ijms-logo

Journal Browser

Journal Browser

The Role of Bioactive Compounds in Human Health and Disease: 2nd Edition

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Pharmacology".

Deadline for manuscript submissions: closed (30 November 2024) | Viewed by 12189

Special Issue Editor


E-Mail Website
Guest Editor

Special Issue Information

Dear Colleagues,

A bioactive compound is a compound that has an effect on a living organism, tissue or cell, usually demonstrated by basic research in vitro or in vivo in the laboratory. Bioactive compounds are commonly derived from plants, and can be synthetically produced. Examples of plant bioactive compounds are carotenoids, polyphenols, or phytosterols. Bioactive compounds from plants are vital for human health and disease, which are gaining wide attention for their anticancer activities and anti-inflammatory activity, etc., yet their significance remains underappreciated.

This Special Issue aims to provide a platform for molecular mechanistic research and potential medical applications on bioactive compound with a special focus on inhibition of inflammation, tumor growth and metastasis, enhancement of cancer therapeutic efficacy or amelioration of the associated adverse effects. Research and develop hyphenated technological platforms of metabolomics for deciphering the biosynthetic pathway(s) of specific bioactive phytocompounds in plants.

We warmly welcome your submissions of original papers and reviews based on results from molecular viewpoints.

This Special Issue is supervised by Prof. Dr. Guan-Jhong Huang and assisted by our Guest Editor’ assistant editor Dr. Xingkang Wu (Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University).

Prof. Dr. Guan-Jhong Huang
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • cancer
  • inflammation
  • cardiovascular diseases
  • plants
  • bioactive compounds

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Related Special Issue

Published Papers (9 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

19 pages, 3179 KiB  
Article
Re-Sensitization of Resistant Ovarian Cancer SKOV3/CDDP Cells to Cisplatin by Curcumin Pre-Treatment
by Aseel Ali Hasan, Elena Kalinina, Dmitry Zhdanov, Yulia Volodina and Victor Tatarskiy
Int. J. Mol. Sci. 2025, 26(2), 799; https://doi.org/10.3390/ijms26020799 - 18 Jan 2025
Viewed by 542
Abstract
A major challenging problem facing effective ovarian cancer therapy is cisplatin resistance. Re-sensitization of cisplatin-resistant ovarian cancer cells to cisplatin (CDDP) has become a critical issue. Curcumin (CUR), the most abundant dietary polyphenolic curcuminoids derived from turmeric (Curcuma longa), has achieved [...] Read more.
A major challenging problem facing effective ovarian cancer therapy is cisplatin resistance. Re-sensitization of cisplatin-resistant ovarian cancer cells to cisplatin (CDDP) has become a critical issue. Curcumin (CUR), the most abundant dietary polyphenolic curcuminoids derived from turmeric (Curcuma longa), has achieved previously significant anti-cancer effects against human ovarian adenocarcinoma SKOV-3/CDDP cisplatin-resistant cells by inhibition the gene expression of the antioxidant enzymes (SOD1, SOD2, GPX1, CAT and HO1), transcription factor NFE2L2 and signaling pathway (PIK3CA/AKT1/MTOR). However, the detailed mechanisms of curcumin-mediated re-sensitization to cisplatin in SKOV-3/CDDP cells still need further exploration. Here, a suggested curcumin pre-treatment therapeutic strategy has been evaluated to effectively overcome cisplatin-resistant ovarian cancer SKOV-3/CDDP and to improve our understanding of the mechanisms behind cisplatin resistance. The findings of the present study suggest that the curcumin pre-treatment significantly exhibited cytotoxic effects and inhibited the proliferation of the SKOV-3/CDDP cell line compared to the simultaneous addition of drugs. Precisely, apoptosis induced by curcumin pre-treatment in SKOV-3/CDDP cells is mediated by mitochondrial apoptotic pathway (cleaved caspases 9, 3 and cleaved PARP) activation as well as by inhibition of thioredoxin reductase (TRXR1) and mTOR/STAT3 signaling pathway. This current study could deepen our understanding of the anticancer mechanism of CUR pre-treatment, which not only facilitates the re-sensitization of ovarian cancer cells to cisplatin but may lead to the development of targeted and effective therapeutics to eradicate SKOV-3/CDDP cancer cells. Full article
Show Figures

