ijms-logo

Journal Browser

Journal Browser

Autophagy in Health, Aging and Disease, 4th Edition

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Biochemistry".

Deadline for manuscript submissions: closed (31 July 2024) | Viewed by 9906

Special Issue Editors


E-Mail Website
Guest Editor

E-Mail Website
Guest Editor
Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L'Aquila, Italy
Interests: retina; neurodegeneration; neuroprotection; retinal pigment epithelium; retinal function; age related macular degeneration; nanoparticles
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Autophagy is an evolutionarily conserved intracellular catabolic process. It has an essential role in cellular homeostasis, facilitating lysosomal degradation and the recycling of harmful and damaged cytoplasmic components. Autophagy was first discovered as a survival mechanism in yeasts subjected to nutrient deprivation, and since then, studies in several different organisms have established its critical roles in a variety of biological processes ranging from development to aging. Interestingly, autophagy is often found perturbed in age-related disorders such as cancer, diabetes, neurodegenerative diseases, and sarcopenia. Accordingly, autophagy is important for the maintenance of organismal health, which prominently declines with aging.

This Special Issue of the International Journal of Molecular Sciences, “Autophagy in Health, Aging and Disease 4.0”, will include a selection of original articles and reviews aimed at expanding our understanding of this multifaceted process and providing support for further investigations on the role of autophagy in cellular homeostasis, aging, and disease. In particular, it will contribute to better explaining the complex machinery of autophagy and lead to further investigations on physiological and pathological fields in which the study of this process is still in its infancy. Moreover, studies on the role of autophagy in age-related processes to open new avenues for the development of novel potential anti-aging therapeutic approaches are also welcome.

Dr. Mirko Pesce
Dr. Antonia Patruno
Dr. Maccarone Rita
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • autophagy
  • aging
  • aging diseases
  • cell survival
  • inflammation
  • oxidative stress
  • signaling pathway
  • target identification

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (7 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

18 pages, 9973 KiB  
Article
New Toolset of Reporters Reveals That Glycogen Granules Are Neutral Substrates of Bulk Autophagy in Komagataella phaffii
by Nimna V. Wijewantha, Praneetha Battu, Kuangcai Chen, Ravinder Kumar and Taras Y. Nazarko
Int. J. Mol. Sci. 2024, 25(21), 11772; https://doi.org/10.3390/ijms252111772 - 1 Nov 2024
Viewed by 1209
Abstract
Glycogen, a branched polysaccharide organized into glycogen granules (GGs), is delivered from the cytoplasm to the lysosomes of hepatocytes by STBD1-driven selective autophagy (glycophagy). Recently, we developed Komagataella phaffii yeast as a simple model of GG autophagy and found that it proceeds non-selectively [...] Read more.
Glycogen, a branched polysaccharide organized into glycogen granules (GGs), is delivered from the cytoplasm to the lysosomes of hepatocytes by STBD1-driven selective autophagy (glycophagy). Recently, we developed Komagataella phaffii yeast as a simple model of GG autophagy and found that it proceeds non-selectively under nitrogen starvation conditions. However, another group, using Saccharomyces cerevisiae as a model, found that glycogen is a non-preferred cargo of nitrogen starvation-induced bulk autophagy. To clarify cargo characteristics of K. phaffii GGs, we used the same glycogen synthase-based reporter (Gsy1-GFP) of GG autophagy in K. phaffii as was used in S. cerevisiae. The K. phaffii Gsy1-GFP marked the GGs and reported on their autophagic degradation during nitrogen starvation, as expected. However, unlike in S. cerevisiae, glycogen synthase-marked GGs were delivered to the vacuole and degraded there with the same efficiency as a cytosolic glycogen synthase in glycogen-deficient cells, suggesting that glycogen is a neutral cargo of bulk autophagy in K. phaffii. We verified our findings with a new set of reporters based on the glycogen-binding CBM20 domain of human STBD1. The GFP-CBM20 and mCherry-CBM20 fusion proteins tagged GGs, reported about the autophagy of GGs, and confirmed that GGs in K. phaffii are neither preferred nor non-preferred substrates of bulk autophagy. They are its neutral substrates. Full article
(This article belongs to the Special Issue Autophagy in Health, Aging and Disease, 4th Edition)
Show Figures

