Trends in Development of Biosensors for Disease Diagnosis, Treatment and Management—2nd Edition

A special issue of Biosensors (ISSN 2079-6374). This special issue belongs to the section "Biosensors and Healthcare".

Deadline for manuscript submissions: 31 December 2024 | Viewed by 8583

Special Issue Editor


E-Mail Website
Guest Editor
Department of Chemistry and Molecular Biology, University of Gothenburg, 41296 Gothenburg, Sweden
Interests: nano/microscale sensors; nanopore electrode; single-cell analysis; intracellular analysis; sensors for cell- and brain-tissue engineering; bioelectrochemistry; 2D materials for sensing applications; wearable (bio)sensors; flexible electrochemical sensors; (bio)sensors in plant science
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

After the successful publication of the first edition of this Special Issue, entitled "Trends in Development of Biosensors for Disease Diagnosis, Treatment, and Management", we are pleased to announce the launch of the second edition under the same name. In recent years, biosensor development has garnered significant attention in the fields of biomedicine and healthcare. Biosensors find wide-ranging applications in disease diagnosis, treatment, patient health monitoring, and human health management.

For this Special Issue, our focus will be on innovative and groundbreaking biosensing technologies, which encompass electrochemical and optical biosensors, flexible biosensors, wearable technologies, paper-based detection strategies, microfluidic biosensors, gas detection biosensors, enzymatic biosensors, and micro–nano-scale biosensors. We also emphasize the importance of unique materials, nanomaterials, and sensor components, such as aptamers, smart polymers, imprinted polymers, metamaterials, 2D and 3D nanomaterials, among others.

Furthermore, our interest extends to novel biomarkers, such as exosomes, microRNA, RNAs, and DNAs, which are present in various biological samples, including tears, sweat, saliva, blood, urine, and even breath. These topics offer opportunities for advancing research and enhancing disease diagnosis or treatment processes, resulting in quicker and more precise diagnostic outcomes.

We eagerly welcome research articles, review articles and communications. For those planning to submit papers, you may send a title and a concise abstract (approximately 100 words) to the Editorial Office or submit them on the Special Issue’s website. Please visit the Instructions for Authors page for detailed submission guidelines.

Dr. Amir Hatamie
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Biosensors is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • nanobiosensors for biomedical applications
  • nanomaterials in biosensors
  • disease diagnosis
  • biomarker detection
  • cellular analysis and diagnostics
  • point-of-care diagnostics
  • clinical analysis

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

14 pages, 4453 KiB  
Article
An Enzyme-Free Impedimetric Sensor Based on Flower-like NiO/Carbon Microspheres for L-Glutamic Acid Assay
by Najva Sadri, Mohammad Mazloum-Ardakani, Farzaneh Asadpour, Yvonne Joseph and Parvaneh Rahimi
Biosensors 2024, 14(11), 543; https://doi.org/10.3390/bios14110543 - 9 Nov 2024
Viewed by 468
Abstract
This research introduces a non-enzymatic electrochemical sensor utilizing flower-like nickel oxide/carbon (fl-NiO/C) microspheres for the precise detection of L-glutamic acid (LGA), a crucial neurotransmitter in the field of healthcare and a frequently utilized food additive and flavor enhancer. The fl-NiO/C were synthesized with [...] Read more.
This research introduces a non-enzymatic electrochemical sensor utilizing flower-like nickel oxide/carbon (fl-NiO/C) microspheres for the precise detection of L-glutamic acid (LGA), a crucial neurotransmitter in the field of healthcare and a frequently utilized food additive and flavor enhancer. The fl-NiO/C were synthesized with controllable microstructures using metal–organic frameworks (MOFs) as precursors followed by a simple calcination process. The uniformly synthesized fl-NiO/C microspheres were further characterized using Fourier transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), and field emission scanning electron microscopy (FE-SEM). The fl-NiO/C was utilized as a modifier on the surface of a glassy carbon electrode, and an impedimetric sensor based on electrochemical impedance spectroscopy (EIS) was developed for the detection of LGA. The proposed sensor demonstrated excellent catalytic activity and selectivity towards LGA across a broad concentration range of 10–800 μM with a sensitivity of 486.9 µA.mM−1.cm−2 and a detection limit of 1.28 µM (S/N = 3). The sensor was also employed to identify LGA in blood plasma samples, yielding results that align with those obtained through HPLC. This achievement highlights the potential of fl-NiO/C microspheres in advancing cutting-edge biosensing applications. Full article
Show Figures