Figure 1

14 pages, 2312 KiB  
Article
Macrocyclic Diterpenoids from Euphorbia peplus Possessing Activity Towards Autophagic Flux
by Lu Chen, Lulan Liu, Yingyao Li, Shipeng Guan, Lingling Fan, Xujie Qin, Yingtong Di, Lei Tang, Rongcan Luo and Ying Yan
Int. J. Mol. Sci. 2025, 26(1), 299; https://doi.org/10.3390/ijms26010299 - 31 Dec 2024
Viewed by 491
Abstract
Euphjatrophanes H–L (15), four new jatrophane-type and one new lathyrane-type diterpenoid, were isolated from Euphorbia peplus, along with eight known diterpenoids (613). Their structures were established on the basis of extensive spectroscopic analysis and [...] Read more.
Euphjatrophanes H–L (15), four new jatrophane-type and one new lathyrane-type diterpenoid, were isolated from Euphorbia peplus, along with eight known diterpenoids (613). Their structures were established on the basis of extensive spectroscopic analysis and X-ray crystallographic experiments. All compounds were subjected to bioactivity evaluation using flow cytometry in autophagic flux assays with HM mCherry-GFP-LC3 cells, the human microglia cells which stably expressed the tandem monomeric mCherry-GFP-tagged LC3. Compounds 13, 510, and 12 significantly increase autophagic flux, and compounds 1 and 12 displayed relatively high BBB permeability, with logPe values of −4.853 and −5.017, respectively. These findings indicated that jatrophane diterpenoids could serve as a valuable source for innovative autophagy inducers. Full article
Show Figures

Graphical abstract

26 pages, 3316 KiB  
Article
Targeting Hypoglycemic Natural Products from the Cloud Forest Plants Using Chemotaxonomic Computer-Assisted Selection
by Cecilia I. Mayo-Montor, Abraham Vidal-Limon, Víctor Manuel Loyola-Vargas, Oscar Carmona-Hernández, José Martín Barreda-Castillo, Juan L. Monribot-Villanueva and José A. Guerrero-Analco
Int. J. Mol. Sci. 2024, 25(20), 10881; https://doi.org/10.3390/ijms252010881 - 10 Oct 2024
Viewed by 1357
Abstract
The cloud forest (CF), a hugely biodiverse ecosystem, is a hotspot of unexplored plants with potential for discovering pharmacologically active compounds. Without sufficient ethnopharmacological information, developing strategies for rationally selecting plants for experimental studies is crucial. With this goal, a CF metabolites library [...] Read more.
The cloud forest (CF), a hugely biodiverse ecosystem, is a hotspot of unexplored plants with potential for discovering pharmacologically active compounds. Without sufficient ethnopharmacological information, developing strategies for rationally selecting plants for experimental studies is crucial. With this goal, a CF metabolites library was created, and a ligand-based virtual screening was conducted to identify molecules with potential hypoglycemic activity. From the most promising botanical families, plants were collected, methanolic extracts were prepared, and hypoglycemic activity was evaluated through in vitro enzyme inhibition assays on α-amylase, α-glucosidase, and dipeptidyl peptidase IV (DPP-IV). Metabolomic analyses were performed to identify the dominant metabolites in the species with the best inhibitory activity profile, and their affinity for the molecular targets was evaluated using ensemble molecular docking. This strategy led to the identification of twelve plants (in four botanical families) with hypoglycemic activity. Sida rhombifolia (Malvaceae) stood out for its DPP-IV selective inhibition versus S. glabra. A comparison of chemical profiles led to the annotation of twenty-seven metabolites over-accumulated in S. rhombifolia compared to S. glabra, among which acanthoside D and cis-tiliroside were noteworthy for their potential selective inhibition due to their specific intermolecular interactions with relevant amino acids of DPP-IV. The workflow used in this study presents a novel targeting strategy for identifying novel bioactive natural sources, which can complement the conventional selection criteria used in Natural Product Chemistry. Full article
Show Figures