Figure 1

26 pages, 11651 KiB  
Article
The GBA1 K198E Variant Is Associated with Suppression of Glucocerebrosidase Activity, Autophagy Impairment, Oxidative Stress, Mitochondrial Damage, and Apoptosis in Skin Fibroblasts
by Laura Patricia Perez-Abshana, Miguel Mendivil-Perez, Marlene Jimenez-Del-Rio and Carlos Velez-Pardo
Int. J. Mol. Sci. 2024, 25(17), 9220; https://doi.org/10.3390/ijms25179220 - 25 Aug 2024
Viewed by 1256
Abstract
Parkinson’s disease (PD) is a multifactorial, chronic, and progressive neurodegenerative disorder inducing movement alterations as a result of the loss of dopaminergic (DAergic) neurons of the pars compacta in the substantia nigra and protein aggregates of alpha synuclein (α-Syn). Although its etiopathology agent [...] Read more.
Parkinson’s disease (PD) is a multifactorial, chronic, and progressive neurodegenerative disorder inducing movement alterations as a result of the loss of dopaminergic (DAergic) neurons of the pars compacta in the substantia nigra and protein aggregates of alpha synuclein (α-Syn). Although its etiopathology agent has not yet been clearly established, environmental and genetic factors have been suggested as the major contributors to the disease. Mutations in the glucosidase beta acid 1 (GBA1) gene, which encodes the lysosomal glucosylceramidase (GCase) enzyme, are one of the major genetic risks for PD. We found that the GBA1 K198E fibroblasts but not WT fibroblasts showed reduced catalytic activity of heterozygous mutant GCase by −70% but its expression levels increased by 3.68-fold; increased the acidification of autophagy vacuoles (e.g., autophagosomes, lysosomes, and autolysosomes) by +1600%; augmented the expression of autophagosome protein Beclin-1 (+133%) and LC3-II (+750%), and lysosomal–autophagosome fusion protein LAMP-2 (+107%); increased the accumulation of lysosomes (+400%); decreased the mitochondrial membrane potential (∆Ψm) by −19% but the expression of Parkin protein remained unperturbed; increased the oxidized DJ-1Cys106-SOH by +900%, as evidence of oxidative stress; increased phosphorylated LRRK2 at Ser935 (+1050%) along with phosphorylated α-synuclein (α-Syn) at pathological residue Ser129 (+1200%); increased the executer apoptotic protein caspase 3 (cleaved caspase 3) by +733%. Although exposure of WT fibroblasts to environmental neutoxin rotenone (ROT, 1 μM) exacerbated the autophagy–lysosomal system, oxidative stress, and apoptosis markers, ROT moderately increased those markers in GBA1 K198E fibroblasts. We concluded that the K198E mutation endogenously primes skin fibroblasts toward autophagy dysfunction, OS, and apoptosis. Our findings suggest that the GBA1 K198E fibroblasts are biochemically and molecularly equivalent to the response of WT GBA1 fibroblasts exposed to ROT. Full article
(This article belongs to the Special Issue Autophagy in Health, Aging and Disease, 4th Edition)
Show Figures

