Hybrid Intelligent Modeling Technology and Optimization Strategy for Industrial Energy Consumption Processes
A special issue of Energies (ISSN 1996-1073). This special issue belongs to the section "C: Energy Economics and Policy".
Deadline for manuscript submissions: 31 December 2024 | Viewed by 2863
Special Issue Editors
Interests: process control; intelligent control; intelligent optimization; computational intelligence; artificial intelligence
Special Issues, Collections and Topics in MDPI journals
Interests: power system stability analysis and control; time-delay system; robust theory and application
Special Issues, Collections and Topics in MDPI journals
Interests: underdrive system control; intelligent control
Special Issues, Collections and Topics in MDPI journals
2. Hubei Key Laboratory of Advanced Control and Intelligent Automation for Complex Systems, Wuhan 430074, China
3. Engineering Research Center of Intelligent Technology for Geo-Exploration, Ministry of Education, Wuhan 430074, China
Interests: artificial intelligence; robust control of time-delay systems
Special Issues, Collections and Topics in MDPI journals
Special Issue Information
Dear Colleagues,
In the era of Industry 4.0 and the ever-growing emphasis on sustainable practices, the efficient management of industrial energy consumption has become a critical concern. This Special Issue aims to explore innovative approaches that leverage data-driven intelligence to model and optimize energy use in industrial processes. The integration of advanced technologies such as machine learning, artificial intelligence and data analytics will play a pivotal role in achieving energy efficiency, reducing environmental impacts and ensuring the sustainability of industrial operations.
The main objective of this Special Issue is to promote research and innovation in the field of hybrid intelligent modeling and optimization for industrial energy consumption processes, especially in the fields of steel metallurgy, chemical engineering, geological drilling, marine exploration, textile, pharmaceutical, and other large-scale industries.
In this Special Issue, original research articles and reviews are welcome. Research areas may include (but are not limited to) the following:
- Hybrid Intelligent Modeling Techniques:
Exploration of advanced machine learning algorithms for modeling energy consumption patterns.
Integration of sensor data and IoT technologies for real-time data collection and analysis.
Development of predictive models for forecasting energy demand and consumption trends.
- Intelligent Optimization Strategies:
Application of optimization algorithms to enhance energy efficiency in industrial processes.
Utilization of decision support systems for intelligent and adaptive energy management.
Integration of intelligent control systems for the dynamic optimization of energy consumption.
- Case Studies and Applications:
Real-world case studies demonstrating the successful implementation of data-driven intelligent models in industrial set-tings.
Application of intelligent optimization strategies in diverse industrial sectors to showcase versatility and effectiveness.
Assessment of economic, environmental, and operational benefits achieved through optimized energy consumption.
- Interdisciplinary Approaches:
Cross-disciplinary studies that explore the synergy between data-driven intelligence and renewable energy sources.
Prof. Dr. Sheng Du
Prof. Dr. Li Jin
Dr. Zixin Huang
Prof. Dr. Xiongbo Wan
Guest Editors
Manuscript Submission Information
Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.
Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Energies is an international peer-reviewed open access semimonthly journal published by MDPI.
Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.
Keywords
- data-driven modeling
- industrial energy consumption processes
- machine learning
- optimization
- hybrid intelligent
Benefits of Publishing in a Special Issue
- Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
- Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
- Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
- External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
- e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.
Further information on MDPI's Special Issue polices can be found here.