Recent Advances in Wearable Biosensors for Human Health Monitoring

A special issue of Biosensors (ISSN 2079-6374). This special issue belongs to the section "Wearable Biosensors".

Deadline for manuscript submissions: closed (1 September 2024) | Viewed by 23734

Special Issue Editor


E-Mail Website
Guest Editor
Department of Electrical Engineering and Computer Scicence, South Dakota State University, Brookings, SD 57007, USA
Interests: biosensors; chemical sensors; wearable healthcare devices; advanced sensing materials; nanomaterials
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Wearable biosensors are surging, as evidenced by the escalating interest from both academia and the healthcare industry. Due to their capability for the noninvasive, real-time, and continuous monitoring of various health information of the human body, wearable biosensors have shown unique advantages in remote patient tracking, early diagnosis, and personalized medicine. Substantial progress has been made in the development of wearable biosensing technologies for detecting biomarkers in sweat, tears, saliva, and interstitial fluid. Biosensors have been integrated with various wearable platforms, such as contact lenses, wristbands, patches, tattoos, and retainers, for the detection of different biomarkers (e.g., glucose, lactate, electrolytes, pH, salivary uric acid). The potential of wearable biosensors can be further boosted by additive manufacturing (3D printing), artificial intelligence, internet of things, and big data technologies.

In this Special Issue, we would like to invite you to contribute research articles, reviews, or perspectives related to “Wearable Biosensors for Human Health Monitoring”. The welcomed topics include, but are not limited to, smart biosensing materials, novel wearable biosensing technologies, power management and energy harvesting, data transmission, algorithm development, wearable device integration, and performance validation.

Dr. Xiaojun Xian
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Biosensors is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • wearable biosensors
  • wearable biomedical devices
  • noninvasive biosensors
  • wireless biosensors
  • biomarkers
  • biofluids
  • interstitial fluid
  • saliva
  • tears
  • sweat
  • breath
  • electrochemical sensing
  • colorimetric sensing
  • optical sensing
  • continuous monitoring
  • healthcare

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (8 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review, Other

13 pages, 3215 KiB  
Article
A Metal-Organic Framework-Based Colorimetric Sensor Array for Transcutaneous CO2 Monitoring via Lensless Imaging
by Syed Saad Ahmed, Jingjing Yu, Wei Ding, Sabyasachi Ghosh, David Brumels, Songxin Tan, Laxmi Raj Jaishi, Amirhossein Amjad and Xiaojun Xian
Biosensors 2024, 14(11), 516; https://doi.org/10.3390/bios14110516 - 22 Oct 2024
Viewed by 1609
Abstract
Transcutaneous carbon dioxide (TcPCO2) monitoring provides a non-invasive alternative to measuring arterial carbon dioxide (PaCO2), making it valuable for various applications, such as sleep diagnostics and neonatal care. However, traditional transcutaneous monitors are bulky, expensive, and pose risks such as skin burns. To [...] Read more.
Transcutaneous carbon dioxide (TcPCO2) monitoring provides a non-invasive alternative to measuring arterial carbon dioxide (PaCO2), making it valuable for various applications, such as sleep diagnostics and neonatal care. However, traditional transcutaneous monitors are bulky, expensive, and pose risks such as skin burns. To address these limitations, we have introduced a compact, cost-effective CMOS imager-based sensor for TcPCO2 detection by utilizing colorimetric reactions with metal–organic framework (MOF)-based nano-hybrid materials. The sensor, with a colorimetric sensing array fabricated on an ultrathin PDMS membrane and then adhered to the CMOS imager surface, can record real-time sensing data through image processing without the need for additional optical components, which significantly reduces the sensor’s size. Our system shows impressive sensitivity and selectivity, with a low detection limit of 26 ppm, a broad detection range of 0–2% CO2, and strong resistance to interference from common skin gases. Feasibility tests on human subjects demonstrate the potential of this MOF-CMOS imager-based colorimetric sensor for clinical applications. Additionally, its compact design and responsiveness make it suitable for sports and exercise settings, offering valuable insights into respiratory function and performance. The sensing system’s compact size, low cost, and reversible and highly sensitive TcPCO2 monitoring capability make it ideal for integration into wearable devices for remote health tracking. Full article
(This article belongs to the Special Issue Recent Advances in Wearable Biosensors for Human Health Monitoring)
Show Figures

