increased incidents of human cancers. In cellular and animal experimental systems, arsenic has been shown to be highly capable of activating several signaling pathways that play critical roles in cell growth regulation, malignant transformation and [...] Read more.
Environment exposure to arsenic had been linked to increased incidents of human cancers. In cellular and animal experimental systems, arsenic has been shown to be highly capable of activating several signaling pathways that play critical roles in cell growth regulation, malignant transformation and the stemness of cancer stem-like cells. Emerging evidence indicates certain oncogenic properties of the Nrf2 transcription factor that can be activated by arsenic and many other environmental hazards. In human bronchial epithelial cells, our most recent data suggested that arsenic-activated Nrf2 signaling fosters metabolic reprogramming of the cells through shifting mitochondrial TCA cycle to cytosolic glycolysis, and some of the metabolites in glycolysis shunt the hexosamine biosynthesis and serine-glycine pathways important for the energy metabolism of the cancer cells. In the current report, we further demonstrated direct regulation of oncogenic signals by arsenic-activated Nrf2 and connection of Nrf2 with ATF3 stress transcription factor. Meanwhile, we also highlighted some unanswered questions on the molecular characteristics of the Nrf2 protein, which warrants further collaborative efforts among scientists for understanding the important role of Nrf2 in human cancers either associated or not to environmental arsenic exposure. Full article
(This article belongs to the Special Issue NRF2 in Health and Diseases)
Show Figures

Figure 1

19 pages, 1177 KiB  
Review
The Epidermis: Redox Governor of Health and Diseases
by Yosuke Ishitsuka and Dennis R. Roop
Antioxidants 2022, 11(1), 47; https://doi.org/10.3390/antiox11010047 - 26 Dec 2021
Cited by 9 | Viewed by 4272
Abstract
A functional epithelial barrier necessitates protection against dehydration, and ichthyoses are caused by defects in maintaining the permeability barrier in the stratum corneum (SC), the uppermost protective layer composed of dead cells and secretory materials from the living layer stratum granulosum (SG). We [...] Read more.
A functional epithelial barrier necessitates protection against dehydration, and ichthyoses are caused by defects in maintaining the permeability barrier in the stratum corneum (SC), the uppermost protective layer composed of dead cells and secretory materials from the living layer stratum granulosum (SG). We have found that loricrin (LOR) is an essential effector of cornification that occurs in the uppermost layer of SG (SG1). LOR promotes the maturation of corneocytes and extracellular adhesion structure through organizing disulfide cross-linkages, albeit being dispensable for the SC permeability barrier. This review takes psoriasis and AD as the prototype of impaired cornification. Despite exhibiting immunological traits that oppose each other, both conditions share the epidermal differentiation complex as a susceptible locus. We also review recent mechanistic insights on skin diseases, focusing on the Kelch-like erythroid cell-derived protein with the cap “n” collar homology-associated protein 1/NFE2-related factor 2 signaling pathway, as they coordinate the epidermis-intrinsic xenobiotic metabolism. Finally, we refine the theoretical framework of thiol-mediated crosstalk between keratinocytes and leukocytes in the epidermis that was put forward earlier. Full article
(This article belongs to the Special Issue NRF2 in Health and Diseases)
Show Figures

Figure 1

15 pages, 1654 KiB  
Review
The Role of NRF2 in Mycobacterial Infection
by Masashi Matsuyama, Mizu Nonaka, Masayuki Nakajima, Yuko Morishima, Yukio Ishii and Nobuyuki Hizawa
Antioxidants 2021, 10(12), 1861; https://doi.org/10.3390/antiox10121861 - 23 Nov 2021
Cited by 10 | Viewed by 3131
Abstract
The incidence of pulmonary nontuberculous mycobacterial (NTM) infection is increasing worldwide, and its clinical outcomes with current chemotherapies are unsatisfactory. The incidence of tuberculosis (TB) is still high in Africa, and the existence of drug-resistant tuberculosis is also an important issue for treatment. [...] Read more.
The incidence of pulmonary nontuberculous mycobacterial (NTM) infection is increasing worldwide, and its clinical outcomes with current chemotherapies are unsatisfactory. The incidence of tuberculosis (TB) is still high in Africa, and the existence of drug-resistant tuberculosis is also an important issue for treatment. To discover and develop new efficacious anti-mycobacterial treatments, it is important to understand the host-defense mechanisms against mycobacterial infection. Nuclear erythroid 2 p45-related factor-2 (NRF2) is known to be a major regulator of various antioxidant response element (ARE)-driven cytoprotective gene expressions, and its protective role has been demonstrated in infections. However, there are not many papers or reviews regarding the role of NRF2 in mycobacterial infectious disease. Therefore, this review focuses on the role of NRF2 in the pathogenesis of Mycobacterium tuberculosis and Mycobacterium avium infection. Full article
(This article belongs to the Special Issue NRF2 in Health and Diseases)
Show Figures

