AI and Heart Failure
A special issue of Life (ISSN 2075-1729). This special issue belongs to the section "Medical Research".
Deadline for manuscript submissions: closed (20 May 2024) | Viewed by 1650
Special Issue Editors
Interests: heart failure; acute heart failure; chronic heart failure; LVAD; heart transplantation; amyloidosis; devices; pulmonary hypertension
Special Issues, Collections and Topics in MDPI journals
Interests: valvular disease; coronary artery disease; transcatheter therapies; cardiovascular imaging; artificial intelligence
2. Cardiology Department, Alexandra Hospital, Athens, Greece
Interests: cardiovascular medicine; heart failure; heart transplant
Special Issues, Collections and Topics in MDPI journals
Special Issue Information
Dear Colleagues,
With the progress in medical technology and knowledge, large amounts of versatile medical data are now produced at high rates, constituting what is broadly called Big Data. Artificial intelligence and its algorithmic subfield termed machine learning (ML) offer patients, physicians and public health specialists advantageous methods to utilize these large amounts of medical data. Indeed, the number of indexed publications in PubMed that relate to ML and deep learning, types of machine learning algorithms that are called convolutional neural networks, has been rising exponentially since 2005. However, the application of ML algorithms is not without limitations. The collection and preprocessing of large data, overtraining and explicability of ML algorithms, risk of misinterpretation and misinformation, as well as the need for multidisciplinary teams are some of the major challenges of ML applications in the medical field.
In this context, ML algorithms are being used more and more frequently for multiple purposes within the cardiology subfield of heart failure (HF). ML algorithms have the potential to discover new knowledge, define clinical phenotypes and assist in the generation of research hypotheses. For example, they can generate research hypotheses for HF with a preserved ejection fraction, predict outcomes in different HF populations, assist physicians in the diagnosis of HF and associated clinical decision-making, and assist patients or people in avoiding HF hospitalizations by utilizing mobile devices. At the same time, great effort and expertise are warranted to address the challenges of ML applications in HF. The goal of this Special Issue is to update readers on the expanding applications and limitations of ML algorithms in HF by highlighting the key aspects and research in the field.
Dr. Andrew Xanthopoulos
Dr. Polydoros Ν. Kampaktsis
Dr. Alexandros Briasoulis
Guest Editors
Manuscript Submission Information
Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.
Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Life is an international peer-reviewed open access monthly journal published by MDPI.
Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.
Keywords
- artificial intelligence
- heart failure
- heart disease
Benefits of Publishing in a Special Issue
- Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
- Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
- Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
- External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
- e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.
Further information on MDPI's Special Issue polices can be found here.