energies-logo

Journal Browser

Journal Browser

Fuel Cell-Based and Hybrid Power Generation Systems Modeling, Volume II

A special issue of Energies (ISSN 1996-1073). This special issue belongs to the section "D2: Electrochem: Batteries, Fuel Cells, Capacitors".

Deadline for manuscript submissions: 31 January 2025 | Viewed by 6916

Special Issue Editor


E-Mail Website
Guest Editor
Italian National Research Council (CNR), Department of Engineering, ICT and Technology for Energy and Transport (DIITET), Institute for Advanced Energy Technologies (ITAE), Via Salita S. Lucia Sopra Contesse 5, 98126 Messina, Italy
Interests: low temperature fuel cell stack and batteries; design methodologies; testing protocols and numerical simulations; system integration
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The Earth’s climate has changed throughout history. Seven cycles of glaciation have taken place in the last 650,000 years, but the current warming trend is of particular significance because it is extremely likely to be the result of using of fossil fuels since the mid-20th century.

In this context, near zero-emission systems based on fuel cell are a potential key factor for the green energy transition.

Therefore, accurate methodologies for fuel cell systems design are becoming increasingly important. Modeling is fundamental for fuel cell and hybrid power system design, where fuel cell is coupled with different power generation devices.

This Special Issue aims to gather research advances in the modeling of fuel-cell-based and hybrid power systems (PV/fuel cell, wind/fuel cell, battery/fuel, and so on). It focuses on the methodologies for mathematical modeling of fuel cell and hybrid systems, by illustrating different approaches to fuel cell technology (PEFC; SOFC, DMFC), system architecture, hybridization level, application (i.e., automotive, stationary, cogeneration, portable), and power management.

The issue will contribute to enrich the background in the field of fuel cell system engineering research, and I am honored to invite you to submit your original work to this Special Issue.

I look forward to receiving your contribution.

Dr. Orazio Barbera
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Energies is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • fuel cell power system modeling
  • hybrid power system modeling
  • power system
  • PEFC, SOFC, DMFC
  • automotive
  • portable
  • cogeneration
  • smart grid
  • smart cities
  • mathematical model

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Related Special Issue

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

15 pages, 1956 KiB  
Article
Investigating PEM Fuel Cells as an Alternative Power Source for Electric UAVs: Modeling, Optimization, and Performance Analysis
by Pavel Shuhayeu, Aliaksandr Martsinchyk, Katsiaryna Martsinchyk and Jaroslaw Milewski
Energies 2024, 17(17), 4427; https://doi.org/10.3390/en17174427 - 4 Sep 2024
Viewed by 965
Abstract
Unmanned aerial vehicles (UAVs) have become an integral part of modern life, serving both civilian and military applications across various sectors. However, existing power supply systems, such as batteries, often fail to provide stable, long-duration flights, limiting their applications. Previous studies have primarily [...] Read more.
Unmanned aerial vehicles (UAVs) have become an integral part of modern life, serving both civilian and military applications across various sectors. However, existing power supply systems, such as batteries, often fail to provide stable, long-duration flights, limiting their applications. Previous studies have primarily focused on battery-based power, which offers limited flight endurance due to lower energy densities and higher system mass. Proton exchange membrane (PEM) fuel cells present a promising alternative, providing high power and efficiency without noise, vibrations, or greenhouse gas emissions. Due to hydrogen’s high specific energy, which is substantially higher than that of combustion engines and battery-based alternatives, UAV operational time can be significantly extended. This paper investigates the potential of PEM fuel cells as an alternative power source for electric propulsion in UAVs. This study introduces an adaptive, fully functioning PEM fuel cell model, developed using a reduced-order modeling approach and optimized for UAV applications. This research demonstrates that PEM fuel cells can effectively double the flight endurance of UAVs compared to traditional battery systems, achieving energy densities of around 1700 Wh/kg versus 150–250 Wh/kg for batteries. Despite a slight increase in system mass, fuel cells enable significantly longer UAV operations. The scope of this study encompasses the comparison of battery-based and fuel cell-based propulsion systems in terms of power, mass, and flight endurance. This paper identifies the limitations and optimal applications for fuel cells, providing strong evidence for their use in UAVs where extended flight time and efficiency are critical. Full article
Show Figures

