Storage and Shelf-Life Assessment of Food Products

A special issue of Foods (ISSN 2304-8158). This special issue belongs to the section "Food Packaging and Preservation".

Deadline for manuscript submissions: 8 May 2025 | Viewed by 6454

Special Issue Editor


E-Mail Website
Guest Editor
1. Department of Food Engineering, Institute of Engineering, Universidade do Algarve, Campus da Penha, 8005-139 Faro, Portugal
2. MED-Mediterranean Institute for Agriculture, Environment and Development and CHANGE-Global Change and Sustainability Institute, Faculty of Sciences and Technology, Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
Interests: food packaging; food processing; emerging technologies; biomaterials; sustainability; mathematical modeling; shelf-life; food preservation; food waste recovery
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

This Special Issue of the journal Foods is focused on “Storage and Shelf-Life Assessment of Food Products”. The assessment of food product storage and shelf life is a critical aspect of ensuring food safety, quality, and sustainability in the food industry. This entails a methodical assessment of numerous parameters that affect the food-storage circumstances and the time frame for which the desired characteristics of a food product can be preserved. In today's food industry, there is a growing focus on increasing shelf life while reducing the use of artificial additives and preservatives. Innovations in packaging technology, processing techniques, and natural preservatives have resulted from this focus. Therefore, this Special Issue is open to receiving research results and/or quality reviews focused on new challenges and new technological approaches related to the storage and shelf life of food products. 

Dr. Rui M.S. Cruz
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Foods is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • food storage
  • shelf-life assessment
  • food safety
  • food quality
  • food sustainability
  • food industry
  • storage parameters
  • preservation techniques
  • packaging innovations

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (6 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

30 pages, 7780 KiB  
Article
Chemical Composition, Biological Activity, and Application of Rosa damascena Essential Oil as an Antimicrobial Agent in Minimally Processed Eggplant Inoculated with Salmonella enterica
by Andrea Verešová, Milena D. Vukic, Nenad L. Vukovic, Margarita Terentjeva, Zhaojun Ban, Li Li, Alessandro Bianchi, Ján Kollár, Rania Ben Saad, Anis Ben Hsouna, Joel Horacio Elizondo-Luévano, Maciej Ireneusz Kluz, Natália Čmiková, Stefania Garzoli and Miroslava Kačániová
Foods 2024, 13(22), 3579; https://doi.org/10.3390/foods13223579 - 9 Nov 2024
Viewed by 791
Abstract
Rosa damascena is mostly grown for its usage in the food, medical, and perfume industries, while it is also used as an attractive plant in parks, gardens, and homes. The use of R. damascena essential oil may yield new results in relation to [...] Read more.
Rosa damascena is mostly grown for its usage in the food, medical, and perfume industries, while it is also used as an attractive plant in parks, gardens, and homes. The use of R. damascena essential oil may yield new results in relation to the antimicrobial activity of essential oils and their use mainly in extending the shelf life of foods. This study investigates the chemical composition and antimicrobial properties of Rosa damascena essential oil (RDEO) using gas chromatography–mass spectrometry (GC-MS) and various bioassays to explore its potential applications in food preservation and microorganism growth control. The GC-MS analysis revealed that RDEO is predominantly composed of phenylethyl alcohol (70%), which is known for its antimicrobial and aromatic properties. Additionally, other significant constituents were identified, including nerol, citronellol, and geraniol, which may contribute to the EOs overall bioactivity. The antimicrobial activity was assessed through the minimal inhibition concentration against five Candida yeast strains, four Gram-positive, and four Gram-negative bacteria, including biofilm-forming Salmonella enterica. Determination of minimum inhibitory concentrations (MIC) revealed the strongest effects of RDEO’s on Gram-negative species, with MIC50 values as low as 0.250 mg/mL for S. enterica. Moreover, an in situ assessment utilizing fruit and vegetable models demonstrated that the vapor phase of RDEO significantly suppressed microbial growth, with the most substantial reductions observed on kiwi and banana models. As a result of our study, the antimicrobial effect of RDEO on the microbiota of sous vide processed eggplant was detected, as well as an inhibitory effect on S. enterica during storage. The insecticidal activity against Megabruchidius dorsalis Fahreus, 1839, was also studied in this work and the best insecticidal activity was found at the highest concentrations. These results suggest that RDEO has the potential to serve as a natural antimicrobial agent in food preservation and safety applications, providing an alternative to synthetic preservatives. Full article
(This article belongs to the Special Issue Storage and Shelf-Life Assessment of Food Products)
Show Figures