Figure 1

17 pages, 3555 KiB  
Article
Bafilomycin 1A Affects p62/SQSTM1 Autophagy Marker Protein Level and Autophagosome Puncta Formation Oppositely under Various Inflammatory Conditions in Cultured Rat Microglial Cells
by István Pesti, Gábor Barczánfalvi, Karolina Dulka, Diana Kata, Eszter Farkas and Karoly Gulya
Int. J. Mol. Sci. 2024, 25(15), 8265; https://doi.org/10.3390/ijms25158265 - 29 Jul 2024
Viewed by 908
Abstract
Regulation of autophagy through the 62 kDa ubiquitin-binding protein/autophagosome cargo protein sequestosome 1 (p62/SQSTM1), whose level is generally inversely proportional to autophagy, is crucial in microglial functions. Since autophagy is involved in inflammatory mechanisms, we investigated the actions of pro-inflammatory lipopolysaccharide (LPS) and [...] Read more.
Regulation of autophagy through the 62 kDa ubiquitin-binding protein/autophagosome cargo protein sequestosome 1 (p62/SQSTM1), whose level is generally inversely proportional to autophagy, is crucial in microglial functions. Since autophagy is involved in inflammatory mechanisms, we investigated the actions of pro-inflammatory lipopolysaccharide (LPS) and anti-inflammatory rosuvastatin (RST) in secondary microglial cultures with or without bafilomycin A1 (BAF) pretreatment, an antibiotic that potently inhibits autophagosome fusion with lysosomes. The levels of the microglia marker protein Iba1 and the autophagosome marker protein p62/SQSTM1 were quantified by Western blots, while the number of p62/SQSTM1 immunoreactive puncta was quantitatively analyzed using fluorescent immunocytochemistry. BAF pretreatment hampered microglial survival and decreased Iba1 protein level under all culturing conditions. Cytoplasmic p62/SQSTM1 level was increased in cultures treated with LPS+RST but reversed markedly when BAF+LPS+RST were applied together. Furthermore, the number of p62/SQSTM1 immunoreactive autophagosome puncta was significantly reduced when RST was used but increased significantly in BAF+RST-treated cultures, indicating a modulation of autophagic flux through reduction in p62/SQSTM1 degradation. These findings collectively indicate that the cytoplasmic level of p62/SQSTM1 protein and autophagocytotic flux are differentially regulated, regardless of pro- or anti-inflammatory state, and provide context for understanding the role of autophagy in microglial function in various inflammatory settings. Full article
(This article belongs to the Special Issue Autophagy in Health, Aging and Disease, 4th Edition)
Show Figures

Figure 1

16 pages, 6873 KiB  
Article
Cisplatin Nephrotoxicity Is Critically Mediated by the Availability of BECLIN1
by Tillmann Bork, Camila Hernando-Erhard, Wei Liang, Zhejia Tian, Kosuke Yamahara and Tobias B. Huber
Int. J. Mol. Sci. 2024, 25(5), 2560; https://doi.org/10.3390/ijms25052560 - 22 Feb 2024
Cited by 1 | Viewed by 1633
Abstract
Cisplatin nephrotoxicity is a critical limitation of solid cancer treatment. Until now, the complex interplay of various pathophysiological mechanisms leading to proximal tubular cell apoptosis after cisplatin exposure has not been fully understood. In our study, we assessed the role of the autophagy-related [...] Read more.
Cisplatin nephrotoxicity is a critical limitation of solid cancer treatment. Until now, the complex interplay of various pathophysiological mechanisms leading to proximal tubular cell apoptosis after cisplatin exposure has not been fully understood. In our study, we assessed the role of the autophagy-related protein BECLIN1 (ATG6) in cisplatin-induced acute renal injury (AKI)—a candidate protein involved in autophagy and with putative impact on apoptosis by harboring a B-cell lymphoma 2 (BCL2) interaction site of unknown significance. By using mice with heterozygous deletion of Becn1, we demonstrate that reduced intracellular content of BECLIN1 does not impact renal function or autophagy within 12 months. However, these mice were significantly sensitized towards cisplatin-induced AKI, and by using Becn1+/−;Sglt2-Cre;Tomato/EGFP mice with subsequent primary cell analysis, we confirmed that nephrotoxicity depends on proximal tubular BECLIN1 content. Mechanistically, BECLIN1 did not impact autophagy or primarily the apoptotic pathway. In fact, a lack of BECLIN1 sensitized mice towards cisplatin-induced ER stress. Accordingly, the ER stress inhibitor tauroursodeoxycholic acid (TUDCA) blunted cisplatin-induced cell death in Becn1 heterozygosity. In conclusion, our data first highlight a novel role of BECLIN1 in protecting against cellular ER stress independent from autophagy. These novel findings open new therapeutic avenues to intervene in this important intracellular stress response pathway with a promising impact on future AKI management. Full article
(This article belongs to the Special Issue Autophagy in Health, Aging and Disease, 4th Edition)
Show Figures

