Biomarkers in Non-Communicable Diseases

A special issue of Biomolecules (ISSN 2218-273X). This special issue belongs to the section "Molecular Medicine".

Deadline for manuscript submissions: closed (31 December 2021) | Viewed by 24712

Special Issue Editors


E-Mail Website
Guest Editor
Unitat de Recerca Biomèdica (Biomedical Research Unit), Universitat Rovira i Virgili, Hospital Sant Joan de Reus, Institut d’Investigació Sanitària Pere Virgili, Reus, Spain
Interests: oxidative stress; inflammation; metabolism; non-communicable diseases; infectious diseases
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Unitat de Recerca Biomèdica (Biomedical Research Unit), Universitat Rovira i Virgili, Hospital Sant Joan de Reus, Institut d’Investigació Sanitària Pere Virgili, Reus (Tarragona), Spain
Interests: obesity-related metabolic complications; diabetes; non-alcoholic fatty liver disease; cancer; arteriosclerosis; metabolism; metabolomics; lipidomics; epigenetics; oxidation; inflammation; metformin
Special Issues, Collections and Topics in MDPI journals

E-Mail
Guest Editor
First Department of Internal Medicine, Sismanogleio General Hospital, Athens, Greece
Interests: infectious diseases; diabetes; obesity; microbiome
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The aim of this Special Issue is to inform our readers about biomarkers that may be used in association with non-communicable diseases, such as obesity, non-alcoholic fatty liver disease (NAFLD), thyroid gland diseases, and cancer. The role of various biomarkers with regards to metabolic-related disorders, such as obesity, diabetes mellitus, NAFLD, metabolic syndrome, hyperthyroidism, hypothyroidism, hyperparathyroidism, hypoparathyroidism, and adrenal gland diseases will be elaborated upon. Biomarkers, such as Vitamin D, omentin, various adipokines, cardiac biomarkers, inflammatory biomarkers, the gut microbiome, etc., will be further discussed in relation to non-communicable diseases. Apart from obesity and metabolic-related disorders, the role of biomarkers in cancer, especially in obesity-related cancers such as breast cancer and colorectal cancer, will be thoroughly explored.

Dr. Jordi Camps
Prof. Dr. Jorge Joven
Dr. Natalia G. Vallianou
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Biomolecules is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • non-communicable diseases
  • metabolic-related disorders
  • biomarkers
  • cancer

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

17 pages, 2317 KiB  
Article
Circulating Chemerin and Its Kinetics May Be a Useful Diagnostic and Prognostic Biomarker in Critically Ill Patients with Sepsis: A Prospective Study
by Irene Karampela, Gerasimos Socrates Christodoulatos, Natalia Vallianou, Dimitrios Tsilingiris, Evangelia Chrysanthopoulou, George Skyllas, Georgios Antonakos, Ioanna Marinou, Evaggelos Vogiatzakis, Apostolos Armaganidis and Maria Dalamaga
Biomolecules 2022, 12(2), 301; https://doi.org/10.3390/biom12020301 - 12 Feb 2022
Cited by 22 | Viewed by 2982
Abstract
Chemerin, a novel adipokine, is a potent chemoattractant molecule with antimicrobial properties, implicated in immune responses. Our aim was to investigate circulating chemerin and its kinetics, early in sepsis in critically ill patients and its association with severity and prognosis. Serum chemerin was [...] Read more.
Chemerin, a novel adipokine, is a potent chemoattractant molecule with antimicrobial properties, implicated in immune responses. Our aim was to investigate circulating chemerin and its kinetics, early in sepsis in critically ill patients and its association with severity and prognosis. Serum chemerin was determined in a cohort of 102 critically ill patients with sepsis during the first 48 h from sepsis onset and one week later, and in 102 age- and gender-matched healthy controls. Patients were followed for 28 days and their outcomes were recorded. Circulating chemerin was significantly higher in septic patients at onset compared to controls (342.3 ± 108.1 vs. 200.8 ± 40.1 μg/L, p < 0.001). Chemerin decreased significantly from sepsis onset to one week later (342.3 ± 108.1 vs. 308.2 ± 108.5 μg/L, p < 0.001), but remained higher than in controls. Chemerin was higher in patients presenting with septic shock than those with sepsis (sepsis onset: 403.2 ± 89.9 vs. 299.7 ± 99.5 μg/L, p < 0.001; one week after: 374.9 ± 95.3 vs. 261.6 ± 91.9 μg/L, p < 0.001), and in nonsurvivors than survivors (sepsis onset: 427.2 ± 96.7 vs. 306.9 ± 92.1 μg/L, p < 0.001; one week after: 414.1 ± 94.5 vs. 264.2 ± 79.9 μg/L, p < 0.001). Moreover, patients with septic shock and nonsurvivors, presented a significantly lower absolute and relative decrease in chemerin one week after sepsis onset compared to baseline (p < 0.001). Based on ROC curve analyses, the diagnostic performance of chemerin (AUC 0.78, 95% CI 0.69–0.87) was similar to C-reactive protein (CRP) (AUC 0.78, 95% CI 0.68–0.87) in discriminating sepsis severity. However, increased chemerin at sepsis onset and one week later was an independent predictor of 28-day mortality (sepsis onset: HR 3.58, 95% CI 1.48–8.65, p = 0.005; one week after: HR 10.01, 95% CI 4.32–23.20, p < 0.001). Finally, serum chemerin exhibited significant correlations with the severity scores, white blood cells, lactate, CRP and procalcitonin, as well as with biomarkers of glucose homeostasis, but not with cytokines and soluble urokinase-type plasminogen activator receptor (suPAR). Circulating chemerin is increased early in sepsis and its kinetics may have diagnostic and prognostic value in critically ill patients. Further studies are needed to shed light on the role of chemerin in sepsis. Full article
(This article belongs to the Special Issue Biomarkers in Non-Communicable Diseases)
Show Figures