Figure 1

19 pages, 7706 KiB  
Article
Locust Bean Gum/κ-Carrageenan Film Containing Blueberry or Beetroot Extracts as Intelligent Films to Monitoring Hake (Merluccius merluccius) Freshness
by Carla S. V. Faria, Jorge M. Vieira, António A. Vicente and Joana T. Martins
Foods 2024, 13(19), 3088; https://doi.org/10.3390/foods13193088 - 27 Sep 2024
Viewed by 776
Abstract
The main goal of this work was to develop bio-based and ecofriendly intelligent films as freshness indicators to monitor European hake (Merluccius merluccius) quality during storage by using a visual, non-destructive, and real-time technique. Locust bean gum (LBG)/κ-carrageenan (Car) films incorporating [...] Read more.
The main goal of this work was to develop bio-based and ecofriendly intelligent films as freshness indicators to monitor European hake (Merluccius merluccius) quality during storage by using a visual, non-destructive, and real-time technique. Locust bean gum (LBG)/κ-carrageenan (Car) films incorporating blueberry extract (BLE) or beetroot extract (BEE) were developed and their effectiveness to detect hake deterioration during 7 days of storage at 4 °C was evaluated. A visible color response from pink to blue was observed on the BLE films at the end of hake storage, which correlated with the hake deterioration profile, namely an increase in pH values (from 6.60 ± 0.04 to 8.02 ± 0.03), total viable count (TVC, from 4.61 ± 0.36 to 8.61 ± 0.21 log CFU/g), and total volatile basic nitrogen content (TVB-N, from 10.21 ± 1.97 to 66.78 ± 4.81 mg/100 g) beyond the spoilage threshold. The results of this study are very promising, since it was possible to develop a new effective intelligent bio-based responsive indicator film incorporating natural dye BLE, which has the potential to contribute to food waste reduction and improve food safety by detecting the hake freshness status. Full article
(This article belongs to the Special Issue Storage and Shelf-Life Assessment of Food Products)
Show Figures

Figure 1

14 pages, 495 KiB  
Article
Postharvest Quality of Arugula (Eruca sativa) Microgreens Determined by Microbiological, Physico-Chemical, and Sensory Parameters
by Marina R. Komeroski, Thais Beninca, Keyla A. Portal, Patrícia S. Malheiros, Tâmmila V. Klug, Simone H. Flores and Alessandro O. Rios
Foods 2024, 13(19), 3020; https://doi.org/10.3390/foods13193020 - 24 Sep 2024
Viewed by 971
Abstract
(1) Background: Cultivating microgreens is emerging as an excellent market opportunity. Their easy, short, and sustainable production methods are the main reasons they are approved by growers. However, a feature that still prevents its further spread is the microbiological risk and their rapid [...] Read more.
(1) Background: Cultivating microgreens is emerging as an excellent market opportunity. Their easy, short, and sustainable production methods are the main reasons they are approved by growers. However, a feature that still prevents its further spread is the microbiological risk and their rapid senescence. The present study was conducted to evaluate the post-harvest storage and shelf life of arugula microgreens in different packaging through microbiological, physico-chemical, and sensory parameters; (2) Methods: Plants were stored at 5 °C in open air, vacuum sealed, and under modified atmosphere bags and tested at 0, 3, 5, 7, and 10 days; (3) Results: Microgreens stored in all packaging were safe for consumption within ten days. Regarding physical and chemical parameters, open packaging proved to be promising, with less weight loss and slower chlorophyll degradation. The sensory analysis demonstrated that the microgreens stored in the vacuum-sealed packaging showed a decrease in quality from the fifth day onwards for all attributes. However, the MAP presented good scores with a better visual quality, similar to the fresh microgreens. Full article
(This article belongs to the Special Issue Storage and Shelf-Life Assessment of Food Products)
Show Figures

Figure 1

22 pages, 3522 KiB  
Article
Osmodehydrofreezing of Tomatoes: Optimization of Osmotic Dehydration and Shelf Life Modeling
by Efimia Dermesonlouoglou, Lefteris Pittas, Petros Taoukis and Maria Giannakourou
Foods 2024, 13(17), 2689; https://doi.org/10.3390/foods13172689 - 26 Aug 2024
Viewed by 663
Abstract
The objective was to review, using an integrated approach, all parameters related to osmotic dehydration, freezing, and frozen storage when assessing the advantages of the osmodehydrofreezing-ODF process. Peeled cherry tomatoes were treated at (T) 25, 35, and 45 °C (t) up to 180 [...] Read more.
The objective was to review, using an integrated approach, all parameters related to osmotic dehydration, freezing, and frozen storage when assessing the advantages of the osmodehydrofreezing-ODF process. Peeled cherry tomatoes were treated at (T) 25, 35, and 45 °C (t) up to 180 min in glycerol-based OD-solution (50, 60, 70% w/w). OD was studied and optimized by applying the Response Surface Methodology, combined with selected desirability criteria to define the optimum process parameters. Water loss-WL, solid gain-SG, water activity reduction-aw, texture and color changes were monitored during the process. Untreated and OD-treated at optimal OD conditions (C = 61.5%, T = 36 °C; t = 72 min) samples were frozen and stored at isothermal (T, −5, −8, −14, −23 °C) and non-isothermal temperature conditions (Teff, −7.3 °C). OD samples presented acceptable color, increased firmness, low drip loss and high vitamin C/lycopene retention during frozen storage. OD increased the shelf life of frozen cherry tomato (up to 3.5 times based on sensory quality loss). The kinetic models obtained for vitamin and lycopene degradation and sensory quality loss were validated at non-isothermal conditions. Full article
(This article belongs to the Special Issue Storage and Shelf-Life Assessment of Food Products)
Show Figures