Figure 1

13 pages, 2345 KiB  
Article
Metabolic Engineering of Escherichia coli for Production of a Bioactive Metabolite of Bilirubin
by Huaxin Chen, Peng Xiong, Ning Guo and Zhe Liu
Int. J. Mol. Sci. 2024, 25(17), 9741; https://doi.org/10.3390/ijms25179741 - 9 Sep 2024
Cited by 1 | Viewed by 1494
Abstract
Bilirubin (BR) is an important ingredient of a valuable Chinese medicine, Calculus bovis. Over recent decades, increasing evidence has confirmed that BR offers health benefits in cardiovascular health, stroke, diabetes, and metabolic syndrome. However, BR is mainly produced by extraction from pig bile. [...] Read more.
Bilirubin (BR) is an important ingredient of a valuable Chinese medicine, Calculus bovis. Over recent decades, increasing evidence has confirmed that BR offers health benefits in cardiovascular health, stroke, diabetes, and metabolic syndrome. However, BR is mainly produced by extraction from pig bile. In this study, we assembled an efficient pathway for BR production by metabolic engineering of Escherichia coli. First, heme oxygenase (HO1) and biliverdin reductase were co-expressed in E. coli. HPLC and LC–MS confirmed the accumulation of BR in the recombinant E. coli cells. To improve BR production, the catalytic abilities of HO1 from different species were investigated. In addition, the outermembrane-bound heme receptor (ChuA) and the enzymes involved in heme biosynthesis were overexpressed among which ChuA, 5-aminolevulinic acid dehydratase (HemB), protoporphyrin oxidase (HemG), and ferrochelatase (HemH) were found to enhance BR accumulation in E. coli. In addition, expression of ferredoxin (Fd) was shown to contribute to efficient conversion of heme to BR in E. coli. To increase supply of NADPH, isocitrate dehydrogenase (IDH), NAD kinase (nadK), NADP-specific glutamate dehydrogenase (gdhA), and glucose-6-phosphate 1-dehydrogenase (ZWF) were overexpressed and were found to enhance BR accumulation when these proteins were expressed with a low-copy plasmid pACYCduet-1. Modular optimization of the committed genes led to a titer of 17.2 mg/L in strain M1BHG. Finally, fed-batch fermentation was performed for the strains M1BHG and M1, resulting in accumulation of 75.5 mg/L and 25.8 mg/L of BR, respectively. This is the first report on biosynthesis of BR through metabolic engineering in a heterologous host. Full article
Show Figures

Figure 1

11 pages, 1747 KiB  
Article
Simplified Synthesis of Poly(ethyleneimine)-Modified Silica Particles and Their Application in Oligosaccharide Isolation Methods
by Xingyun Zhao, Yifan Niu, Chengxiao Zhao, Zhenyu Li, Ke Li and Xuemei Qin
Int. J. Mol. Sci. 2024, 25(17), 9465; https://doi.org/10.3390/ijms25179465 - 30 Aug 2024
Cited by 1 | Viewed by 864
Abstract
There are great challenges in the field of natural product isolation and purification and in the pharmacological study of oligosaccharide monomers. And these isolation and purification processes are still universal problems in the study of natural products (NPs), traditional Chinese medicine (TCM), omics, [...] Read more.
There are great challenges in the field of natural product isolation and purification and in the pharmacological study of oligosaccharide monomers. And these isolation and purification processes are still universal problems in the study of natural products (NPs), traditional Chinese medicine (TCM), omics, etc. The same polymer-modified materials designed for the special separation of oligosaccharides, named Sil-epoxy-PEI and Sil-chloropropyl-PEI, were synthesized via two different methods and characterized by scanning electron microscopy combined with energy spectrum analysis, Fourier transform infrared spectroscopy, thermogravimetric analysis, zeta potential as well as surface area analysis, etc. Several nucleotide/nucleoside molecules with different polarities and selectivities were successfully isolated in our laboratory using stainless-steel columns filled with the synthesized material. In addition, the separation of saccharide probes and oligosaccharides mixtures in water extracts of Morinda officinalis were compared in HILIC mode. The results showed that the resolution of separations for the representative analytes of the Sil-epoxy-PEI column was higher than for the Sil-chloropropyl-PEI column, and the developed stationary phase exhibited improved performance compared to hydrothermal carbon, amide columns and other HILIC materials previously reported. Full article
Show Figures