Figure 1

11 pages, 1235 KiB  
Article
Afamin Levels and Their Correlation with Oxidative and Lipid Parameters in Non-diabetic, Obese Patients
by Imre Juhász, Szilvia Ujfalusi, Ildikó Seres, Hajnalka Lőrincz, Viktória Evelin Varga, György Paragh, Jr., Sándor Somodi, Mariann Harangi and György Paragh
Biomolecules 2022, 12(1), 116; https://doi.org/10.3390/biom12010116 - 12 Jan 2022
Cited by 11 | Viewed by 2522
Abstract
Background: Afamin is a liver-produced bioactive protein and features α- and γ-tocopherol binding sites. Afamin levels are elevated in metabolic syndrome and obesity and correlate well with components of metabolic syndrome. Afamin concentrations, correlations between afamin and vitamin E, afamin and lipoprotein subfractions [...] Read more.
Background: Afamin is a liver-produced bioactive protein and features α- and γ-tocopherol binding sites. Afamin levels are elevated in metabolic syndrome and obesity and correlate well with components of metabolic syndrome. Afamin concentrations, correlations between afamin and vitamin E, afamin and lipoprotein subfractions in non-diabetic, obese patients have not been fully examined. Methods: Fifty non-diabetic, morbidly obese patients and thirty-two healthy, normal-weight individuals were involved in our study. The afamin concentrations were measured by ELISA. Lipoprotein subfractions were determined with gel electrophoresis. Gas chromatography–mass spectrometry was used to measure α- and γ tocopherol levels. Results: Afamin concentrations were significantly higher in the obese patients compared to the healthy control (70.4 ± 12.8 vs. 47.6 ± 8.5 μg/mL, p < 0.001). Positive correlations were found between afamin and fasting glucose, HbA1c, hsCRP, triglyceride, and oxidized LDL level, as well as the amount and ratio of small HDL subfractions. Negative correlations were observed between afamin and mean LDL size, as well as the amount and ratio of large HDL subfractions. After multiple regression analysis, HbA1c levels and small HDL turned out to be independent predictors of afamin. Conclusions: Afamin may be involved in the development of obesity-related oxidative stress via the development of insulin resistance and not by affecting α- and γ-tocopherol levels. Full article
(This article belongs to the Special Issue Biomarkers in Non-Communicable Diseases)
Show Figures

Figure 1

21 pages, 2253 KiB  
Article
Circulating Omentin-1 as a Biomarker at the Intersection of Postmenopausal Breast Cancer Occurrence and Cardiometabolic Risk: An Observational Cross-Sectional Study
by Gerasimos Socrates Christodoulatos, Georgios Antonakos, Irene Karampela, Sotiria Psallida, Theodora Stratigou, Natalia Vallianou, Antigoni Lekka, Ioanna Marinou, Evaggelos Vogiatzakis, Styliani Kokoris, Athanasios G. Papavassiliou and Maria Dalamaga
Biomolecules 2021, 11(11), 1609; https://doi.org/10.3390/biom11111609 - 30 Oct 2021
Cited by 21 | Viewed by 3784
Abstract
Aberrant circulating omentin-1, which is an anti-inflammatory and pro-apoptotic adipokine, has been reported in various solid tumors. Therefore, we investigated whether or not circulating omentin-1 could be associated with postmenopausal BC (PBC) and could be used as a potential diagnostic and clinical tool [...] Read more.
Aberrant circulating omentin-1, which is an anti-inflammatory and pro-apoptotic adipokine, has been reported in various solid tumors. Therefore, we investigated whether or not circulating omentin-1 could be associated with postmenopausal BC (PBC) and could be used as a potential diagnostic and clinical tool taking into consideration clinicopathologic features, tumor markers, as well as anthropometric, metabolic, and inflammatory parameters. Serum omentin-1, tumor markers (CA15-3 and CEA); metabolic (insulin, glucose, HOMA index, and serum lipids), anthropometric (BMI, waist circumference, and fat mass), and inflammatory (TNF-α, IL-6, hsCRP) parameters; classic adipokines (leptin and adiponectin); the Mediterranean diet (MedDiet) score; and cardiovascular (CVD) risk were determined in 103 postmenopausal women with pathologically confirmed incident invasive BC, 103 controls matched on age, 51 patients with benign breast lesions (BBL), and 50 obese postmenopausal women of similar age. The mean serum omentin-1 was significantly lower in cases than in controls and patients with BBL (p < 0.001). In the patients, omentin-1 was inversely associated with tumor, metabolic and inflammatory biomarkers, cancer stage, and the number of infiltrated lymph nodes (p < 0.05). In all study participants, omentin-1 was negatively correlated with CVD risk and positively correlated with MedDiet score. Lower circulating omentin-1 was independently associated with PBC occurrence above and beyond known risk factors. According to the ROC curve analysis, the overall diagnostic performance of omentin-1 (0.84, 95% CI 0.79–0.89) is similar to CA15-3. Circulating omentin-1 may be a biomarker at the intersection of PBC and cardiometabolic risk in postmenopausal women, and could be modulated by the adoption of a MedDiet. Further mechanistic and large multicentric prospective and longitudinal studies are required to elucidate the ontological role of omentin-1 in BC and CVD risks, as well as its diagnostic and prognostic ability and its therapeutic potential. Full article
(This article belongs to the Special Issue Biomarkers in Non-Communicable Diseases)
Show Figures