Graphical abstract

18 pages, 5912 KiB  
Article
Electrochemical Immunosensors on Laser-Induced Graphene Platforms for Monitoring of Anti-RBD Antibodies After SARS-CoV-2 Infection
by Beatriz R. Martins, Cristhianne Molinero R. Andrade, Guilherme F. Simão, Rhéltheer de Paula Martins, Lucas V. de Faria, Tiago A. Matias, Virmondes Rodrigues Júnior, Rodrigo Alejandro Abarza Munoz and Renata Pereira Alves
Biosensors 2024, 14(11), 514; https://doi.org/10.3390/bios14110514 - 22 Oct 2024
Viewed by 707
Abstract
The COVID-19 pandemic, caused by the SARS-CoV-2 virus, has posed a major challenge to global health. The development of fast, accurate, and accessible diagnostic methods is essential in controlling the disease and mitigating its impacts. In this context, electrochemical biosensors present themselves as [...] Read more.
The COVID-19 pandemic, caused by the SARS-CoV-2 virus, has posed a major challenge to global health. The development of fast, accurate, and accessible diagnostic methods is essential in controlling the disease and mitigating its impacts. In this context, electrochemical biosensors present themselves as promising tools for the efficient monitoring of SARS-CoV-2 infection. We have developed a highly specific biosensor for the detection of anti-SARS-CoV-2 antibodies in patient sera. The use of the RBD-S region as an antigen, although purified to minimize cross-linking, poses a specific challenge. The structural similarity between SARS-CoV-2 and other respiratory viruses, as well as the complexity of the serum matrix, hinders robust analytical strategies to ensure diagnostic accuracy. This work presents a novel immunosensor for COVID-19 diagnosis using laser-induced graphene (LIG) electrodes subjected to electrochemical reduction with graphene (named rGraphene-LIG). In the present study, we chose an initial approach focused on demonstrating the concept and evaluating the feasibility of the rGraphene-LIG sensor for SARS-CoV-2 detection. The rGraphene-LIG electrodes presented a notable current increase for the redox probe in the aqueous solution of a mixture of 5 mmol L−1 potassium ferricyanide/ferrocyanide ([Fe(CN)6]3−/[Fe(CN)6]4−) in 0.1 mol L−1 KCl (pH set at 7.4). As a proof of concept, the rGraphene-LIG electrode was applied for antibody determination in real samples using cyclic voltammetry, and a limit of detection (LOD) of 0.032 μg L−1 was achieved. When determining antigens in commercial samples, we obtained an LOD of 560 ηg mL−1 and a limit of quantification of 1677 ηg mL−1. The results of the electrochemical experiments were in accordance with the surface roughness obtained from atomic force microscopy images. Based on these results, the rGraphene-LIG electrode is shown to be an excellent platform for immunoglobulin detection when present in individuals after antigenic exposure caused by SARS-CoV-2. Full article
Show Figures

Figure 1

13 pages, 2488 KiB  
Article
Reagentless Glucose Biosensor Based on Combination of Platinum Nanostructures and Polypyrrole Layer
by Natalija German, Anton Popov and Almira Ramanaviciene
Biosensors 2024, 14(3), 134; https://doi.org/10.3390/bios14030134 - 4 Mar 2024
Cited by 1 | Viewed by 1797
Abstract
Two types of low-cost reagentless electrochemical glucose biosensors based on graphite rod (GR) electrodes were developed. The electrodes modified with electrochemically synthesized platinum nanostructures (PtNS), 1,10-phenanthroline-5,6-dione (PD), glucose oxidase (GOx) without and with a polypyrrole (Ppy) layer—(i) GR/PtNS/PD/GOx and (ii) GR/PtNS/PD/GOx/Ppy, respectively, were [...] Read more.
Two types of low-cost reagentless electrochemical glucose biosensors based on graphite rod (GR) electrodes were developed. The electrodes modified with electrochemically synthesized platinum nanostructures (PtNS), 1,10-phenanthroline-5,6-dione (PD), glucose oxidase (GOx) without and with a polypyrrole (Ppy) layer—(i) GR/PtNS/PD/GOx and (ii) GR/PtNS/PD/GOx/Ppy, respectively, were prepared and tested. Glucose biosensors based on GR/PtNS/PD/GOx and GR/PtNS/PD/GOx/Ppy electrodes were characterized by the sensitivity of 10.1 and 5.31 μA/(mM cm2), linear range (LR) up to 16.5 and 39.0 mM, limit of detection (LOD) of 0.198 and 0.561 mM, good reproducibility, and storage stability. The developed glucose biosensors based on GR/PtNS/PD/GOx/Ppy electrodes showed exceptional resistance to interfering compounds and proved to be highly efficient for the determination of glucose levels in blood serum. Full article
Show Figures