Figure 1

12 pages, 1691 KiB  
Article
Biogas-to-Power Systems Based on Solid Oxide Fuel Cells: Thermodynamic Analysis of Stack Integration Strategies
by Arianna Baldinelli, Umberto Desideri, Francesco Fantozzi and Giovanni Cinti
Energies 2024, 17(15), 3614; https://doi.org/10.3390/en17153614 - 23 Jul 2024
Viewed by 635
Abstract
Biogas presents a renewable fuel source with substantial potential for reducing carbon emissions in the energy sector. Exploring this potential in the farming sector is crucial for fostering the development of small-scale distributed biogas facilities, leveraging indigenous resources while enhancing energy efficiency. The [...] Read more.
Biogas presents a renewable fuel source with substantial potential for reducing carbon emissions in the energy sector. Exploring this potential in the farming sector is crucial for fostering the development of small-scale distributed biogas facilities, leveraging indigenous resources while enhancing energy efficiency. The establishment of distributed biogas plants bolsters the proportion of renewable energy in the energy matrix, necessitating efficient power generation technologies. Given their proximity to bio-waste production sites like farms and digesters, optimising combined heat and power generation systems is imperative for energy self-sufficiency. Small-scale biogas facilities demand specific power generation technologies capable of achieving notable efficiencies, ranging from 40% to 55%. This study focuses on employing Solid Oxide Fuel Cells (SOFCs) in biogas-to-power systems and investigates the theoretical operation of SOFCs with fuel mixtures resulting from different biogas lean upgrading pathways. Therefore, starting from ten mixtures including CH4, CO2, H2, H2O, N2, and O2, the study proposes a method to assess their impact on the electrochemical performance, degradation, and energy equilibrium of SOFC units. The model embeds thermodynamic equilibrium, the Nernst potential, and energy balance, enabling a comprehensive comparison across these three analytical domains. The findings underscore the unsuitability of dry biogas and dry biomethane due to the potential risk of carbon deposition. Moreover, mixtures incorporating CO2, with or without H2, present significant thermal balance challenges. Full article
Show Figures

Figure 1

21 pages, 4810 KiB  
Article
Assessing Open Circuit Voltage Losses in PEMFCs: A New Methodological Approach
by Francesco Mazzeo, Luca Di Napoli and Massimiliana Carello
Energies 2024, 17(11), 2785; https://doi.org/10.3390/en17112785 - 6 Jun 2024
Viewed by 1238
Abstract
Proton-exchange membrane (PEM) fuel cells are increasingly used in the automotive sector. A crucial point for estimating the performance of such systems is open-circuit voltage (OCV) losses, among which the most influential are mixed potential, hydrogen crossover, and internal short circuits. These losses [...] Read more.
Proton-exchange membrane (PEM) fuel cells are increasingly used in the automotive sector. A crucial point for estimating the performance of such systems is open-circuit voltage (OCV) losses, among which the most influential are mixed potential, hydrogen crossover, and internal short circuits. These losses are often overlooked in the modeling of such electrochemical cells, leading to an inaccurate estimation of the real voltage that is calculated starting from the Nernst Equation. An innovative method is presented to estimate the losses based on the division of the membrane into two domains: solid and aqueous. The influence of the macro-parameters (temperature, pressure, and RH) was analyzed for each phenomenon and was linked to the membrane water content. For low levels of PEM hydration, internal short circuits were of the same order of magnitude as hydrogen crossover. The OCV model accuracy was assessed on a commercial stack, used on a vehicle prototype competing in the Shell Eco-Marathon challenge. The data of interest were obtained through laboratory tests and subsequent disassembly of the stack. A PEM thickness of 127 μm was measured corresponding to Nafion 115. For further validation, the model results were compared with data in the literature. Full article
Show Figures

Figure 1

30 pages, 12144 KiB  
Article
Steady-State and Transient Operation of Solid Oxide Fuel Cell Systems with Anode Off-Gas Recirculation within a Highly Constrained Operating Range
by Jan Hollmann and Stephan Kabelac
Energies 2023, 16(23), 7827; https://doi.org/10.3390/en16237827 - 28 Nov 2023
Cited by 1 | Viewed by 1570
Abstract
Based on a prototype presented in a prior publication, this research investigates the operational characteristics of a methane-fueled solid oxide fuel cell (SOFC) system with anode off-gas recirculation (AOGR) for electrical energy supply on sea-going vessels. The proposed first-principle system model utilizes a [...] Read more.
Based on a prototype presented in a prior publication, this research investigates the operational characteristics of a methane-fueled solid oxide fuel cell (SOFC) system with anode off-gas recirculation (AOGR) for electrical energy supply on sea-going vessels. The proposed first-principle system model utilizes a spatially segmented SOFC stack and lumped balance of plant components validated on the component level to accurately depict the steady-state and transient operating behavior. Five operational limitations are chosen to highlight permissible operating conditions with regard to stack and pre-reformer degradation. Steady-state operating maps are presented, emphasizing efficient operating conditions at maximum stack fuel utilization and minimal permissible oxygen-to-carbon ratio. Exemplary transient load changes illustrate increasing system control complexity caused by gas flow delays due to the spatially distributed plant layout. Actuation strategies are presented and underline the need for a top-level model predictive system controller to assure a dynamic and efficient operation within the defined constraints. Full article
Show Figures