Figure 1

16 pages, 3268 KiB  
Article
Discovery of Aloperine as a Potential Antineoplastic Agent for Cholangiocarcinoma Harboring Mutant IDH1
by Xingkang Wu, Yang Li, Chenchen Han, Shifei Li and Xuemei Qin
Int. J. Mol. Sci. 2024, 25(17), 9226; https://doi.org/10.3390/ijms25179226 - 25 Aug 2024
Cited by 1 | Viewed by 1362
Abstract
Intrahepatic cholangiocarcinoma (ICC) is a universally lethal malignancy with increasing incidence. However, ICC patients receive limited benefits from current drugs; therefore, we must urgently explore new drugs for treating ICC. Quinolizidine alkaloids, as essential active ingredients extracted from Sophora alopecuroides Linn, can [...] Read more.
Intrahepatic cholangiocarcinoma (ICC) is a universally lethal malignancy with increasing incidence. However, ICC patients receive limited benefits from current drugs; therefore, we must urgently explore new drugs for treating ICC. Quinolizidine alkaloids, as essential active ingredients extracted from Sophora alopecuroides Linn, can suppress cancer cell growth via numerous mechanisms and have therapeutic effects on liver-related diseases. However, the impact of quinolizidine alkaloids on intrahepatic cholangiocarcinoma has not been fully studied. In this article, the in vitro anti-ICC activities of six natural quinolizidine alkaloids were explored. Aloperine was the most potent antitumor compound among the tested quinolizidine alkaloids, and it preferentially inhibited RBE cells rather than HCCC-9810 cells. Mechanistically, aloperine can potentially decrease glutamate content by inhibiting the hydrolysis of glutamine, reducing D-2-hydroxyglutarate levels and, consequently, leading to preferential growth inhibition in isocitrate dehydrogenase (IDH)-mutant ICC cells. In addition, aloperine preferentially resensitizes RBE cells to 5-fluorouracil, AGI-5198 and olaparib. This article demonstrates that aloperine shows preferential antitumor effects in intrahepatic cholangiocarcinoma cells harboring the mutant IDH1 by decreasing D-2-hydroxyglutarate, suggesting that aloperine could be used as a lead compound or adjuvant chemotherapy drug to treat ICC harboring the mutant IDH. Full article
Show Figures

Figure 1

Review

Jump to: Research

61 pages, 5717 KiB  
Review
Ellagic Acid: A Green Multi-Target Weapon That Reduces Oxidative Stress and Inflammation to Prevent and Improve the Condition of Alzheimer’s Disease
by Silvana Alfei and Guendalina Zuccari
Int. J. Mol. Sci. 2025, 26(2), 844; https://doi.org/10.3390/ijms26020844 - 20 Jan 2025
Viewed by 677
Abstract
Oxidative stress (OS), generated by the overrun of reactive species of oxygen and nitrogen (RONS), is the key cause of several human diseases. With inflammation, OS is responsible for the onset and development of clinical signs and the pathological hallmarks of Alzheimer’s disease [...] Read more.
Oxidative stress (OS), generated by the overrun of reactive species of oxygen and nitrogen (RONS), is the key cause of several human diseases. With inflammation, OS is responsible for the onset and development of clinical signs and the pathological hallmarks of Alzheimer’s disease (AD). AD is a multifactorial chronic neurodegenerative syndrome indicated by a form of progressive dementia associated with aging. While one-target drugs only soften its symptoms while generating drug resistance, multi-target polyphenols from fruits and vegetables, such as ellagitannins (ETs), ellagic acid (EA), and urolithins (UROs), having potent antioxidant and radical scavenging effects capable of counteracting OS, could be new green options to treat human degenerative diseases, thus representing hopeful alternatives and/or adjuvants to one-target drugs to ameliorate AD. Unfortunately, in vivo ETs are not absorbed, while providing mainly ellagic acid (EA), which, due to its trivial water-solubility and first-pass effect, metabolizes in the intestine to yield UROs, or irreversible binding to cellular DNA and proteins, which have very low bioavailability, thus failing as a therapeutic in vivo. Currently, only UROs have confirmed the beneficial effect demonstrated in vitro by reaching tissues to the extent necessary for therapeutic outcomes. Unfortunately, upon the administration of food rich in ETs or ETs and EA, URO formation is affected by extreme interindividual variability that renders them unreliable as novel clinically usable drugs. Significant attention has therefore been paid specifically to multitarget EA, which is incessantly investigated as such or nanotechnologically manipulated to be a potential “lead compound” with protective action toward AD. An overview of the multi-factorial and multi-target aspects that characterize AD and polyphenol activity, respectively, as well as the traditional and/or innovative clinical treatments available to treat AD, constitutes the opening of this work. Upon focus on the pathophysiology of OS and on EA’s chemical features and mechanisms leading to its antioxidant activity, an all-around updated analysis of the current EA-rich foods and EA involvement in the field of AD is provided. The possible clinical usage of EA to treat AD is discussed, reporting results of its applications in vitro, in vivo, and during clinical trials. A critical view of the need for more extensive use of the most rapid diagnostic methods to detect AD from its early symptoms is also included in this work. Full article
Show Figures