Figure 1

11 pages, 8063 KiB  
Article
Fundamental Study of a Wristwatch Sweat Lactic Acid Monitor
by Sakae Konno and Hiroyuki Kudo
Biosensors 2024, 14(4), 187; https://doi.org/10.3390/bios14040187 - 10 Apr 2024
Cited by 2 | Viewed by 1886
Abstract
A lactic acid (LA) monitoring system aimed at sweat monitoring was fabricated and tested. The sweat LA monitoring system uses a continuous flow of phosphate buffer saline, instead of chambers or cells, for collecting and storing sweat fluid excreted at the skin surface. [...] Read more.
A lactic acid (LA) monitoring system aimed at sweat monitoring was fabricated and tested. The sweat LA monitoring system uses a continuous flow of phosphate buffer saline, instead of chambers or cells, for collecting and storing sweat fluid excreted at the skin surface. To facilitate the use of the sweat LA monitoring system by subjects when exercising, the fluid control system, including the sweat sampling device, was designed to be unaffected by body movements or muscle deformation. An advantage of our system is that the skin surface condition is constantly refreshed by continuous flow. A real sample test was carried out during stationary bike exercise, which showed that LA secretion increased by approximately 10 μg/cm2/min compared to the baseline levels before exercise. The LA levels recovered to baseline levels after exercise due to the effect of continuous flow. This indicates that the wristwatch sweat LA monitor has the potential to enable a detailed understanding of the LA distribution at the skin surface. Full article
(This article belongs to the Special Issue Recent Advances in Wearable Biosensors for Human Health Monitoring)
Show Figures

Figure 1

17 pages, 2633 KiB  
Article
Monitoring Changes in Oxygen Muscle during Exercise with High-Flow Nasal Cannula Using Wearable NIRS Biosensors
by Felipe Contreras-Briceño, Maximiliano Espinosa-Ramírez, Augusta Rivera-Greene, Camila Guerra-Venegas, Antonia Lungenstrass-Poulsen, Victoria Villagra-Reyes, Raúl Caulier-Cisterna, Oscar F. Araneda and Ginés Viscor
Biosensors 2023, 13(11), 985; https://doi.org/10.3390/bios13110985 - 13 Nov 2023
Cited by 1 | Viewed by 2822
Abstract
Exercise increases the cost of breathing (COB) due to increased lung ventilation (V˙E), inducing respiratory muscles deoxygenation (SmO2), while the increase in workload implies SmO2 in locomotor muscles. This phenomenon has been proposed as [...] Read more.
Exercise increases the cost of breathing (COB) due to increased lung ventilation (V˙E), inducing respiratory muscles deoxygenation (SmO2), while the increase in workload implies SmO2 in locomotor muscles. This phenomenon has been proposed as a leading cause of exercise intolerance, especially in clinical contexts. The use of high-flow nasal cannula (HFNC) during exercise routines in rehabilitation programs has gained significant interest because it is proposed as a therapeutic intervention for reducing symptoms associated with exercise intolerance, such as fatigue and dyspnea, assuming that HFNC could reduce exercise-induced SmO2. SmO2 can be detected using optical wearable devices provided by near-infrared spectroscopy (NIRS) technology, which measures the changes in the amount of oxygen bound to chromophores (e.g., hemoglobin, myoglobin, cytochrome oxidase) at the target tissue level. We tested in a study with a cross-over design whether the muscular desaturation of m.vastus lateralis and m.intercostales during a high-intensity constant-load exercise can be reduced when it was supported with HFNC in non-physically active adults. Eighteen participants (nine women; age: 22 ± 2 years, weight: 65.1 ± 11.2 kg, height: 173.0 ± 5.8 cm, BMI: 21.6 ± 2.8 kg·m−2) were evaluated in a cycle ergometer (15 min, 70% maximum watts achieved in ergospirometry (V˙O2-peak)) breathing spontaneously (control, CTRL) or with HFNC support (HFNC; 50 L·min−1, fiO2: 21%, 30 °C), separated by seven days in randomized order. Two-way ANOVA tests analyzed the SmO2 (m.intercostales and m.vastus lateralis), and changes in V˙E and SmO2·V˙E−1. Dyspnea, leg fatigue, and effort level (RPE) were compared between trials by the Wilcoxon matched-paired signed rank test. We found that the interaction of factors (trial × exercise-time) was significant in SmO2-m.intercostales, V˙E, and (SmO2-m.intercostales)/V˙E (p < 0.05, all) but not in SmO2-m.vastus lateralis. SmO2-m.intercostales was more pronounced in CTRL during exercise since 5′ (p < 0.05). Hyperventilation was higher in CTRL since 10′ (p < 0.05). The SmO2·V˙E−1 decreased during exercise, being lowest in CTRL since 5′. Lower dyspnea was reported in HFNC, with no differences in leg fatigue and RPE. We concluded that wearable optical biosensors documented the beneficial effect of HFNC in COB due to lower respiratory SmO2 induced by exercise. We suggest incorporating NIRS devices in rehabilitation programs to monitor physiological changes that can support the clinical impact of the therapeutic intervention implemented. Full article
(This article belongs to the Special Issue Recent Advances in Wearable Biosensors for Human Health Monitoring)
Show Figures