Figure 1

Review

Jump to: Research

24 pages, 2328 KiB  
Review
Review of AEM Electrolysis Research from the Perspective of Developing a Reliable Model
by Rafal Bernat, Jaroslaw Milewski, Olaf Dybinski, Aliaksandr Martsinchyk and Pavel Shuhayeu
Energies 2024, 17(20), 5030; https://doi.org/10.3390/en17205030 - 10 Oct 2024
Viewed by 1670
Abstract
This review thoroughly examines recent progress, challenges, and future prospects in the field of alkaline exchange membrane (AEM) electrolysis. This emerging technology holds promise for eco-friendly hydrogen production. It blends the benefits of traditional alkaline and proton-exchange membrane technologies, enhancing affordability and operational [...] Read more.
This review thoroughly examines recent progress, challenges, and future prospects in the field of alkaline exchange membrane (AEM) electrolysis. This emerging technology holds promise for eco-friendly hydrogen production. It blends the benefits of traditional alkaline and proton-exchange membrane technologies, enhancing affordability and operational efficiencies by utilizing non-precious metal catalysts and operating at reduced temperatures. This study discusses key developments in materials, electrode design, and performance enhancement techniques. It also highlights the strategic role of AEM electrolysis in meeting global energy transition targets, like achieving Net Zero Emissions by 2050. An in-depth exploration of the operational fundamentals of AEM water electrolysis is provided, noting the technology’s early stage development and the ongoing need for research in membrane-electrode assembly assessment, catalyst efficiency, and electrochemical ammonia production. Moreover, this review compiles results on different cell components, electrolyte types, and experimental approaches, providing insights into operational parameters critical to optimizing AEM performance. The conclusion emphasizes the necessity for continuous research and commercialization efforts to exploit AEM electrolysis’s full potential across diverse industries. Full article
Show Figures

Figure 1

Planned Papers

The below list represents only planned manuscripts. Some of these manuscripts have not been received by the Editorial Office yet. Papers submitted to MDPI journals are subject to peer-review.

Title: Determination of the optimal design of hybrid fuel cell/battery and waste heat recovery system for ship electrification system retrofit
Authors: Onur Yuksel; Eduardo Blanco Davis; Andrew Spiteri; David Hitchmough; Jin Wang; Nikolaos Tsoulakos; Maria Carmela Di Piazza; Marcello Pucci
Affiliation: School of Engineering, Liverpool Logistics Offshore and Marine Research Institute (LOOM), Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK Laskaridis Shipping Co. Ltd., Diligianni Th. 9, Kifissia / 145 61, Athens, Greece National Research Council (CNR), Institute of Marine Engineering (INM), via Ugo La Malfa 153, 90146 Palermo, Italy
Abstract: The research aims to assess the integration of different fuel cell (FC) options with battery and waste heat recovery systems through a mathematical modelling process to determine the most feasible retrofit option for the marine electricity generation plant. This paper distinguishes itself from existing literature by incorporating future cost projection scenarios involving variables such as carbon, fuel, and equipment prices. It assesses the environmental impact, including upstream emissions integrated with the Energy Efficiency Existing Ship Index (EEXI) and the Carbon Intensity Indicator (CII) calculation frameworks. Real-time data have been collected from a Kamsarmax vessel to build a hybrid marine power distribution plant model for simulating six system designs. A Multi-Criteria Decision Making (MCDM) methodology ranks the scenarios depending on environmental benefits, economic performance, and system space requirements. The findings demonstrate that the hybrid configurations, including solid oxide (SOFC) and proton exchange (PEMFC) FCs, achieve a deduction in equivalent CO2 of the plant up to 91.79% and decrease the EEXI and the average CII by 10.24% and 6.53%, respectively. Although SOFC-included configurations show slightly better economic feasibility and require less fuel capacity, the overall performance of PEMFC designs is ranked higher in MCDM analysis due to the higher power density.

Title: The influence of acetone on the kinetics of water electrolysis examined at polycrystalline Ni electrode in alkaline solution
Authors: Tomasz Mikołajczyk; Mateusz Kuczyński; Bogusław Pierożyński
Affiliation: Department of Chemistry, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn

Back to TopTop