Graphical abstract

32 pages, 1234 KiB  
Review
Caffeine: A Multifunctional Efficacious Molecule with Diverse Health Implications and Emerging Delivery Systems
by Xinjie Song, Mahendra Singh, Kyung Eun Lee, Ramachandran Vinayagam and Sang Gu Kang
Int. J. Mol. Sci. 2024, 25(22), 12003; https://doi.org/10.3390/ijms252212003 - 8 Nov 2024
Cited by 1 | Viewed by 2885
Abstract
Natural caffeine is found in many plants, including coffee beans, cacao beans, and tea leaves. Around the world, many beverages, including coffee, tea, energy drinks, and some soft drinks, have this natural caffeine compound. This paper reviewed the results of meta-studies on caffeine’s [...] Read more.
Natural caffeine is found in many plants, including coffee beans, cacao beans, and tea leaves. Around the world, many beverages, including coffee, tea, energy drinks, and some soft drinks, have this natural caffeine compound. This paper reviewed the results of meta-studies on caffeine’s effects on chronic diseases. Of importance, many meta-studies have shown that regularly drinking caffeine or caffeinated coffee significantly reduces the risk of developing Alzheimer’s disease, epilepsy, and Parkinson’s disease. Based on the health supplements of caffeine, this review summarizes various aspects related to the application of caffeine, including its pharmacokinetics, and various functional health benefits of caffeine, such as its effects on the central nervous system. The importance of caffeine and its use in alleviating or treating cancer, diabetes, eye diseases, autoimmune diseases, and cardiovascular diseases is also discussed. Overall, consuming caffeine daily in drinks containing antioxidant and neuroprotective properties, such as coffee, prevents progressive neurodegenerative diseases, such as Alzheimer’s and Parkinson’s. Furthermore, to effectively deliver caffeine to the body, recently developed nanoformulations using caffeine, for instance, nanoparticles, liposomes, etc., are summarized along with regulatory and safety considerations for caffeine. The U.S. Department of Agriculture (USDA) and the Food and Drug Administration (FDA) recommended that healthy adults consume up to 400 mg of caffeine per day or 5~6 mg/kg body weight. Since a cup of coffee contains, on average, 100 to 150 mg of coffee, 1 to 3 cups of coffee may help prevent chronic diseases. Furthermore, this review summarizes various interesting and important areas of research on caffeine and its applications related to human health. Full article
Show Figures

Figure 1

50 pages, 19245 KiB  
Review
Liposomal Formulations of Metallodrugs for Cancer Therapy
by Eleonora Botter, Isabella Caligiuri, Flavio Rizzolio, Fabiano Visentin and Thomas Scattolin
Int. J. Mol. Sci. 2024, 25(17), 9337; https://doi.org/10.3390/ijms25179337 - 28 Aug 2024
Cited by 1 | Viewed by 1322
Abstract
The search for new antineoplastic agents is imperative, as cancer remains one of the most preeminent causes of death worldwide. Since the discovery of the therapeutic potential of cisplatin, the study of metallodrugs in cancer chemotherapy acquired increasing interest. Starting from cisplatin derivatives, [...] Read more.
The search for new antineoplastic agents is imperative, as cancer remains one of the most preeminent causes of death worldwide. Since the discovery of the therapeutic potential of cisplatin, the study of metallodrugs in cancer chemotherapy acquired increasing interest. Starting from cisplatin derivatives, such as oxaliplatin and carboplatin, in the last years, different compounds were explored, employing different metal centers such as iron, ruthenium, gold, and palladium. Nonetheless, metallodrugs face several drawbacks, such as low water solubility, rapid clearance, and possible side toxicity. Encapsulation has emerged as a promising strategy to overcome these issues, providing both improved biocompatibility and protection of the payload from possible degradation in the biological environment. In this respect, liposomes, which are spherical vesicles characterized by an aqueous core surrounded by lipid bilayers, have proven to be ideal candidates due to their versatility. In fact, they can encapsulate both hydrophilic and hydrophobic drugs, are biocompatible, and their properties can be tuned to improve the selective delivery to tumour sites exploiting both passive and active targeting. In this review, we report the most recent findings on liposomal formulations of metallodrugs, with a focus on encapsulation techniques and the obtained biological results. Full article
Show Figures

Figure 1

Back to TopTop