Figure 1

Review

Jump to: Research, Other

34 pages, 3181 KiB  
Review
Commercial Wearables for the Management of People with Autism Spectrum Disorder: A Review
by Jonathan Hernández-Capistrán, Giner Alor-Hernández, Humberto Marín-Vega, Maritza Bustos-López, Laura Nely Sanchez-Morales and Jose Luis Sanchez-Cervantes
Biosensors 2024, 14(11), 556; https://doi.org/10.3390/bios14110556 - 15 Nov 2024
Viewed by 1641
Abstract
Autism Spectrum Disorder (ASD) necessitates comprehensive management, addressing complex challenges in social communication, behavioral regulation, and sensory processing, for which wearable technologies offer valuable tools to monitor and support interventions. Therefore, this review explores recent advancements in wearable technology, categorizing devices based on [...] Read more.
Autism Spectrum Disorder (ASD) necessitates comprehensive management, addressing complex challenges in social communication, behavioral regulation, and sensory processing, for which wearable technologies offer valuable tools to monitor and support interventions. Therefore, this review explores recent advancements in wearable technology, categorizing devices based on executive function, psychomotor skills, and the behavioral/emotional/sensory domain, highlighting their potential to improve ongoing management and intervention. To ensure rigor and comprehensiveness, the review employs a PRISMA-based methodology. Specifically, literature searches were conducted across diverse databases, focusing on studies published between 2014 and 2024, to identify the most commonly used wearables in ASD research. Notably, 55.45% of the 110 devices analyzed had an undefined FDA status, 23.6% received 510(k) clearance, and only a small percentage were classified as FDA Breakthrough Devices or in the submission process. Additionally, approximately 50% of the devices utilized sensors like ECG, EEG, PPG, and EMG, highlighting their widespread use in real-time physiological monitoring. Our work comprehensively analyzes a wide array of wearable technologies, including emerging and advanced. While these technologies have the potential to transform ASD management through real-time data collection and personalized interventions, improved clinical validation and user-centered design are essential for maximizing their effectiveness and user acceptance. Full article
(This article belongs to the Special Issue Recent Advances in Wearable Biosensors for Human Health Monitoring)
Show Figures

Figure 1

17 pages, 3361 KiB  
Review
Advances in Cardiovascular Wearable Devices
by Sheikh Muhammad Asher Iqbal, Mary Ann Leavitt, Imadeldin Mahgoub and Waseem Asghar
Biosensors 2024, 14(11), 525; https://doi.org/10.3390/bios14110525 - 30 Oct 2024
Viewed by 2587
Abstract
Cardiovascular diseases are a leading cause of death worldwide. They mainly include coronary artery disease, rheumatic heart disease, andcerebrovascular disease, and. Cardiovascular diseases can be better managed and diagnosed using wearable devices. Wearable devices, in comparison to traditional cardiovascular diagnostic tools, are not [...] Read more.
Cardiovascular diseases are a leading cause of death worldwide. They mainly include coronary artery disease, rheumatic heart disease, andcerebrovascular disease, and. Cardiovascular diseases can be better managed and diagnosed using wearable devices. Wearable devices, in comparison to traditional cardiovascular diagnostic tools, are not only inexpensive but also have the potential to provide continuous real-time monitoring. This paper reviews some of the recent advances in cardiovascular wearable devices. It discusses traditional implantable devices for cardiovascular diseases as well as wearable devices. The different types of wearable devices are categorized based on different technologies, namely using galvanic contact, photoplethysmography (PPG), and radio frequency (RF) waves. It also highlights the use of artificial intelligence (AI) in cardiovascular disease diagnostics as well as future perspectives on cardiovascular devices. Full article
(This article belongs to the Special Issue Recent Advances in Wearable Biosensors for Human Health Monitoring)
Show Figures

Figure 1

25 pages, 14822 KiB  
Review
Tear-Based Ocular Wearable Biosensors for Human Health Monitoring
by Arunima Rajan, Jithin Vishnu and Balakrishnan Shankar
Biosensors 2024, 14(10), 483; https://doi.org/10.3390/bios14100483 - 8 Oct 2024
Viewed by 5574
Abstract
Wearable tear-based biosensors have garnered substantial interest for real time monitoring with an emphasis on personalized health care. These biosensors utilize major tear biomarkers such as proteins, lipids, metabolites, and electrolytes for the detection and recording of stable biological signals in a non-invasive [...] Read more.
Wearable tear-based biosensors have garnered substantial interest for real time monitoring with an emphasis on personalized health care. These biosensors utilize major tear biomarkers such as proteins, lipids, metabolites, and electrolytes for the detection and recording of stable biological signals in a non-invasive manner. The present comprehensive review delves deep into the tear composition along with potential biomarkers that can identify, monitor, and predict certain ocular diseases such as dry eye disease, conjunctivitis, eye-related infections, as well as diabetes mellitus. Recent technologies in tear-based wearable point-of-care medical devices, specifically the state-of-the-art and prospects of glucose, pH, lactate, protein, lipid, and electrolyte sensing from tear are discussed. Finally, the review addresses the existing challenges associated with the widespread application of tear-based sensors, which will pave the way for advanced scientific research and development of such non-invasive health monitoring devices. Full article
(This article belongs to the Special Issue Recent Advances in Wearable Biosensors for Human Health Monitoring)
Show Figures