Figure 1

Review

Jump to: Research

13 pages, 7891 KiB  
Review
Fueling the Future: The Emergence of Self-Powered Enzymatic Biofuel Cell Biosensors
by Akhilesh Kumar Gupta and Alexey Viktorovich Krasnoslobodtsev
Biosensors 2024, 14(7), 316; https://doi.org/10.3390/bios14070316 - 24 Jun 2024
Viewed by 1570
Abstract
Self-powered biosensors are innovative devices that can detect and analyze biological or chemical substances without the need for an external power source. These biosensors can convert energy from the surrounding environment or the analyte itself into electrical signals for sensing and data transmission. [...] Read more.
Self-powered biosensors are innovative devices that can detect and analyze biological or chemical substances without the need for an external power source. These biosensors can convert energy from the surrounding environment or the analyte itself into electrical signals for sensing and data transmission. The self-powered nature of these biosensors offers several advantages, such as portability, autonomy, and reduced waste generation from disposable batteries. They find applications in various fields, including healthcare, environmental monitoring, food safety, and wearable devices. While self-powered biosensors are a promising technology, there are still challenges to address, such as improving energy efficiency, sensitivity, and stability to make them more practical and widely adopted. This review article focuses on exploring the evolving trends in self-powered biosensor design, outlining potential advantages and limitations. With a focal point on enzymatic biofuel cell power generation, this article describes various sensing mechanisms that employ the analyte as substrate or fuel for the biocatalyst’s ability to generate current. Technical aspects of biofuel cells are also examined. Research and development in the field of self-powered biosensors is ongoing, and this review describes promising areas for further exploration within the field, identifying underexplored areas that could benefit from further investigation. Full article
Show Figures

Figure 1

32 pages, 6840 KiB  
Review
Advancements in Brain Research: The In Vivo/In Vitro Electrochemical Detection of Neurochemicals
by Xiaoxuan Xu, Yimei Zuo, Shu Chen, Amir Hatami and Hui Gu
Biosensors 2024, 14(3), 125; https://doi.org/10.3390/bios14030125 - 26 Feb 2024
Cited by 4 | Viewed by 3410
Abstract
Neurochemicals, crucial for nervous system function, influence vital bodily processes and their fluctuations are linked to neurodegenerative diseases and mental health conditions. Monitoring these compounds is pivotal, yet the intricate nature of the central nervous system poses challenges. Researchers have devised methods, notably [...] Read more.
Neurochemicals, crucial for nervous system function, influence vital bodily processes and their fluctuations are linked to neurodegenerative diseases and mental health conditions. Monitoring these compounds is pivotal, yet the intricate nature of the central nervous system poses challenges. Researchers have devised methods, notably electrochemical sensing with micro-nanoscale electrodes, offering high-resolution monitoring despite low concentrations and rapid changes. Implantable sensors enable precise detection in brain tissues with minimal damage, while microdialysis-coupled platforms allow in vivo sampling and subsequent in vitro analysis, addressing the selectivity issues seen in other methods. While lacking temporal resolution, techniques like HPLC and CE complement electrochemical sensing’s selectivity, particularly for structurally similar neurochemicals. This review covers essential neurochemicals and explores miniaturized electrochemical sensors for brain analysis, emphasizing microdialysis integration. It discusses the pros and cons of these techniques, forecasting electrochemical sensing’s future in neuroscience research. Overall, this comprehensive review outlines the evolution, strengths, and potential applications of electrochemical sensing in the study of neurochemicals, offering insights into future advancements in the field. Full article
Show Figures

Figure 1

Back to TopTop