Figure 1

Review

Jump to: Research

30 pages, 1586 KiB  
Review
Understanding the Role of the Gut Microbiome and Microbial Metabolites in Non-Alcoholic Fatty Liver Disease: Current Evidence and Perspectives
by Natalia Vallianou, Gerasimos Socrates Christodoulatos, Irene Karampela, Dimitrios Tsilingiris, Faidon Magkos, Theodora Stratigou, Dimitris Kounatidis and Maria Dalamaga
Biomolecules 2022, 12(1), 56; https://doi.org/10.3390/biom12010056 - 31 Dec 2021
Cited by 138 | Viewed by 14217
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease worldwide. NAFLD begins as a relatively benign hepatic steatosis which can evolve to non-alcoholic steatohepatitis (NASH); the risk of cirrhosis and hepatocellular carcinoma (HCC) increases when fibrosis is present. NAFLD represents [...] Read more.
Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease worldwide. NAFLD begins as a relatively benign hepatic steatosis which can evolve to non-alcoholic steatohepatitis (NASH); the risk of cirrhosis and hepatocellular carcinoma (HCC) increases when fibrosis is present. NAFLD represents a complex process implicating numerous factors—genetic, metabolic, and dietary—intertwined in a multi-hit etiopathogenetic model. Recent data have highlighted the role of gut dysbiosis, which may render the bowel more permeable, leading to increased free fatty acid absorption, bacterial migration, and a parallel release of toxic bacterial products, lipopolysaccharide (LPS), and proinflammatory cytokines that initiate and sustain inflammation. Although gut dysbiosis is present in each disease stage, there is currently no single microbial signature to distinguish or predict which patients will evolve from NAFLD to NASH and HCC. Using 16S rRNA sequencing, the majority of patients with NAFLD/NASH exhibit increased numbers of Bacteroidetes and differences in the presence of Firmicutes, resulting in a decreased F/B ratio in most studies. They also present an increased proportion of species belonging to Clostridium, Anaerobacter, Streptococcus, Escherichia, and Lactobacillus, whereas Oscillibacter, Flavonifaractor, Odoribacter, and Alistipes spp. are less prominent. In comparison to healthy controls, patients with NASH show a higher abundance of Proteobacteria, Enterobacteriaceae, and Escherichia spp., while Faecalibacterium prausnitzii and Akkermansia muciniphila are diminished. Children with NAFLD/NASH have a decreased proportion of Oscillospira spp. accompanied by an elevated proportion of Dorea, Blautia, Prevotella copri, and Ruminococcus spp. Gut microbiota composition may vary between population groups and different stages of NAFLD, making any conclusive or causative claims about gut microbiota profiles in NAFLD patients challenging. Moreover, various metabolites may be involved in the pathogenesis of NAFLD, such as short-chain fatty acids, lipopolysaccharide, bile acids, choline and trimethylamine-N-oxide, and ammonia. In this review, we summarize the role of the gut microbiome and metabolites in NAFLD pathogenesis, and we discuss potential preventive and therapeutic interventions related to the gut microbiome, such as the administration of probiotics, prebiotics, synbiotics, antibiotics, and bacteriophages, as well as the contribution of bariatric surgery and fecal microbiota transplantation in the therapeutic armamentarium against NAFLD. Larger and longer-term prospective studies, including well-defined cohorts as well as a multi-omics approach, are required to better identify the associations between the gut microbiome, microbial metabolites, and NAFLD occurrence and progression. Full article
(This article belongs to the Special Issue Biomarkers in Non-Communicable Diseases)
Show Figures

Figure 1

Back to TopTop