Figure 1

22 pages, 1736 KiB  
Review
New Advances in Antenna Design toward Wearable Devices Based on Nanomaterials
by Chunge Wang, Ning Zhang, Chen Liu, Bangbang Ma, Keke Zhang, Rongzhi Li, Qianqian Wang and Sheng Zhang
Biosensors 2024, 14(1), 35; https://doi.org/10.3390/bios14010035 - 10 Jan 2024
Cited by 7 | Viewed by 5437
Abstract
Wearable antennas have recently garnered significant attention due to their attractive properties and potential for creating lightweight, compact, low-cost, and multifunctional wireless communication systems. With the breakthrough progress in nanomaterial research, the use of lightweight materials has paved the way for the widespread [...] Read more.
Wearable antennas have recently garnered significant attention due to their attractive properties and potential for creating lightweight, compact, low-cost, and multifunctional wireless communication systems. With the breakthrough progress in nanomaterial research, the use of lightweight materials has paved the way for the widespread application of wearable antennas. Compared with traditional metallic materials like copper, aluminum, and nickel, nanoscale entities including zero-dimensional (0-D) nanoparticles, one-dimensional (1-D) nanofibers or nanotubes, and two-dimensional (2-D) nanosheets exhibit superior physical, electrochemical, and performance characteristics. These properties significantly enhance the potential for constructing durable electronic composites. Furthermore, the antenna exhibits compact size and high deformation stability, accompanied by greater portability and wear resistance, owing to the high surface-to-volume ratio and flexibility of nanomaterials. This paper systematically discusses the latest advancements in wearable antennas based on 0-D, 1-D, and 2-D nanomaterials, providing a comprehensive overview of their development and future prospects in the field. Full article
(This article belongs to the Special Issue Recent Advances in Wearable Biosensors for Human Health Monitoring)
Show Figures

Figure 1

Other

Jump to: Research, Review

18 pages, 2000 KiB  
Systematic Review
Is Breath Best? A Systematic Review on the Accuracy and Utility of Nanotechnology Based Breath Analysis of Ketones in Type 1 Diabetes
by Kamal Marfatia, Jing Ni, Veronica Preda and Noushin Nasiri
Biosensors 2025, 15(1), 62; https://doi.org/10.3390/bios15010062 - 19 Jan 2025
Viewed by 709
Abstract
Timely ketone detection in patients with type 1 diabetes mellitus (T1DM) is critical for the effective management of diabetic ketoacidosis (DKA). This systematic review evaluates the current literature on breath-based analysis for ketone detection in T1DM, highlighting nanotechnology as a potential for a [...] Read more.
Timely ketone detection in patients with type 1 diabetes mellitus (T1DM) is critical for the effective management of diabetic ketoacidosis (DKA). This systematic review evaluates the current literature on breath-based analysis for ketone detection in T1DM, highlighting nanotechnology as a potential for a non-invasive alternative to blood-based ketone measurements. A comprehensive search across 5 databases identified 11 studies meeting inclusion criteria, showcasing various breath analysis techniques, such as semiconducting gas sensors, colorimetry, and nanoparticle-based chemo-resistive sensors. These studies report high sensitivity and correlation between breath acetone (BrAce) levels and blood ketones, with some demonstrating accuracies up to 94.7% and correlations reaching R2 values as high as 0.98. However, significant heterogeneity in methodologies and cut-off values limits device comparability and precludes meta-analysis. Despite these challenges, the findings indicate that BrAce monitoring could offer significant clinical benefits by enabling the earlier detection of ketone buildup, reducing DKA-related hospitalisations and healthcare costs. Standardising BrAce measurement techniques and sensitivity thresholds is essential to broaden clinical adoption. This review underscores the promise of nanotechnology-based breath analysis as a transformative tool for DKA management, with potential utility across varied ketotic conditions. Full article
(This article belongs to the Special Issue Recent Advances in Wearable Biosensors for Human Health Monitoring)
Show Figures

Figure 1

Back to TopTop