Figure 1

13 pages, 2497 KiB  
Article
THSD1 Suppresses Autophagy-Mediated Focal Adhesion Turnover by Modulating the FAK-Beclin 1 Pathway
by Zhen Xu, Jiayi Lu, Song Gao and Yan-Ning Rui
Int. J. Mol. Sci. 2024, 25(4), 2139; https://doi.org/10.3390/ijms25042139 - 10 Feb 2024
Viewed by 1270
Abstract
Focal adhesions (FAs) play a crucial role in cell spreading and adhesion, and their autophagic degradation is an emerging area of interest. This study investigates the role of Thrombospondin Type 1 Domain-Containing Protein 1 (THSD1) in regulating autophagy and FA stability in brain [...] Read more.
Focal adhesions (FAs) play a crucial role in cell spreading and adhesion, and their autophagic degradation is an emerging area of interest. This study investigates the role of Thrombospondin Type 1 Domain-Containing Protein 1 (THSD1) in regulating autophagy and FA stability in brain endothelial cells, shedding light on its potential implications for cerebrovascular diseases. Our research reveals a physical interaction between THSD1 and FAs. Depletion of THSD1 significantly reduces FA numbers, impairing cell spreading and adhesion. The loss of THSD1 also induces autophagy independently of changes in mTOR and AMPK activation, implying that THSD1 primarily governs FA dynamics rather than serving as a global regulator of nutrient and energy status. Mechanistically, THSD1 negatively regulates Beclin 1, a central autophagy regulator, at FAs through interactions with focal adhesion kinase (FAK). THSD1 inactivation diminishes FAK activity and relieves its inhibitory phosphorylation on Beclin 1. This, in turn, promotes the complex formation between Beclin 1 and ATG14, a critical event for the activation of the autophagy cascade. In summary, our findings identify THSD1 as a novel regulator of autophagy that degrades FAs in brain endothelial cells. This underscores the distinctive nature of THSD1-mediated, cargo-directed autophagy and its potential relevance to vascular diseases due to the loss of endothelial FAs. Investigating the underlying mechanisms of THSD1-mediated pathways holds promise for discovering novel therapeutic targets in vascular diseases. Full article
(This article belongs to the Special Issue Autophagy in Health, Aging and Disease, 4th Edition)
Show Figures