Figure 1

24 pages, 2152 KiB  
Review
Bioactive Compounds in Oxidative Stress-Mediated Diseases: Targeting the NRF2/ARE Signaling Pathway and Epigenetic Regulation
by Muthu Thiruvengadam, Baskar Venkidasamy, Umadevi Subramanian, Ramkumar Samynathan, Mohammad Ali Shariati, Maksim Rebezov, Shabari Girish, Sivakumar Thangavel, Anand Raj Dhanapal, Natalya Fedoseeva, Joohyun Lee and Ill-Min Chung
Antioxidants 2021, 10(12), 1859; https://doi.org/10.3390/antiox10121859 - 23 Nov 2021
Cited by 109 | Viewed by 7545
Abstract
Oxidative stress is a pathological condition occurring due to an imbalance between the oxidants and antioxidant defense systems in the body. Nuclear factor E2-related factor 2 (NRF2), encoded by the gene NFE2L2, is the master regulator of phase II antioxidant enzymes that [...] Read more.
Oxidative stress is a pathological condition occurring due to an imbalance between the oxidants and antioxidant defense systems in the body. Nuclear factor E2-related factor 2 (NRF2), encoded by the gene NFE2L2, is the master regulator of phase II antioxidant enzymes that protect against oxidative stress and inflammation. NRF2/ARE signaling has been considered as a promising target against oxidative stress-mediated diseases like diabetes, fibrosis, neurotoxicity, and cancer. The consumption of dietary phytochemicals acts as an effective modulator of NRF2/ARE in various acute and chronic diseases. In the present review, we discussed the role of NRF2 in diabetes, Alzheimer’s disease (AD), Parkinson’s disease (PD), cancer, and atherosclerosis. Additionally, we discussed the phytochemicals like curcumin, quercetin, resveratrol, epigallocatechin gallate, apigenin, sulforaphane, and ursolic acid that have effectively modified NRF2 signaling and prevented various diseases in both in vitro and in vivo models. Based on the literature, it is clear that dietary phytochemicals can prevent diseases by (1) blocking oxidative stress-inhibiting inflammatory mediators through inhibiting Keap1 or activating Nrf2 expression and its downstream targets in the nucleus, including HO-1, SOD, and CAT; (2) regulating NRF2 signaling by various kinases like GSK3beta, PI3/AKT, and MAPK; and (3) modifying epigenetic modulation, such as methylation, at the NRF2 promoter region; however, further investigation into other upstream signaling molecules like NRF2 and the effect of phytochemicals on them still need to be investigated in the near future. Full article
(This article belongs to the Special Issue NRF2 in Health and Diseases)
Show Figures

Figure 1

20 pages, 2004 KiB  
Review
Nanotechnology-Based Drug Delivery to Improve the Therapeutic Benefits of NRF2 Modulators in Cancer Therapy
by Zerrin Sezgin-Bayindir, Sonia Losada-Barreiro, Carlos Bravo-Díaz, Matej Sova, Julijana Kristl and Luciano Saso
Antioxidants 2021, 10(5), 685; https://doi.org/10.3390/antiox10050685 - 27 Apr 2021
Cited by 34 | Viewed by 4844
Abstract
The disadvantages of conventional anticancer drugs, such as their low bioavailability, poor targeting efficacy, and serious side effects, have led to the discovery of new therapeutic agents and potential drug delivery systems. In particular, the introduction of nano-sized drug delivery systems (NDDSs) has [...] Read more.
The disadvantages of conventional anticancer drugs, such as their low bioavailability, poor targeting efficacy, and serious side effects, have led to the discovery of new therapeutic agents and potential drug delivery systems. In particular, the introduction of nano-sized drug delivery systems (NDDSs) has opened new horizons for effective cancer treatment. These are considered potential systems that provide deep tissue penetration and specific drug targeting. On the other hand, nuclear factor erythroid 2-related factor 2 (NRF2)-based anticancer treatment approaches have attracted tremendous attention and produced encouraging results. However, the lack of effective formulation strategies is one of the factors that hinder the clinical application of NRF2 modulators. In this review, we initially focus on the critical role of NRF2 in cancer cells and NRF2-based anticancer treatment. Subsequently, we review the preparation and characterization of NDDSs encapsulating NRF2 modulators and discuss their potential for cancer therapy. Full article
(This article belongs to the Special Issue NRF2 in Health and Diseases)
Show Figures

Graphical abstract

17 pages, 1766 KiB  
Review
Antioxidant Therapy in Pancreatitis
by Lourdes Swentek, Dean Chung and Hirohito Ichii
Antioxidants 2021, 10(5), 657; https://doi.org/10.3390/antiox10050657 - 23 Apr 2021
Cited by 14 | Viewed by 6010
Abstract
Pancreatitis is pathologic inflammation of the pancreas characterized by acinar cell destruction and oxidative stress. Repeated pancreatic insults can result in the development of chronic pancreatitis, characterized by irreversible fibrosis of the pancreas and many secondary sequelae, ultimately leading to the loss of [...] Read more.
Pancreatitis is pathologic inflammation of the pancreas characterized by acinar cell destruction and oxidative stress. Repeated pancreatic insults can result in the development of chronic pancreatitis, characterized by irreversible fibrosis of the pancreas and many secondary sequelae, ultimately leading to the loss of this important organ. We review acute pancreatitis, chronic pancreatitis, and pancreatitis-related complications. We take a close look at the pathophysiology with a focus on oxidative stress and how it contributes to the complications of the disease. We also take a deep dive into the evolution and current status of advanced therapies for management including dietary modification, antioxidant supplementation, and nuclear factor erythroid-2-related factor 2-Kelch-like ECH-associated protein 1(Nrf2-keap1) pathway activation. In addition, we discuss the surgeries aimed at managing pain and preventing further endocrine dysfunction, such as total pancreatectomy with islet auto-transplantation. Full article
(This article belongs to the Special Issue NRF2 in Health and Diseases)
Show Figures

Figure 1

Back to TopTop