Figure 1

15 pages, 2735 KiB  
Article
Study on Quality Changes of Kelp Gel Edible Granules during Storage
by Tingru Chen, Ying Li, Yin Wang, Jicheng Chen, Lin’ao Fan and Zhiyu Liu
Foods 2024, 13(14), 2267; https://doi.org/10.3390/foods13142267 - 18 Jul 2024
Viewed by 908
Abstract
The kelp gel edible granules developed utilizing the gel properties of alginate are prone to quality deterioration if improperly stored during the storage process. This study comprehensively investigated the quality changes of kelp gel edible granules stored at 4 °C and 25 °C [...] Read more.
The kelp gel edible granules developed utilizing the gel properties of alginate are prone to quality deterioration if improperly stored during the storage process. This study comprehensively investigated the quality changes of kelp gel edible granules stored at 4 °C and 25 °C by evaluating indicators such as total bacterial count, coliform bacteria, pH, relaxation time, color difference, appearance, texture characteristics, gel strength, and sensory scoring. The results showed that during the storage at 4 °C, the total bacterial count remained within the national standard range, the hardness and chewiness increased, the gel strength first increased and then decreased, the partial exudation of the bound water in the product occurred, and the sensory score slightly decreased, with an overall minor change in quality. During the storage at 25 °C, significant quality changes were observed, with the total bacterial count exceeding the national standard on the 20th day; additionally, the hardness, chewiness, and gel strength all initially increased and then decreased, both the bound water and the restrained water in the product exuded, the moisture stability decreased, and the sensory score significantly decreased between 16 to 20 days. The spoilage of the product was characterized by a significant water loss, reduction in volume, color change from bright green to dark yellow-brown, and a distinct smell of decaying algae. No coliform bacteria was detected in all products during the storage period. In summary, the shelf life endpoint of the product stored at 25 °C is 16 days, and the shelf life of the product stored at 4 °C is greater than 20 days. Storage at 4 °C can better maintain product quality, extend the shelf life, and effectively maintain the overall color of the product. Full article
(This article belongs to the Special Issue Storage and Shelf-Life Assessment of Food Products)
Show Figures

Figure 1

Review

Jump to: Research

33 pages, 669 KiB  
Review
Development and Application of Mucilage and Bioactive Compounds from Cactaceae to Formulate Novel and Sustainable Edible Films and Coatings to Preserve Fruits and Vegetables—A Review
by Viviane Priscila Barros de Medeiros, Kataryne Árabe Rimá de Oliveira, Talita Silveira Queiroga and Evandro Leite de Souza
Foods 2024, 13(22), 3613; https://doi.org/10.3390/foods13223613 - 13 Nov 2024
Viewed by 778
Abstract
The accelerated ripening and senescence of fruits and vegetables is characterized by various biochemical changes that hinder the maintenance of their postharvest quality. In this context, developing edible films and coatings formulated with natural and biodegradable materials emerges as a sustainable strategy for [...] Read more.
The accelerated ripening and senescence of fruits and vegetables is characterized by various biochemical changes that hinder the maintenance of their postharvest quality. In this context, developing edible films and coatings formulated with natural and biodegradable materials emerges as a sustainable strategy for preserving the quality parameters of these products in replacement of conventional petroleum-based packaging. Recently, plant-based polymers, including mucilage from different cactus species and/or their bioactive compounds, have been investigated to develop edible films and coatings. As the available literature indicates, the Opuntia genus stands out as the most used for mucilage extraction, with the cladode being the most exploited part of the plant. Conventional extraction methods are widely employed to obtain mucilages, which are applied to fruits and vegetables after being combined with plasticizing and cross-linking agents. In general, these films and coatings have proven effective in prolonging the shelf life and maintaining the nutritional, physical, and sensory quality of fruits and vegetables. Given their preservation potential, combining cactus mucilages with bioactive compounds, probiotics, and prebiotics represents an emerging trend in developing functional films and coatings. However, some limitations have been identified, such as the underutilization of different species and parts of the plant, the lack of standardization in extraction methods, and the absence of studies on the effects of the physicochemical properties of mucilages in the formulation and characteristics of films and coatings. Therefore, overcoming these limitations is essential for developing edible films and coatings with enhanced techno-functional properties and greater commercial viability. Full article
(This article belongs to the Special Issue Storage and Shelf-Life Assessment of Food Products)
Show Figures

Figure 1

Back to TopTop