Figure 1

17 pages, 10681 KiB  
Article
Altered Expression of Autophagy Biomarkers in Hippocampal Neurons in a Multiple Sclerosis Animal Model
by Sabrina Ceccariglia, Diego Sibilia, Ornella Parolini, Fabrizio Michetti and Gabriele Di Sante
Int. J. Mol. Sci. 2023, 24(17), 13225; https://doi.org/10.3390/ijms241713225 - 25 Aug 2023
Cited by 4 | Viewed by 1789
Abstract
Multiple Sclerosis (MS) is a chronic inflammatory disease that affects the brain and spinal cord. Inflammation, demyelination, synaptic alteration, and neuronal loss are hallmarks detectable in MS. Experimental autoimmune encephalomyelitis (EAE) is an animal model widely used to study pathogenic aspects of MS. [...] Read more.
Multiple Sclerosis (MS) is a chronic inflammatory disease that affects the brain and spinal cord. Inflammation, demyelination, synaptic alteration, and neuronal loss are hallmarks detectable in MS. Experimental autoimmune encephalomyelitis (EAE) is an animal model widely used to study pathogenic aspects of MS. Autophagy is a process that maintains cell homeostasis by removing abnormal organelles and damaged proteins and is involved both in protective and detrimental effects that have been seen in a variety of human diseases, such as cancer, neurodegenerative diseases, inflammation, and metabolic disorders. This study is aimed at investigating the autophagy signaling pathway through the analysis of the main autophagic proteins including Beclin-1, microtubule-associated protein light chain (LC3, autophagosome marker), and p62 also called sequestosome1 (SQSTM1, substrate of autophagy-mediated degradation) in the hippocampus of EAE-affected mice. The expression levels of Beclin-1, LC3, and p62 and the Akt/mTOR pathway were examined by Western blot experiments. In EAE mice, compared to control animals, significant reductions of expression levels were detectable for Beclin-1 and LC3 II (indicating the reduction of autophagosomes), and p62 (suggesting that autophagic flux increased). In parallel, molecular analysis detected the deregulation of the Akt/mTOR signaling. Immunofluorescence double-labeling images showed co-localization of NeuN (neuronal nuclear marker) and Beclin-1, LC3, and p62 throughout the CA1 and CA3 hippocampal subfields. Taken together, these data demonstrate that activation of autophagy occurs in the neurons of the hippocampus in this experimental model. Full article
(This article belongs to the Special Issue Autophagy in Health, Aging and Disease, 4th Edition)
Show Figures

Figure 1

Review

Jump to: Research

19 pages, 8519 KiB  
Review
The Knowns and Unknowns of Membrane Features and Changes During Autophagosome–Lysosome/Vacuole Fusion
by Jinmeng Liu, Hanyu Ma, Zulin Wu, Yanling Ji and Yongheng Liang
Int. J. Mol. Sci. 2024, 25(20), 11160; https://doi.org/10.3390/ijms252011160 - 17 Oct 2024
Viewed by 684
Abstract
Autophagosome (AP)–lysosome/vacuole fusion is one of the hallmarks of macroautophagy. Membrane features and changes during the fusion process have mostly been described using two-dimensional (2D) models with one AP and one lysosome/vacuole. The outer membrane (OM) of a closed mature AP has been [...] Read more.
Autophagosome (AP)–lysosome/vacuole fusion is one of the hallmarks of macroautophagy. Membrane features and changes during the fusion process have mostly been described using two-dimensional (2D) models with one AP and one lysosome/vacuole. The outer membrane (OM) of a closed mature AP has been suggested to fuse with the lysosomal/vacuolar membrane. However, the descriptions in some studies for fusion-related issues are questionable or incomplete. The correct membrane features of APs and lysosomes/vacuoles are the prerequisite for describing the fusion process. We searched the literature for representative membrane features of AP-related structures based on electron microscopy (EM) graphs of both animal and yeast cells and re-evaluated the findings. We also summarized the main 2D models describing the membrane changes during AP–lysosome/vacuole fusion in the literature. We used three-dimensional (3D) models to characterize the known and unknown membrane changes during and after fusion of the most plausible 2D models. The actual situation is more complex, since multiple lysosomes may fuse with the same AP in mammalian cells, multiple APs may fuse with the same vacuole in yeast cells, and in some mutant cells, phagophores (unclosed APs) fuse with lysosomes/vacuoles. This review discusses the membrane features and highly dynamic changes during AP (phagophore)–lysosome/vacuole fusion. The resulting information will improve the understanding of AP–lysosome/vacuole fusion and direct the future research on AP–lysosome/vacuole fusion and regeneration. Full article
(This article belongs to the Special Issue Autophagy in Health, Aging and Disease, 4th Edition)
Show Figures

Figure 1

Back to TopTop